用户名: 密码: 验证码:
土壤湿度的模拟和估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤湿度作为全球能量与水循环中非常重要的水文变量,不仅关系到天气预报和气候预测的准确度,同时在水文、生态、农业等学科中也具有重要的研究意义。通过开展大量的针对土壤湿度的观测实验和模拟研究,人们对土壤湿度的认识水平有较大提高,特别是卫星遥感资料的出现,为提高土壤湿度的准确模拟创造了很好的条件。本论文主要围绕土壤湿度的模拟和估算展开了一系列的研究,为提高土壤湿度的模拟提供一些理论依据。
     首先,由于陆面模式的出处和用途的不同,导致其种类繁多。为了理解陆面过程在天气和气候模式中的作用,定量的评价不同陆面模式的模拟性能,以促进陆面模式的继续发展,国内外已经展开了一系列的陆面模式比较计划,本论文继续关注陆面过程中的土壤湿度和通量的模拟。
     本论文的第一部分工作检验了不同模式对土壤湿度的模拟差别,与前人工作不同的是考察土壤湿度方程的离散化方案以及土壤分层和土壤性质(均匀和非均匀性)对土壤湿度模拟的影响,同时为了防止上边界参数化方案(如蒸发和径流等)差别带来的影响,采用了三类理想上边界条件来对土壤湿度方程求解。结果表明:当土壤质地均匀时,土壤分层较多的情况下,不同的差分格式求解的不同土壤类型的湿度廓线相差不大,同时对比细网格(分层较多)和粗网格(分层较少)的湿度廓线发现:不同粗网格对土壤湿度,尤其是深层土壤湿度的模拟比较差。当土壤质地不均匀时,不同的差分格式对土壤湿度廓线求解差别比较大,主要表现在不同差分格式计算得到的土壤湿度的连续性不同,通过对比粗网格和细网格之间的均方差后发现,不同离散化方法均方差的变化亦不同。最后,为了比较不同的差分格式求解中离散化过程可能引起的误差,特引入了一种迭代方法对比,通过对比不同数值方法求解得到的土壤湿度廓线后,结果显示增量法和迭代法求解得到的土壤湿度廓线比较一致。本论文第二章中列出了不同模式和本文中使用的土壤湿度方程的详细离散化过程,第三章通过试验的设计,比较不同的离散化方法的差别。
     本论文的第二部分工作为实际大气观测驱动下的模拟试验。使用中日合作项目“全球能量水循环之亚洲季风青藏高原试验研究"(GAME/Tibet)的观测数据和美国土壤湿度试验(SMEX03)的观测数据,分别对三个陆面模式(CoLM,CABLE和Noah LSM)展开模式比较工作,重点比较了对土壤温湿度和感潜热通量的模拟结果。结果显示:不同的陆面模式都能够模拟出土壤的温度和湿度的基本特征,表层土壤湿度对降水过程响应比较快,但是具体模拟的土壤温、湿度值却与实际观测存在较大的差别,此外,不同模式模拟得到的土壤温、湿度之间也存在较大的差别。该部分工作出现在本论文第三章中。
     其次,来自不同源的土壤湿度的观测,尤其是微波遥感反演得到的表层(一般深度小于10 cm)土壤湿度可以和陆面模式融合在一起并借助数据同化技巧来估算土壤湿度廓线,特别是对植被根区土壤湿度的改进具有更明显的气候学意义。同时,大量的研究结果表明,多模式的集合预报已经被证明要好于单个模式的集合预报效果,而多模式集合预报中的数据同化算法的相关研究还相对较少。
     本论文的最后一部分内容展开了估算土壤湿度廓线的陆面数据同化试验。数据同化方法使用了集合Kalman滤波,首先分别单独使用三个陆面模式来比较它们同化表层土壤湿度观测对深层土壤湿度、感热通量和潜热通量的改进效果,同时考察了不同误差源对同化效果的影响。该部分工作出现在第五章。然后,鉴于多模式的集合预报效果要好于单个模式的集合预报效果,展开多模式超集合卡曼滤波的陆面数据同化试验,继续采用同化表层湿度观测来估算土壤湿度廓线这-经典陆面数据同化框架。为此,提出了两种用来估算超集合背景场及其误差协方差的方法,文中称为“样本均值法”(SMA)和“加权平均法”(WAM),并比较两种方法用在多模式土壤湿度同化系统中的表现。试验结果显示:“样本均值法”对深层土壤湿度的改进较小,甚至有时会比单个模式的同化效果还差,而“加权平均法”却能取得比较好的同化效果,比单个模式估算的土壤湿度精度都高。该部分多模式同化工作将出现在第六章。
     最后,第七章总结了博士论文的全部工作,指出存在的不足,并对后续工作进行了展望。
The role of soil moisture is widely recognised as a key paremeter in global energy and water cycle and numerous environmental studies, including not only in meteorology and climatology but also in hydrology, ecology and agriculture, et al. Lots of field and similation experiments approached to understand the importance of soil moisture, and the remote sensing data provided a great chance to improve soil moisture estimation. This thesis mainly addresses the simulation of soil moisture by using different land surface models (LSMs) and the estimation of soil moisture by using ensemble Kalman filter (EnKF) data assimilation scheme wih the background provided by each single-model or multimodel. The main contents are as follows:
     Firstly, there are various kinds of Land surface models in different nations and institutions. To evaluate the porformance of different models, and ultimately to improve the parameterization of land models, many land model intercomparision projects have been arranged to this aim.
