杂多金属化合物基可见光光致变色复合薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对杂多金属化合物的基础和应用研究引起人们广泛的关注,以杂多金属化合物为基础的功能性复合材料和器件的研究得到了逐步发展,制备杂多金属化合物的功能性复合材料的新方法也不断涌现。其中,薄膜技术允许将不同种类和功能的物质按照某种需要进行复合,必将赋予薄膜材料更新的功能。因此,杂多金属化合物基光致变色复合薄膜的制备与性能研究一直是人们感兴趣并不断探索的研究课题。
     本论文针对目前国内外杂多金属化合物基可见光光致变色体系研究较少的现状,通过杂多金属化合物与有机高分子或与可见光激发的无机半导体纳米材料复合,构建杂多金属化合物基可见光光致变色纳米复合薄膜体系。研究复合薄膜组成、结构与可见光光致变色性能间的内在关系。提出杂多金属化合物基可见光光致变色纳米复合薄膜体系的可能机制,从而为相关光致变色体系的研究提供理论基础。该系列材料在环境监测与污染治理领域具有潜在的应用前景。
     1.采用滴膜法利用氢键作用制备了具有可逆光致变色性能的磷钼酸-乙基纤维素复合薄膜,磷钼酸-乙基纤维素复合薄膜具有良好的光致变色性质。通过红外光谱、紫外可见光谱、原子力显微镜、X-射线光电子能谱等测试手段研究了磷钼酸-乙基纤维素复合薄膜复合薄膜的结构、光致变色性质及机理。红外光谱FT-IR和原子力显微镜AFM结果表明磷钼酸-乙基纤维素复合薄膜可见光光照前后在形貌、微结构上存在差异。FT-IR分析结果表明,Keggin结构磷钼酸分子的基本结构在磷钼酸-乙基纤维素复合薄膜中仍然存在。AFM结果表明复合前后以及磷钼酸-乙基纤维素复合薄膜光照前后的表面形貌发生了变化。在可见光光照下磷钼酸-乙基纤维素复合薄膜由无色变为蓝色,紫外可见吸收光谱表明复合膜中发生了电子由乙基纤维素向杂多阴离子的转移,分散在乙基纤维素高分子中的磷钼酸阴离子在可见光光照射下能够被还原,生成杂多蓝。
     2.采用滴膜法利用氢键作用制备了具有可逆光致变色性能的磷钼酸-聚乙烯吡咯烷酮复合薄膜,磷钼酸-聚乙烯吡咯烷酮复合膜具有良好的光致变色响应性和可逆性。通过红外光谱、紫外可见光谱、原子力显微镜、X-射线光电子能谱等测试手段研究了磷钼酸-聚乙烯吡咯烷酮复合薄膜的结构、光致变色性质及机理。红外光谱FT-IR和原子力显微镜AFM结果表明磷钼酸-聚乙烯吡咯烷酮复合薄膜可见光光照前后在形貌、微结构上存在差异。FT-IR分析结果表明,Keggin结构磷钼酸分子的基本结构在磷钼酸-聚乙烯吡咯烷酮复合薄膜中仍然存在。AFM结果表明复合前后以及磷钼酸-聚乙烯吡咯烷酮复合膜光照前后的表面形貌发生了变化。在可见光光照下磷钼酸-聚乙烯吡咯烷酮复合膜由无色变为蓝色,紫外可见吸收光谱表明复合膜中发生了电子由聚乙烯吡咯烷酮向杂多阴离子的转移,分散在聚乙烯吡咯烷酮高分子中的磷钼酸阴离子在可见光光照射下能够被还原,生成杂多蓝。
     3.采用溶胶-凝胶法制备了具有可逆光致变色性能的PMoA/SiO_2/ZnFe_2O_4复合薄膜,PMoA分子均匀地分布在PMoA/SiO_2/ZnFe_2O_4复合薄膜中。PMoA/SiO_2/ZnFe_2O_4复合膜具有良好的光致变色响应性和可逆性。通过一系列测试手段研究了复合膜的结构、光致变色性质及机理。结果表明PMoA/SiO_2/ZnFe_2O_4复合薄膜复合前后在形貌、微结构上存在差异。FT-IR分析结果表明,Keggin结构磷钼酸分子的基本结构在复合薄膜中仍然存在,在PMoA与ZnFe_2O_4间形成电荷转移桥。AFM结果表明复合前后以及PMoA/SiO_2/ZnFe_2O_4复合膜光照前后的表面形貌发生了显著变化。在可见光光照下复合膜由无色变为蓝色,杂多酸被还原产生杂多蓝。XPS结果表明ZnFe_2O_4受可见光激发产生光生电子,导致磷钼酸发生光还原反应,生成杂多蓝。体系的光致变色过程是按照光生电子转移机制进行的。
     4.采用LBL技术制备PMoA/PAM自组装多层结构复合膜,研究复合膜的微结构及其在紫外光和可见光下的光致变色性能及机理。PMoA/PAM LBL膜在制备过程中实现了稳步增长,并具有稳定的结构。PMoA以球形结构均匀地分散在高分子体系中。在可见光和紫外光照射下复合膜均由无色变为蓝色,杂多酸分子被还原成杂多蓝,在该过程中复合膜展现了良好的光致变色性能。其光致变色机理可以解释为,PMoA/PAM LBL膜经光照激发后,电荷转移桥上的酰胺基的质子氢通过该桥转移给多酸的氧原子,导致多酸八面体结构的O→Mo配体金属电荷转移键发生还原。
So far, basic and applied researches on polyoxometallates have attracted widespreadattention; studies on polyoxometallate-oriented functional composites and components havebeen developed increasingly; and new preparation methods of polyoxometallate functionalcomposites are also constantly emerging. Thin film technology, allowing materials ofdifferent types and functions to be synthesized as required, will certainly give thin-filmmaterials newer features. Hence, it is always an interesting and exploring research subject forthe preparation and performance study of heteropolyometalates photochromic compositefilm.
     For all we know, there is less research about the visible-light photochromic system basedon heteropolyometalates (HPOM) at home and abroad. HPOM-based composite thin filmswith visible-light photochromism could be synthesized through compositing between HPOMand polymer or visible-light induced inorganic semiconductor nanoparticles. The influence ofthe component, content and preparation method on the structure and the visible-lightphotochromic behaviors of composite thin films have been investigated, and revealed theinteractions between the constitute, structure of composite films and the visible-lightphotochromic properties. According to the change transfer theory and energy level transitiontheory, the photo-production electron transfer mechamism in the POM-based compositesystem have been discussed, which provide fundamental basis for the development ofvisible-light photochromic system.
     I. Reversibly photochromic phosphomolybdic acid-ethyl cellulose (EC) composite filmwas prepared by hydrogen-bond interaction of dipping method, which was of wellphotochromic responsiveness and reversibility. Its structure, photochromism and mechanismwere studied by fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy,atomic force microscope (AFM) and X-ray photoelectron spectroscopy. FT-IR and AFMfindings showed that the phosphomolybdic acid-ethyl cellulose composite film was founddifferences in morphology and micro-structure before and after visible light radiation. FT-IRanalysis showed that Keggin phosphoaluminate molecular structure remained in this film.AFM findings indicated changes in surface topography before and after the phosphomolybdic acid-ethyl cellulose composite film was synthesized and illuminated. In visible light, thiscomposite film became from colorless to blue; UV-visible absorption spectroscopy showedthat electrons transferred from EC to heteropoly anions in the composite film and thephosphomolybdic anions scattered in EC macromolecules were able to be reduced toheteropoly blue under visible light radiation.