     The first part of work in this thesis is to simulate soil moisture by using different numerical discretization schemes. The 1-D Richards equation for soil moisture is highly nonlinear and it is impossible to find out an analytical solution with general initial and boundary condition. Therefore, numerical approximations are typically used to solve the equation. To prevent the influence of the parameterization schemes of upper boundary(eg. evaporation and run-off), three kinds of ideal upper boundary conditions (BCs) are adopted, including fixed evaporation rate, fixed infiltration rate and fixed near-surface soil moisture. The main purpose is to evaluate the influence of the numbers of soil layers and the heterogeneity of soil on the prediction of soil moisture. The results show that if the soil along depth is homogeneous (i.e. one soil type with fixed percentages of sand, clay and loam) and the large number of soil layers is used, the different schemes will produce almost similar results. By comparing the soil moisture profiles produced with more layers and less layers, we found that the soil moisture predicton becomes worse with less layers than with more layers at deep soil layers. The results also shows that if the soil along the depth is heterogeneous (i.e. still one soil type but with different percentages of sand, clay and loam in each layer), the different schemes will produce very different solutions, and the main difference is the continuity of the soil moisture profile. The rms difference of the soil moisture predictions by the fine grids (i.e., more soil layers) and coarse grids (i.e., less soil layers) is not consistent among differet LSMs. In order to quantitatively evaluate the impact of linearization on the modeling of soil moisture, an interative scheme with no linearization is introduced and its results are used to compare with those from the different LSMs, showing that the profile with the scheme of CoLM is similar with the interative scheme. The second chapter lists the different numerical discretization schemes. The third chapter gives the result of the experiments.
     The Second part of work in this thesis is to simulate the soil moisture, soil temperature and surface heat fluxes by the forcings of the meteorological observations. The dataset is from the Soil Moisture Experiments in 2003 (SMEX03) and the GEWEX Asia Monsoon Experiment over the Tibetan Plateau (GAME/Tibet) and the three LSMs are CoLM, CABLE and Noah. The result shows the models can not correctly simulate the soil temperature and soil moisture at near-surface layer, however, they all do a fairly good job in reproducing the soil moisture anomalies. The soil temperature and soil moisture simulated by different models have large differences at near-surface layer, but are very similar at deep soil layers. For latent and sensible heat fluxes, The fluxes from CoLM are relatively larger and those from Noah LSM are smaller than the observations, however, the fluxes from CABLE are close to the measurements. This content appears in the fourth chapter.
     Secondly, Soil moisture observation, especially remote sensing techniques, can provide additional information about near-surface soil moisture (generally less than 10cm) at large scales. Land data assimilation scheme can be designed to estimate soil moisture profile and fluxes by assimilating different data sources. Multi-model ensembles have been found to perform significantly better than a single-model system in weather and seasonal climate forecasts, however, data assimilation rarely used in multi-model forecasts.
     The last part of work in this thesis is estimating the soil moisture profile by the land data assimilation schemes. In this part of work, the ensemble Kalman filter (EnKF) is used in land data assimilation system. The soil moisture and fluxes are estimated with three single models by assimilating near-surface soil moisture observations. Random errors are added in initial soil moisture profile, forcing datasets and soil parameters are used to evaluate the influence of different sources of errors. This work appears in chapter five.
     Then, we carry out a multi-model EnKF data assimilation experiments by assimilating surface soil moisture observation for the retrieval of soil moisture profile. Two algorithms, i.e., the simple model average (SMA) and the weighted average method (WAM), are investigated for estimating the multi-model background superensemble mean and the corresponding multi-model background superensemble error covariance matrix. The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically generated and actual near-surface soil moisture measurements into the multi-model. The results from the experiment show the SMA does not help to improve the estimates of soil moisture at the deep layers, even worse than with single model. On the contrary, the results from the WAM are better than those from any single model and SMA. This part of wok appears in chapter six.
     Finally, all of work in this doctoral thesis is summarized in chapter seven, and further research is also included.
引文
[1]Abramowitz G, Leuning R, Clark M, et al. Evaluating the performance of land surface models. J. Climate,2008,21:5468-5480.
    [2]Bernard R, Vauclin M, Vidal-Madjar D. Possible use of active microwave remote sensing data for prediction of regional evaporation by numerical simulation of soil water movement in the unsaturated zone. Water Resour. Res.,1981,17(6): 1603-1610.
    [3]Bindlish R, Jackson TJ, Wood E, Gao HL, Starks P, Bosch D, Lakshmi V. Soil moisture estimates from TRMM microwave imager observations over the southern United States. Remote Sens. Environ.,2003,85(4):507-515.
    [4]Boone A, de Rosnay P, Balsamo G, Beljaars A, Chopin F, Decharme B, Delire C, Ducharne A, Gascoin S, Guichard F, Gusev Y, Harris P, Jarlan L, Kergoat L, Mougin E, Nasonova O, Norgaard A, Orgeval T, et al. The AMMA Land Surface Model Intercomparison Project (ALMIP). Bull. Am. Meteorol. Soc,2009,90(12), 1865-1880.
    [5]Brucker L, Witono H. Use of remotely sensed soil moisture content as boundary conditions in soil-atmosphere water transport modeling:2. Estimating soil water balance. Water Resour. Res.,1989,25(12):2437-2447.
    [6]Chen F, Pielke RA, Mitchell K. Development and application of land surface models for mesoscale atmospheric models:problems and promises. In Land Surface Hydrology. Meteorology and Climate:Observations and Modeling, Water Sci. Appl,2001,3:107-135PP.
    [7]Crow WT, Wood EF. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Res., 2003,26:37-149.
    [8]Dirmeyer PA, Tan L. A multi-decadal global land-surface data set of state variable and fluxes. COLA Technical Report 102 [Available from the Center for Ocaen-Land-Atmosphere Studies,4041 Powder Mill Road, Suite 302, Calverton, MD 20705 USA],2001,43pp.
    [9]Dirmeyer PA. Climate drift in a coupled land-atmosphere model. J. Hydrol.,2001, 2:89-100.
    [10]Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N. GSWP-2:multi-model analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc,2006,87:1381-1397. doi:10.1175/BAMS-87-10-1381.
    [11]Dong J, Ni-Meister W, Houser PR. Impacts of vegetation and cold season processes on soil moisture—Climate relationships over Eurasia. J. Geophys. Res., 2007,112:D09106. DOI:10.1029/2006JF007774.
    [12]Dong J, Walker JP, Houser PR, Sun C. Scanning multichannel microwave radiometer snow water equivalent assimilation. J. Geophys. Res.,2007,112, D07108. DOI:10.1029/2006JD007209.
    [13]Dunne S, Entekhabi D. An ensemble-based reanalysis approach to land data assimilation. Water Resour. Res.,2005,41, W02013. DOI: 10.1029/2004 WR003449.
    [14]Dunne S, Entekhabi D. Land surface state and flux estimation using the ensemble Kalman smoother during the Southern Great Plains 1997 field experiment. Water Resour. Res.,2006,42, W01407. DOI:10.1029/2005WR004334.