     II. Reversibly photochromic phosphomolybdic acid-polyvinylpyrrolidone (PVP)composite film was prepared by hydrogen-bond interaction of dripping method, which was ofwell photochromic responsiveness and reversibility. Its structure, photochromism andmechanism were studied by FT-IR, UV-visible spectroscopy, AFM and X-ray photoelectronspectroscopy. FT-IR and AFM findings showed that the phosphomolybdicacid-polyvinylpyrrolidone composite film was found differences in morphology andmicro-structure before and after visible light radiation. FT-IR analysis showed that Kegginphosphoaluminate molecular structure remained in this film. AFM findings indicated changesin surface topography before and after the phosphomolybdic acid-polyvinylpyrrolidonecomposite film was synthesized and illuminated. In visible light, this composite film becamefrom colorless to blue; UV-visible absorption spectroscopy showed that electrons transferredfrom PVP to heteropoly anions in the composite film and the phosphomolybdic anionsscattered in PVP macromolecules were able to be reduced to heteropoly blue under visiblelight radiation.
     III. Reversibly photochromic PMoA/SiO_2/ZnFe_2O_4composite films were prepared bysol-gel method, with PMoA molecules evenly distributed in these composite films. Thesefilms were of well photochromic responsiveness and reversibility. The structures,photochromisms and mechanisms of these films were studied by means of a series of trials.The results showed that PMoA/SiO_2/ZnFe_2O_4composite films were found differences inmorphology and micro-structure before and after synthesization. FT-IR analyses showed thatKeggin phosphomolybdic molecular structure remained in these composite films, which builta charge-transfer bridge between PMoA and ZnFe_2O_4. AFM findings indicated significantchanges in surface topography before and after PMoA/SiO_2/ZnFe_2O_4composite films weresynthesized and illuminated. In visible light, composite films became from colorless to blueand the heteropoly acid was reduced to the heteropoly blue. XPS findings indicated that thevisible light excited the ZnFe_2O_4to generate photoelectrons to lead to a photoreduction ofphosphomolybdic acid to heteropoly blue. The photochromic process in the system wasfollowed by the mechanism of photoelectron transfer.
     IV. A multilayer hybrid film fabricated from phosphomolybdic acid (denoted PMoA) and polyacrylamide (denoted PAM) by LBL technology shows photochromism under UVlight and visible light irradiation. With atomic force microscopy (AFM) and infrared spectra(IR), the microstructure and composition of the hybrid films were studied. By means ofultraviolet–visible spectra (UV–vis), X-ray photoelectron spectra (XPS) and electronresonance spectra (ESR), the photochromic properties and mechanism of the multilayer filmswere investigated. It suggested that the multilayer films are uniform, dense and highlyadherent to the substrate with UV light and visible light phtochromism.
引文
[1] FRITZSCHE J. Comptes rendus acad [J]. Science Paris,1867,69(1035):78-78.
    [2] TER MEER E. ber dinitroverbindungen der fettreihe [J]. Justus Liebigs Annalen derChemie,1876,181(1):1-22.
    [3] MARCKWALD W. Uber phototropie [J]. Zeitschrift fur Physik Chemie,1899,30:140-145.
    [4] HIRSHBERG Y. Photochromie dans la serie de la bianthrone [J]. CR Hebd. SeancesAcad. Sci,1950,231(18):903-904.
    [5]唐克光.光致变色化合物的用途和性能[J].浙江化工,2002,33(2):5-9.
    [6]樊美公.光子存储原理与光致变色材料[J].化学进展,1997,9(2):170-178.
    [7]胡增权.无机/高分子复合光致变色材料的制备与表征[D].长春:长春理工大学AcademicDepartment,2004.
    [8] YAO J. LOO B. HASHIMOTO K, et al. Photochromic characteristics of mixedWO3–MoO3thin films in alcohol vapors [J]. Berichte der Bunsengesellschaft fürphysikalische Chemie,1991,95(5):554-556.
    [9] SCARMINIO J. LOURENCO A. GORENSTEIN A. Electrochromism andphotochromism in amorphous molybdenum oxide films [J]. Thin Solid Films,1997,302(1):66-70.
    [10] RAMāNS G. GABRUSENOKS J. VEISPāLS A. Structure of tungstic acids andamorphous and crystalline WO3thin films [J]. Physica Status Solidi (a),1982,74(1):K41-K44.
    [11] TEMMINK A. ANDERSON O. BANGE K, et al. Optical absorption of amorphouswo3and binding state of tungsten [J]. Thin Solid Films,1990,192(2):211-218.
    [12] KIKUCHI E. HIROTA N. FUJISHIMA A, et al. Rapid chemical decolorizationreaction of HxWO3thin films and reversible operation of photochromism of WO3[J]. Journalof Electroanalytical Chemistry,1995,381(1):15-19.
    [13] COLTON R J. GUZMAN A M. RABALAIS J W. Electrochromism in somethin-film transition-metal oxides characterized by x-ray electron spectroscopy [J]. Journal ofApplied Physics,1978,49(1):409-416.
    [14] GUAN Z. YAO J. YANG Y, et al. Electrochromism of annealed vacuum-evaporatedV2O5films [J]. Journal of Electroanalytical Chemistry,1998,443(2):175-179.
    [15]杨宗志.国外化妆品用钛系颜料的开发进展[J].现代化工,2000,9(20):18-22.
    [16] YAO J. LOO B. FUJISHIMA A. A study of the photochromic and electrochromicproperties of MoO3thin films [J]. Berichte der Bunsengesellschaft für physikalische Chemie,1990,94(1):13-17.
    [17]姚建年.杨永安. Au/MoO3和Pt/MoO3薄膜光致变色反应的研究[J].自然科学进展:国家重点实验室通讯,1999,9(2):129-133.
    [18] BECHINGER C. FERRERE S. ZABAN A, et al. Photoelectrochromic windows anddisplays [J]. Nature,1996,383(6601):608-610.
    [19] HE T. MA Y. CAO Y, et al. Enhancement effect of gold nanoparticles on the uv-lightphotochromism of molybdenum trioxide thin films [J]. Langmuir,2001,17(26):8024-8027.
    [20] HE T. MA Y. CAO Y, et al. Photochromism of wo3colloids combined with tio2nanoparticles [J]. The Journal of Physical Chemistry B,2002,106(49):12670-12676.
    [21] YAMADA S. YOSHIOKA T. MIYASHITA M, et al. Electrochromic properties ofsputtered nickel-oxide films [J]. Journal of Applied Physics,1988,63(6):2116-2119.
    [22] DELAHAYE-VIDAL A. BEAUDOIN B. FIGLARZ M. Textural and structuralstudies on nickel hydroxide electrodes: Crystallized nickel hydroxide materials submitted tochemical and electrochemical redox cycling [J]. Reactivity of Solids,1986,2(3):223-233.
    [23] FERREIRA F. TABACNIKS M. FANTINI M, et al. Electrochromic nickel oxidethin films deposited under different sputtering conditions [J]. Solid State Ionics,1996,86:971-976.
    [24] DELAHAYE-VIDAL A. FIGLARZ M. Textural and structural studies on nickelhydroxide electrodes. Ii. Turbostratic nickel (ii) hydroxide submitted to electrochemical redoxcycling [J]. Journal of Applied Electrochemistry,1987,17(3):589-599.
    [25] AGRAWAL A. HABIBI H R. AGRAWAL R K, et al. Effect of deposition pressureon the microstructure and electrochromic properties of electron-beam-evaporated nickeloxide films [J]. Thin Solid Films,1992,221(1):239-253.
    [26] TORRESI R. V ZQUEZ M. GORENSTEIN A, et al. Infrared characterization ofelectrochromic nickel hydroxide prepared by homogeneous chemical precipitation [J]. ThinSolid Films,1993,229(2):180-186.
    [27] LAMPERT C. OMSTEAD T. YU P Chemical and optical properties ofelectrochromic nickel oxide films[A], In29th Annual Technical Symposium[C],1985; pp15-22.