    [15]Entin JK, Robock A, Vinnikov KY, Zabelin V, Liu S, Namkhai A. Evaluation of Global Soil Wetness Project soil moisture simulations. J. Meteor. Soc. Japan, 1999,77:183-198.
    [16]Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 1994,99(C5):10143-10162.
    [17]Fennessy MJ, Shukla J. Impact of initial soil wetness on seasonal atmospheric prediction,J. Climate,1999,12:3167-3180.
    [18]Gao H, Wood EF, Drusch M, Crow W, Jackson TJ. Using a microwave emission model to estimate soil moisture from ESTAR observations during SGP99. J. Hydrometeorol,2004,5:49-63.
    [19]Gelb A. Applied Optimal Estimation. Boston, MA:The MIT Press.1974.
    [20]Gao H, Wood EF, Drusch M, Jackson T, Bindlish R. Using TRMM/TMI to retrieve soil moisture over the southern United States from 1998 to 2002. J. Hydrometeorol,2006,7:23-38.
    [21]Guo Z, Dirmeyer PA, Hu ZZ, Gao X, Zhao M. Evaluation of GSWP-2 Soil Moisture Simulations, Part 2:sensitivity to external meteorological forcing, J. Geophys. Res.,2006,111:D22S03. doi:10.1029/2006JD007845.
    [22]Henderson-Sellers A, Pitman AJ, Love PK, et al. The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS):Phases 2 and 3. Bull. Amer. Meteor. Soc,1995,76(4):489-503.
    [23]Henderson-Sellers A. Soil moisture:A critical focus for global change studies. Global Planet. Change,1996,13:3-9.
    [24]Houser PR, Shuttleworth WJ, Gupta HV, Famiglietti JS, Syed KH, Goodrich DC. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res.,1998,34(12):3405-3420.
    [25]International GEWEX Project Office. The Second Global Soil Wetness Project Science and Implementation Plan. IGPO Publication Series No.37,2002,69 pp.
    [26]Jackson TJ, Schmugge TJ, Nicke AD, Coleman GA., Engman ET. Soil moisture updating and microwave remote sensing for hydrological simulation. Hydrol. Sci. Bull.,1981,26(3):305-319.
    [27]Jackson T. Soil moisture estimation using special satellite microwave/imager (SSM/I) satellite data over a grassland region. Water Resour. Res.,1997,333: 1475-1484.
    [28]Jackson T, Levine D, Hsu A, Oldak A, Starks P, Swift C, Isham J, Haken M. Soil moisture mapping at regional scales using microwave radiometry:The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens.,1999,37: 2136-2151.
    [29]Jackson T, Levine DL, Swift C, Schmugge T, Schiebe F. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita'92. Remote Sens. Environ.,1995,54(1):27-37.
    [30]Koster RD, Milly PCD. The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 1997,10,1578-1591.
    [31]Koster RD, Suarez MJ. Soil moisture memory in climate models. J. Hydrol.,2000, 2:558-570.
    [32]Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P. A catchment-based approach to modeling land surface processes in a general circulation model,1: Model structure. J. Geophys. Res.,2000,105(20):24809-24822.
    [33]Koster RD, Dirmeyer PA, Guo ZC, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, T. Oki, K. Oleson, Pitman A., Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, and Yamada T, Regions of strong coupling between soil moisture and precipitation. Science,2004,305:1138-1140.
    [34]Koster RD, Suarez MJ, Liu P, Jambor U, Berg AA, Kistler M, Reichle RH, Rodell M, Famiglietti J. Realistic initialization of land surface states:Impacts on subseasonal forecast skill. J. Hydrometeorol.,2004,5(6):1049-1063.
    [35]Margulis S, McLaughlin D, Entekhabi D, Dunne S. Land data assimilation and soil moisture estimation using measurements from the Southern Great Plains 1997 field experiment. Water Resour. Res.,2002,38(12),1299. DOI: 10.1029/2001 WR001114.
    [36]Margulis S, Entekhabi D. Variational assimilation of radiometric surface temperature and screen-level micrometeorology into a model of the atmospheric boundary layer and land surface. Mon. Wea. Rev.,2003,131(7):1272-1288.
    [37]Mitchell, KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan Q, Luo L, R. Higgins W, Pinker RT, J Tarpley. D, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Bailey AA. The multi-institution North American Land Data Assimilation System (NLDAS):Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res.,2004, 109:D07S90, doi:10.1029/2003JD003823.
    [38]Ni-Meister W, Houser P, Walker J. Soil moisture initialization for climate prediction:Assimilation of SMMR soil moisture data into a land surface model. J. Geophys. Res.,2006,111, D20102. DOI:10.1029/2006JD007190.
    [39]Owe M, de Jeu R, Walker JP. A methodology for surface soil moisture and vegetation optical depth retrieval using microwave polarization difference index. IEEE Trans. Geosci. Remote Sens.,2001,39:1643-1654.
    [40]Pal JS, Eltahir EAB. Pathways relating soil moisture conditions to future summer rainfall within a land-atmosphere system. J. Climate,2001,12:1227-1242.
    [41]Prevot L, Bernard R, Taconet O, Vidal-Madjar D, Thony JL. Evaporation from a bare soil evaluated using a soil water transfer model an remotely sensed surface soil moisture data. Water Resour. Res.,1984,20(2):311-316.
    [42]Reichle RH, McLaughlin DB, Entekhabi D. Hydrologic data assimilation with the ensemble kalman filter. Mon. Wea. Rev.,2002,130(1):103-114.
    [43]Reichle RH, Walker JP, Koster RD, Houser PR. Extended vs. ensemble Kalman filtering for land data assimilation. J. Hydrometeorol,2002,3(6):728-740.
    [44]Reichle RH, Koster RD. Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 2005,32(2), L02404. DOI:10.1029/2004GL021700.
    [45]Reichle RD, McLaughlin DB. Downscaling of radiobrightness measurements for soil moisture estimation:A four-dimensional variational data assimilation approach. Water Resour. Res.,2001,37(9):2353-2364.
    [46]Reichle R, McLaughlin DB, Entekhabi D. Variational data assimilation of microwave radiobrightness observations for. land surface hydrologic applications. IEEE Trans. Geosci. Remote Sens.,2001,39(8):1708-1718.
    [47]Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu S, Namkhai A. The global soil moisture data bank. Bull. Am. Meteorol. Soc., 2000,81:811281-811299.
    [48]Rodell M, Houser P, Jambor U, Gottschalck J, Meng J, Arsenault K. Status and availability of results from NASAs Global Land Data Assimilation System. EOS Trans. American Geophysical Union,83(19), Spring Meeting Suppl.,2002, B41A-04.
    [49]Rodell M, Houser PR. Updating a land surface model with MODIS-derived snow cover. J.Hydrometeorol,2004,5:1064-1075.
    [50]Schuttemeyer D, Moene AF, Holtslag AAM, de Bruin HAR. Evaluation of Two Land Surface Schemes Used in Terrains of Increasing Aridity in West Africa. J. Hydrometeorol,2008,9:173-193.
    [51]Shao Y, Henderson-Sellers A. Validation of soil moisture simulation in landsurface parameterisation schemes with HAPEX data. Global Planet. Change, 1996,13:11-46.
    [52]Shukla J, Mintz Y. Influence of land-surface evapotranspiration on the earth's climate, Science,1982,215,1498-1501.
    [53]Sun C, Walker JP, Houser PR. A methodology for snow data assimilation in a land surface model. J. Geophys. Res. Atmos.,2004,109, D08108. DOI: 10.1029/2003JD003765.
    [54]Taylor CM, Ellis RJ. Satellite detection of soil moisture impacts on convection at the mesoscale, Geophys. Res. Lett.,2005,33, L03404, doi: 10.1029/2005GL025252.
    [55]van den Hurk B, et al.. Overview of the European Land Data Assimilation (ELDAS) project. EOS Trans. American Geophysical Union,83(47), Fall Meeting Suppl. H62D-0888.2002.
    [56]Walker JP, Houser PR. A methodology for initializing soil moisture in a global climate model:Assimilation of near-surface soil moisture observations. J. Geophys. Res.,2001,106:D11,11761-11774.
    [57]Walker JP, Willgoose GR, Kalma JD. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations:A comparison of retrieval algorithms. Adv. Water Res.,2001,24(6):631-650.
    [58]Walker JP, Willgoose GR, Kalma JD. Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements:Simplified Kalman filter covariance forecasting and field application. Water Resour. Res.,2002,38(12), 1301. DOI:10.1029/2002 WR001545.
    [59]Zhang SW, Li HR, Zhang WD, Qiu CJ, Li X. Estimating soil moisture profile by assimilation of near-surface observations with the ensemble Kalman filter (EnKF). Adv. Atmos. Sci,2005,22:936-945.
    [1]陈斌,丁裕国,刘晶淼,张耀存.非均匀地表陆面过程参数化研究.高原气象,2008,27(5):1172-1180.
    [2]杜川利,刘晓东,Wu WL.CLM3模拟的1979—2003年中国土壤湿度及其对全球变暖的可能响应.高原气象,2008,27:463-473.
    [3]郭维栋,马柱国,王会军.土壤湿度—一个跨季度降水预测中的重要因子及其应用探讨.气候与环境研究,2007,12:20-28.
    [4]黄洪峰.土壤-植物-大气相互作用原理及模拟研究.北京:气象出版社1997.
    [5]罗斯琼,陈世强,吕世华.不同土壤湿度条件下绿洲边界层特征的敏感性试验.高原气象,2005,4:471-477.
    [6]孙菽芬.陆面过程的物理、生化机理和参数化模型.北京:气象出版社,2005:1-21.
    [7]王介民.陆面过程实验和地气相互作用研究—从HEIFE到IMGRASS和GAME-Tibet/TIPEX.高原气象,1999,18:280-294.
    [8]Allen MB, Murphy C. A finite element collocation method for variably saturated flows in porous media. Numer. Methods Partial Differential Equations,1985, 3:229-239.
    [9]Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrology paper 3, Colorado State University, Fort Collins CO,1964,27PP.
    [10]Campbell, G. S, A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data. Soil Sci.1974,117,311-314.
    [11]Celia MA, Bouloutas ET, Zarba RL. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res.,1990,26(7): 1483-1496.
    [12]Chen F, Jimy D. Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system[J]. Mon Wea Rev,2001,129:569-585.
    [13]Clapp RB, Hornberger GM. Empirical equations for some soil hydraulic properties. Water Resources Research,1978,14:601-604
    [14]Dai Y. The Common Land Model (CoLM) user's Guide.2005.15-16 PP
    [15]Durran D. Numerical methods for wave equations in geophysical fluid dynamics. Springer Verlag, New York,1999.
    [16]Haverkamp R, Vauclin M, Touma J, Wierenga J, Vachaud G. A comparison of numerical simulation methods for one-dimensional infiltration. Soil Sci. Soc. Am. J.,1977,41:285-294
    [17]Hoeben R, Troch PA. Assimilation of active microwave observation data for soil moisture profile estimation. Water Resour. Res.,2000,36(10):2805-2819.
    [18]Mualem, Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res.1976,12,513-521.
    [19]Kavetski D, Binning P, Sloan SW. Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation. Adv. Water Res.,2001,24:595-605, doi:10.1016/S0309-1708(00)00076-2.
    [20]Koster RD, Milly PCD. The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 1997,10:1578-1591.
    [21]Kowalczyk EA, Shao YP, Law RM, et al. The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline model. CRIRO marine and atmospheric research paper 013,2006.
    [22]Oleson KW, Dai YJ, Bonan G, et al. Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461_STR,2004:186
    [23]Rathfelder K, Abriola LM. Mass conservative numerical solutions of the head-based Richards equation. Water Resour. Res.,1994,30(9):2579-2586.
    [24]Roe PL. Some contributions to the modelling of discontinuous flows, in Lecture notes in Applied Mathematics, vol.22, pp.163-193, Springer-Verlag, New York, 1985.
    [25]Russo D. Determining soil hydraulic properties by parameter estimation:on the selection of a model for the hydraulic properties. Water Resour. Res.,1988,24: 453-459.