    [28] CARPENTER M K. CONELL R S. CORRIGAN D A. The electrochromicproperties of hydrous nickel oxide [J]. Solar Energy Materials,1987,16(4):333-346.
    [29]倪丽丽.无机/有机复合膜的制备及光致变色性能研究[D].大连:大连海事大学AcademicDepartment,2009.
    [30]余新武.刘术侠.三取代过渡金属钨镓杂多配合物的磁性及导电性能研究[J].化学学报,1996,54(9):864-868.
    [31]李培.金松林.刘惠章,等.混合价keggin结构磷钨钼杂多化合物的光化学合成及其电子离域性研究[J].化学学报,1998,56(11):1106-1111.
    [32]林妹.聚合物/无机物纳米复合膜的制备及其光学特性的研究[D].福州:福建师范大学AcademicDepartment,2008.
    [33] TSIGDINOS G A. Heteropoly compounds of molybdenum and tungsten [J].Spring-Verley,1978,5:1-64.
    [34] KEGGIN J. Structure of the molecule of12-phosphotungstic acid [J]. Nature,1933,131(3321):908-909.
    [35]王恩波,多酸化学导论. In化学工业出版社:北京,2002.
    [36] YAMASE T. Photo-and electrochromism of polyoxometalates and related materials[J]. Chemical Reviews,1998,98(1):307-326.
    [37] GóMEZ-ROMERO, P. LIRA-CANTú, M. Hybrid organic-inorganic electrodes:The molecular material formed between polypyrrole and the phosphomolybdate anion [J].Advanced Materials,1997,9(2):144-147.
    [38] EGUCHI K. TOYOZAWA Y. YAMAZOE N, et al. An infrared study on thereduction processes of dodecamolybdophosphates [J]. Journal of Catalysis,1983,83(1):32-41.
    [39] TAKETA H. KATSUKI S. EGUCHI K, et al. Electronic structure and redoxmechanism of dodecamolybdophosphate [J]. The Journal of Physical Chemistry,1986,90(13):2959-2962.
    [40] BARROWS J N. JAMESON G B. POPE M T. Structure of a heteropoly blue. Thefour-electron reduced.Beta.-12-molybdophosphate anion [J]. Journal of the AmericanChemical Society,1985,107(6):1771-1773.
    [41] YAMASE T. UHEDA K. Electroluminescence cell based on polyoxometalatespulsed electric field-induced luminescence of decatungstoeuropate dispersion layers [J].Journal of The Electrochemical Society,1993,140(8):2378-2384.
    [42] MIZUNO N. YAMASE T. CORONADO E. A comprehensive review of the presentstudies of the field of polyoxometalates [J]. Chemical Reviews,1998,98:1-387.
    [43] SADAKANE M. STECKHAN E. Electrochemical properties of polyoxometalates aselectrocatalysts [J]. Chemical Reviews,1998,98(1):219-238.
    [44] CHECKIEWICZ K. ZUKOWSKA G. WIECZOREK W. Synthesis andcharacterization of the proton-conducting gels based on pvdf and pmma matrixes doped withheteropolyacids [J]. Chemistry of Materials,2001,13(2):379-384.
    [45] SANCHEZ C. RIBOT F. Design of hybrid organic-inorganic materials synthesizedvia sol-gel chemistry [J]. New Journal of Chemistry,1994,18(10):1007-1047.
    [46] NAKANE K. YAMASHITA T. IWAKURA K, et al. Properties and structure ofpoly(vinyl alcohol)/silica composites [J]. Journal of Applied Polymer Science,1999,74(1):133-138.
    [47]章永化.龚克成. Sol-gel法制备有机/无机纳米复合材料的进展[J].高分子材料科学与工程,1997,13(4):14-18.
    [48] YAMASE T. IKAWA T. KOKADO H, et al. Photochromism of dimethylammoniummolyedate [J]. Chemistry Letters,1973,(6):615-616.