    [26]Shao Y, Irannejad P. On the choice of soil hydraulic models in land-surface schemes. Bound-Lay. Meteorol.,1999,90:83-115,1999.
    [27]van den Hurk B, Viterbo P. The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme. Glob Planet Change, 2003,38:165-173.
    [28]van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J.,1980,44:892-898.
    [29]Van Genuchten MT, A comparison of numerical solution of the one-dimensional unsaturated-saturated flow and mass transport equations. Adv. Water Resour., 1982,5:47-55.
    [30]Viterbo P, Beljaars ACM. An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate,1995,8:2716-2748.
    [31]Walker JP, Willgoose GR, Kalma JR. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations:a comparison of retrieval algorithms. Adv. Water Resour,2001,24:631-650
    [32]Xie ZH, Luo ZD, Zeng QC, et al. Numerical simulation of moisture content and flux for the unsaturated soil water flow problem. Progress in Natural Sciences, 1999,9(9):679-686.
    [33]Zaidel J, Russo D. Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils. Water Resour. Res.,1992,28(9): 2285-2295.
    [34]Zhang SW, Li HR, Zhang WD, et al. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble kalman filter(EnKF). Adv. Atmos. Sci,2005,22(6):936-945.
    [1]Chen F, Jimy D. Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Mon. Wea. Rev,2001,129:569-585.
    [2]Dickinson R E, Henderson-Sellers A, Kennedy PJ, et al. Biosphere-Atmosphere transfer scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. note TN-275+STR,1986,69pp.
    [3]Feyen J, Jacques D, Timmerman A, Vanderborght J. Modelling water flow and solute transport in heterogeneous soils:a review of recent approaches. J. Agric. Eng.Res.,1998,70:231-256.
    [4]Mahmooda R, Hubbardb KG. Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. J. Hydrol.,2003,280: 72-90.
    [5]Mahrt L, Pan H. A two-layer model of soil hydrology. Boundary Layer Meteorol., 1984,29:1-20.
    [6]Martinez JE, Duchon CE, Crosson WL. Effect of the number of soil layers on a modeled surface water budget. Water Resour. Res.,2001,37:367-377.
    [7]Jhorar RK, Van Dam JC, Bastiaanssen WGM, Feddes RA. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles. J. Hydrol., 2004,285:233-247.
    [8]Koster RD, Milly PCD. The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 1997,10:1578-1591.
    [9]Koren VI, Finnerty BD, Schaake JC, et al. Scale dependencies of hydrologic models to spatial variability of precipitation. J. Hydrol,1999,217:285-302.
    [10]Kowalczyk EA, Shao YP, Law RM, et al. The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline model. CRIRO marine and atmospheric research paper 013,2006:37pp.
    [11]Oleson KW, Dai YJ, Bonan G, et al. Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461_STR,2004:186pp.
    [12]Russo D. Determining soil hydraulic properties by parameter estimation:on the selection of a model for the hydraulic properties. Water Resour. Res.,1988,24: 453-459.
    [13]Shao YP, Irannejad P. On the choice of soil hydraulic models in land-surface schemes. Boundary Layer Meteorol,1999,90:83-115.
    [14]van den Hurk B, Viterbo P. The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme. Glob Planet. Change, 2003,38:165-173.
    [15]Viterbo P, Beljaars ACM. An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate,1995,8:2716-2748.
    [16]Walker JP, Willgoose GR, Kalma JR. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations:a comparison of retrieval algorithms. Adv. Water Res.,2001,24:631-650.
    [17]Xie ZH, Luo ZD, Zeng QC, et al. Numerical simulation of moisture content and flux for the unsaturated soil water flow problem. Prog. Nat. Sci,1999,9(9): 679-686.
    [18]Zaidel J, Russo D. Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils. Water Resour. Res.,1992,28(9): 2285-2295.
    [19]Zhang SW, Li HR, Zhang WD, et al. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble kalman filter(EnKF). Adv. Atmos. Sci.,2005,22(6):936-945.
    [1]Abramowitz G, Leuning R, Clark M, et al. Evaluating the performance of land surface models. J. Climate,2008,21:5468-5480.
    [2]Baker I, Denning AS, Hanan N, et al.. Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5. Global Change Biol.,2001,9:1262-1278.
    [3]Bastidas L, Gupta HV, Sorooshian S, et al. Sensitivity analysis of a land surface scheme using multicriteria methods. J. Geophys. Res.,1999,104:19481-19490.
    [4]Boone A, Wetzel PJ. Issues related to low resolution modeling of soil moisture: Experience with the PLACE model. Global Planet. Change,1996,13:161-181.
    [5]Chen F, Dudhia J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I:Model Implementation and Sensitivity. Mon. Wea. Rev.,2001,129:569-585.
    [6]Chen TH, Henderson-Sellers A, Milly PCD, et al.. Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes. J. Climate,1997,10:1194-1215.
    [7]Cosha MH., Jackson TJ, Starks P, et al. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. J. Hydrometeor,2006,323:168-177.
    [8]Dai Y, Zeng X, Dickinson RE, et al. The common land model (CLM). Bull. Am. Meteorol. Soc.,2003,84(4):1013-1023.
    [9]Dai Y. The Common Land Model (CoLM) user's Guide[R].2005.15-16 PP。
    [10]Delire C, Foley JA. Evaluating the performance of a land surface/ecosystem model with biophysical measurements from contrasting enviroments. J. Geophys. Res. Atmos.,1999,104:16895-16909.
    [11]Dickinson R E, Henderson-Sellers A, Kennedy P J, et al. Biosphere-Atmosphere transfer scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. note TN-275+STR, Natl Cent for Atmos Res Boulder Colo,1986,69pp.
    [12]Dickinson RE, Henderson-Sellers A, Kennedy P. Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-3871STR, Boulder, CO,1993,72pp.
    [13]Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N. GSWP-2:multi-model analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc.,2006,87:1381-1397.doi:10.1175/BAMS-87-10-1381.
    [14]Entin, JK, Robock A, Vinnikov KY, Zabelin V, Liu S, Namkhai A. Evaluation of Global Soil Wetness Project soil moisture simulations. J. Meteor. Soc. Japan, 1999,77:183-198.
    [15]Gupta HV, Bastidas L, Sorooshian S, et al. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res.,1999,104:19491-19503.
    [16]Henderson-Sellers A, Yang ZL, Dickinson RE. The project for intercomparison of Land-Surface parameterzation schemes. Bull. Amer. Meteor. Soc.,1993,74: 1335-1349.
    [17]Henderson-Sellers A. Soil moisture simulation:Achievements of the RICE and PILPS intercomparison workshop and future directions. Global Planet. Change, 1996a,13:99-115.
    [18]Henderson-Sellers A. Soil moisture:A critical focus for global change studies. Global Planet. Change,1996b,13:3-9.
    [19]Henderson-Sellers A, Pitman AJ, Love PK, et al. The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS):Phases 2 and 3. Bull. Am. Meteorol. Soc.,1995,76(4):489-503.
    [20]Koster RD, Suarez MJ, Heiser M. Variance and predictability of precipitation at seasonal to interannual timescales. J Hydrometeorol,2000,1:26-46.
    [21]Kowalczyk EA, Shao YP, Law RM, et al. The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline model. CRIRO marine and atmospheric research paper 013,2006,37pp.
    [22]Manabe S. Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the Earth's surface. Mon. Weather Rev.,1969,97(11):739-774.
    [23]Mahrt L. and H. A. Pan. A two-layer model of soil hydrology. Bound-Lay. Meteorol.,1984,23:1-20
    [24]Oleson KW, Dai Y, Bonan G, et al. Technical description of the community land model (CLM). Tech. Note NCAR/TN-461+STR,2004.
    [25]PitmanAJ. Review the evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol.,2003,23:479-510.
    [26]Sellers PJ, Collatz GJ, Randall DA. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I:Model Formulation. J. Climate,1996,9(4): 676-705.
    [27]Schuttemeyer D, Moene AF, Holtslag AAM, et al. Evaluation of two land surface schemes used in terrains of increasing aridity in West Africa. J. Hydrometeor., 2008,9:173-191.
    [28]Shao YP, Henderson-Sellers A. Validation of soil moisture simulation in landsurface parameterisation schemes with HAPEX data. Global Planet. Change, 1996,13:11-46.
    [29]Zobler L. A world soil file for globle climatee modelling. Technical Report 87802, NASA Goddard Institute for Space Studies.1998.
    [1]Anderson JL. An ensemble adjustment filter for data assimilation. Mon. Wea. Rev.,2001,129:2884-2903.
    [2]Bindlish R, Jackson TJ, Wood E, Gao HL, Starks P, Bosch D, Lakshmi V. Soil moisture estimates from TRMM microwave imager observations over the southern United States. Remote Sens. Environ.,2003,85(4):507-515.
    [3]Bishop CH, Etherton B, Majumdar SJ. Adaptive sampling with the ensemble transform Kalman filter. Part I:Theoretical aspects. Mon. Wea. Rev.,2001,129: 420-436.
    [4]Bouttier F, Mahfouf JF, Noilhan J, Sequential assimilation of soil moisture from atmospheric low-level parameters. Part II:Implementation in a mesoscale model. J. Appl. Meteor.,1993,32:1352-1364.
    [5]Burgers G, van Leeuwen PJ, Evensen G. Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev.,1998,126:1719-1724.
    [6]Dong J, Ni-Meister W, Houser PR. Impacts of vegetation and cold season processes on soil moisture—Climate relationships over Eurasia. J. Geophys. Res., 2007,112, D09106. DOI:10.1029/2006JF007774.
    [7]Evensen G. Sequential data assimilation with a nonlinear QG model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.,1994,99: 10143-10162.
    [8]Evensen G, van Leeuwen PJ. Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev.,1996,124:85-96.
    [9]Errico RM. Workshop on assimilation of satellite data. Bull.Amer. Meteor. Soc., 1999,80:463-471.
    [10]Errico RM, Ohring G, Derber J, J Joiner. NOAA-NASA-DoD workshop on satellite data assimilation. Bull. Amer. Meteor. Soc.,2000,81:2457-2462.
    [11]Gao H, Wood EF, Drusch M, Jackson T, Bindlish R. Using TRMM/TMI to
    retrieve soil moisture over the southern United States from 1998 to 2002. J. Hydrometeorol,2006,7:23-38.
    [12]Gao H, Wood EF, Drusch M, Crow W, Jackson TJ. Using a microwave emission model to estimate soil moisture from ESTAR observations during SGP99. J. Hydrometeorol,2004,5:49-63.
    [13]Gelb A. Applied Optimal Estimation. Boston, MA:The MIT Press.1974.
    [14]Hamill TM, Snyder C. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev.,2000,128:2905-2919.
    [15]Hoeben R, Troch PA. Assimilation of active microwave observation data for soil moisture profile estimation. Water Resour. Res.,2000,36(10):2805-2819.
    [16]Houser PR, Shuttleworth WJ, Famiglietti JS, Gupta HV, Syed KH, Goodrich DC. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res.,1998,34:3405-3420.
    [17]Houtekamer PL, Mitchell HL. Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev.,1998,126:796-811.
    [18]Ide K, Courtier P, Ghil M, Lorenc AC. Unified notation for data assimilation: Operational, sequential, and variational. J. Meteor. Soc. Japan,1997,75: 181-189.
    [19]Jackson TJ, Schmugge TJ, Nicke AD, Coleman GA., Engman ET. Soil moisture updating and microwave remote sensing for hydrological simulation. Hydrol. Sci. Bull.,1981,26(3):305-319.
    [20]Jackson T. Soil moisture estimation using special satellite microwave/imager (SSM/I) satellite data over a grassland region. Water Resour. Res.,1997,333: 1475-1484.
    [21]Jackson T, Levine D, Hsu A, Oldak A, Starks P, Swift C, Isham J, Haken M. Soil moisture mapping at regional scales using microwave radiometry:The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens.,1999,37: 2136-2151.
    [22]Jackson T, Levine DL, Swift C, Schmugge T, Schiebe F. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita'92.
    Remote Sens. Environ.,1995,54(1):27-37.
    [23]Keppenne CL. Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Wea. Rev.,2000,128:1971-1981.
    [24]Koster RD, Suarez MJ. Soil moisture memory in climate models. J. Hydrol.,2000, 2:558-570.
    [25]Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P. A catchment-based approach to modeling land surface processes in a general circulation model,1: Model structure.J.Geophys. Res.,2000,105(20):24809-24822.
    [26]Lermusiaux PFJ. Data assimilation via error subspace statistical estimation. Part Ⅱ:Middle Atlantic Bight shelfbreak front simulations and ESSE validation. Mon. Wea. Rev.,1999,127:1408-1432.
    [27]Madsen H, Canizares R. Comparison of extended and ensemble Kalman filters for data assimilation in coastal area modelling. Int. J. Numer. Methods Fluids, 1999,31:961-981.
    [28]Margulis SA, Entekhabi D. Variational Assimilation of Radiometric Surface Temperature and Reference-Level Micrometeorology into a Model of the Atmospheric Boundary Layer and Land Surface. Mon. Wea. Rev.,2003,131: 1272-1288.
    [29]Miller RN, Ghil M, Gauthiez F. Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci.,1994,51:1037-105
    [30]Njoku EG, Entekhabi D. Passive microwave remote sensing of soil moisture. J. Hydrol,1995,184:101-130.
    [31]Reichle R, Koster R, Liu P, Mahanama S, Njoku E, Owe M. Comparison and assimilation of global soil moisture retrievals from the advanced microwave scanning radiometer for the earth observing system (AMSR-E) and the scanning multichannel microwave radiometer (SMMR). J. Geophys Res.-Atmos.,2007,112, doi:10.1029/2006JD008033.
    [32]Reichle RH, Walker JP, Koster RD, Houser PR. Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor.,2002a,3:728-740.
    [33]Reichle RH, McLaughlin DB, Entekhabi D. Hydrologic data assimilation with the ensemble Kalman filter. Mon. Weather Rew.,2002b,130:103-114
    [34]Rhodin A, Kucharski F, Callies U, Eppel DP, Wergen W. Variational analysis of effective soil moisture from screenlevel atmospheric parameters:Application to a short-range weather forecast model. Quart. J. Roy. Meteor. Soc.,1999,125: 2427-2448.
    [35]SMEX03. Soil moisture experiments in 2003 (SMEX03) Experiment Plan.2003. Available at http://www.hydrolab.arsusda.gov
    [36]Walker JP, Willgoose GR, Kalma JR. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations:a comparison of retrieval algorithms. Adv. Water Resour,2001,24:631-650
    [37]Whitaker J, Hamill TM. Ensemble data assimilation without perturbed observations. Mon. Wea. Rev.,2002,130:1913-1924.
    [38]Zhou YH, McLaughlin D, Entekhabi D. Assessing the performance of the ensemble kalman filter for land surface data assimilation. Mon. Wea. Rev.,2006, 134:2128-2142.
    [1]丑纪范,谢志辉,王式功.建立6-15天数值天气预报业务系统的另类途径.军事气象水文,2006,3(专家特稿).
    [2]AMS Council. Statement on seasonal to interannual climate prediction. Bull. Am. Meteorol. Soc.,2001,82:701-703.
    [3]Anderson JL. An ensemble adjustment filter for data assimilation. Mon. Wea. Rev.,2001,129:2884-2903.
    [4]Andre JC, Goutorbe JP, Perrier A. HAPEX-MOBILHY:A hydrologic atmosphere experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Amer. Meteor. Soc.,1986,67:138-144.
    [5]Barnston A, Mason S, Goddard L, Dewitt D, Zebiak S. Multi-model ensembling in seasonal climate forecasting at IRI. Bull. Am. Meteorol. Soc.,2003,84: 1783-1796.
    [6]Beven KJ, Kirkby MJ. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull,1979,24:43-69.
    [7]Bishop CH, Etherton BJ, Majumdar SJ. Adaptive sampling with the ensemble transform Kalman filter. Part I:Theoretical aspects. Mon. Wea. Rev.,2001,129: 420-436.
    [8]Burgers G, van Leeuwen PJ, Evensen G. Analysis scheme in the Ensemble Kalman Filter. Mon. Wea. Rev.,1998,126:1719-1724.
    [9]Chen F, L Mitchell, J Schaake, Y Xue, Pan HL, Koren V, Duan QY, Ek M, Betts A. Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res.,1996,101 (D3):7251-7268.
    [10]Chen F, Dudhia J. Coupling an advanced land surface hydrology model with the Penn State/NCAR MM5 modeling system. Part I:Model implementation and sensitivity. Mon. Wea. Rev.,2001,129:569-585.
    [11]Cosh MH, Jackson TJ, Starks P, Heathman G. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. J. Hydrol.,2006,323:168-177.
    [12]Crow WT, Wood EF. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97. Adv. Water Resour. 2003,26:137-149.
    [13]Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB. Bosilovich MG, Denning AS, Dirmeter PA, Houser PR, Niu G, Oleson KW, Schlosser CA., Yang ZL. The common land model (CLM). Bull. Amer. Meteor. Soc.,2003,84:1013-1023.
    [14]Daley R. Atmospheric data analysis. New York:Cambridge University Press, 1991,457 pp.
    [15]Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N. GSWP-2:Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc.,2006,87:1381-1395.
    [16]Doblas-Reyes FJ, Deque M, Piedelievre J-Ph. Multi-model spread and probabilistic seasonal forecasts in PROVOST. Quart. J. Roy. Meteor. Soc.,2000, 126:2069-2088.
    [17]Doblas-Reyes FJ, R Hagedorn, TN Palmer. The retionale behind the success of multi-model ensembles in seasonal forecasting-Ⅱ. Calibration and combination. Tellus,2005,57A:234-252.
    [18]Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 1994,99(C5):10143-10162.
    [19]Ek M, Mitchell K, Yin L, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley D. Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res.,2003,108:D22, doi:10.1029/2002JD003296.
    [20]Gao X, Dirmeyer PA. A multimodel analysis, validation, and transferability study of global soil wetness products. J. Hydrometor.,2006,7:1218-1236.
    [21]Garratt JR. The atmospheric boundary layer. Cambridge:Cambridge University Press,1992,316pp.
    [22]Graham RJ, Evans ADL, Mylne KR, Harrison MSJ, Robertson KB. An assessment of seasonal predictability using atmospheric general circulation models. Quart. J. Roy. Meteor. Soc.,2000,126:2211-2240.
    [23]Guo Z, Dirmeyer PA, Hu ZZ, Gao X, Zhao M. Evaluation of GSWP-2 Soil Moisture Simulations, Part 2:sensitivity to external meteorological forcing, J. Geog. Sci.,2006,111:D22S03, doi:10.1029/2006JD007845.
    [24]Hagedorn R, Doblas-Reyes FJ, Palmer TN. The retionale behind the success of multi-model ensembles in seasonal forecasting-I. Basic concept. Tellus,2005, 57A:219-233.
    [25]Henderson-Sellers A, Pitman AJ, Love PK, et al. The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS):Phases 2 and 3. Bull. Amer. Meteor. Soc.,1995,76(4):489-503.
    [26]Kowalczyk EA, Wang YP, Law RM, Davies HL, McGregor JL, Abramowitz G. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CRIRO marine and atmospheric research paper 013,2006,42pp.
    [27]Krishnamurti TN, Surendran S. Shin DW, Correa-Torres RJ, Kumar SV, Williford E, Kummerow C, Adler RF, Simpson J, Kakar R, Olson WS, Turk FJ. Real-time multianalysis-multimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev.,2001,129:2861-2883.
    [28]Kumar SV, Reichle RH, Peters-Lidard CD, Koster RD, Zhan X, Crow WT, Eylander JB, Houser PR. A land surface data assimilation framework using the land information system:Description and applications. Adv. Water Resour.,2008, 31:1419-1432.
    [29]Kumar SV, Krishnamurti TN, Fiorino M, Nagata M. Multimodel superensemble forecasting of tropical cyclones in the Pacific. Mon. Wea. Rev.,2003,131: 574-583.
    [30]Marth L, Pan HA. A two-layer model of soil hydrology. Bound-Lay. Meteorol., 1984,29:1-20.
    [31]Murphy JM. The impact of ensemble forecasts on predictability. Quart. J. Roy. Meteor. Soc.,1988,114:463-493.
    [32]Nie SP, Luo Y, Zhu J. Trends and scales of observed soil moisture Variations in China. Adv. Atmos. Sci,2008,25:43-58.
    [33]Oleson KW, Dai Y, Bonan G, Bosilovich M, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu GY, Thornton P, Vertenstein M, Yang ZL, Zeng X. echnical description of the community land model (CLM). NCAR Tech. Note NCAR/TN-461_STR,2004,186 pp.
    [34]Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M., Delecluse P, Deque M, Diez E., Doblas-Reyes FJ, Feddersen H, Garham R, Gualdi S, Gueremy JF, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres JM, Thomson MC. Development of a European multimodel ensemble system for seasonal to interannual prediction (DEMETER). Bull. Amer. Meteor. Soc.,2004,85: 853-872.
    [35]Palmer TN, Shukla J. Editorial to DSP/PROVOST special issue. Quart. J. Roy. Meteor. Soc.,2000,126:1989-1990
    [36]Pavan V, Doblas-Reyes FJ. Multi-model seasonal hindcasts over the Euro-Atlantic:Skill scores and dynamical features. Climate Dyn.,2000,16: 611-625.
    [37]Peng P, Kumar A., van den Dool H. An analysis of multimodel ensemble
    prediction for seasonal climate anomalies. J. Geophys. Res.,2002,107:4710, doi:10.10129/2002JD002712.
    [38]Pitman AJ, Henderson-Sellers A. Recent progress and results from the Project for the Intercomparison of Landsurface Parameterizations Schemes. J. Hydrol,1998, 212-213:128-135.
    [39]Reichle R, Koster R, Liu P, Mahanama S, Njoku E, Owe M. Comparison and assimilation of global soil moisture retrievals from the advanced microwave scanning radiometer for the earth observing system (AMSR-E) and the scanning multichannel microwave radiometer (SMMR). J. Geophys. Res. Atmos.,2007, 112:D09108, doi:10.1029/2006JD008033.
    [40]Reichle RH, Walker JP, Koster RD, Houser PR. Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor.,2002,3:728-740.
    [41]Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D. The global land data assimilation system. Bull. Am. Meteorol. Soc.,2004, 85:381-394.
    [42]Schaake JC, Koren VI, Duan QY, Mitchell K, Chen F. Simple water balance model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res.,1996,101:7461-7475.
    [43]Selten FM, Branstator GW, Dijkstra HA, Kliphuis M. Tropical origins for recent and future Northern Hemisphere climate change. Geophys. Res. Lett,2004,31: L21205,doi:10.1029/2004GL020739.
    [44]Straus DM, Shukla J. Distinguishing between the SST-forced variability and internal variability in mid-latitudes:Analysis of observations and GCM simulations. Quart. J. Roy. Meteor. Soc.,2000,126:2323-2350.
    [45]Walker JP, Houser PR, Reichle R. New technologies require advances in hydrologic data assimilation. Eos,2003,84:545.
    [46]Wang YP, Baldocchi D, Leuning R, Falge E, Vesala T. Estimating parameters in a land surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Glob. Change Biol.,2006,12:1-19.
    [47]Whitaker J, Hamill TM. Ensemble data assimilation without perturbed observations. Mon. Wea. Rev.,2002,130:1913-1924.
    [48]Zeng X. Global vegetation root distribution for land modeling. J. Hydrometeor. 2001,2:525-530.
    [49]Zhang SW, Li HR, Zhang WD, Qiu CJ, Li X. Estimating soil moisture profile by assimilation of near-surface observations with the ensemble Kalman filter (EnKF). Adv. Atmos. Sci.,2005,22:936-945.
    [50]Zhang SW, Qiu CJ, Xu Q. Estimating soil water contents from soil temperature measurements by using adaptive Kalman filter. J. Appl. Meteor.,2004,43: 379-389.
    [51]Zhang SW, Zeng XB, Zhang WD, Barlage M. Revising the ensemble-based Kalman Filter covariance for the retrieval of deep-layer soil moisture. J. Hydrometeor.,2010,11:219-227.
    [52]Zhou YH, McLaughlin D, Entekhabi D.:Assessing the performance of the ensemble kalman filter for land surface data assimilation. Mon. Wea. Rev.,2006, 134:2128-2142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700