    [49] KE H. SHAO K. HE T, et al. A new layered hybrid material by hydrothermalassembly of12-molybdophosphoric acid and1,10-diaminodecane [J]. Journal of MaterialsScience Letters,2002,21(16):1257-1259.
    [50] ZHANG G. KE H. HE T, et al. Synthesis and characterization of new layeredpolyoxometallates–1,10-decanediamine intercalative nanocomposites [J]. Journal ofMaterials Research,2004,19(02):496-500.
    [51] JIN S-R. ZHANG L-M. LIU S-Z, et al. Hydrothermal synthesis and characterizationof inorganic/organic hybrid complex containing tungstophsphate [J]. Journal of WuhanUniversity of Technology-Materials Science Edition,2004,19(4):21-22.
    [52] CHEN Z. LOO B H. MA Y, et al. Photochromism of novel molybdate/alkylaminecomposite thin films [J]. Chemphyschem,2004,5(7):1020-1026.
    [53] CHEN Z. LOO B H. MA Y, et al. Synthesis of novel photochromic material in theviolet color region: Composite1-hexadecylammonium-polyoxomolybdate thin films [J].Materials Research Bulletin,2004,39(7):1167-1173.
    [54] HE T. MA Y. CAO Y, et al. Preparation and electrochromism of alkylammoniummolybdate thin films [J]. Journal of Non-Crystalline Solids,2003,315(1):7-12.
    [55] SHAO K. MA Y. CHEN Z, et al. Synthesis and photochromic property ofethylenediammonium polymolybdate NH3CH2CH2NH2Mo3O10·4.4H2O [J]. Acta ChiminaSinica-Chinese Edition,2001,59(8):1335-1339.
    [56] BI L. WANG E. XU L, et al. Synthesis, properties and crystal structure of somepolyoxometallates containing the tris (hydroxymethyl) aminomethane cation [J]. InorganicaChimica Acta,2000,305(2):163-171.
    [57] BI L H. XIN M H. WANG E B, et al. Synthesis, properties and crystal structure of
    [(CH2OH)3CNH2]2H4SiW12O40·10H2O [J]. Chemical Journal of Chinese Universities-Chinese,2001,22(6):883-886.
    [58] JING-YANG N. XIAO-ZENG Y. HOONG-KUN F, et al. Synthesis, crystal structureand photochromism of tri (N,N,N′,N′-tetramethylethylendiammonium) heptamolybdate (VI)tetrahydrate [J]. Polyhedron,1996,15(5):1003-1008.
    [59] LIU S-X. WANG C-M. LI D-H, et al. Synthesis, structure and properties of a novelsupramolecular compound (C10H18N)6As2Mo18O62·6CH3CN·8H2O [J]. Acta ChiminaSinica-Chinese Edition,2004,62(14):1305-1310.
    [60] ROMAN P. LUQUE A. ARANZABE A, et al. Reactions of moo3withdiethylenetriamine (dien): Syntheses, solid-state characterization and thermal behaviour.Molecular and crystal structure of a second polymorph of (H3dien)2[Mo7O24]·4H2O [J].Polyhedron,1992,11(16):2027-2038.
    [61] JUDEINSTEIN P. SANCHEZ C. Hybrid organic–inorganic materials: A land ofmultidisciplinarity [J]. Mater. Chem.,1996,6(4):511-525.
    [62] SANCHEZ C. SOLER-ILLIA G D A. RIBOT F, et al. Designed hybridorganic-inorganic nanocomposites from functional nanobuilding blocks [J]. Chemistry ofMaterials,2001,13(10):3061-3083.
    [63] XU M. LI Y. LI W, et al. Structure, photochromic, and electrochemical properties ofdioctadecylamine/H3PMoA12O40langmuir–blodgett film [J]. Journal of Colloid and InterfaceScience,2007,315(2):753-760.
    [64] JIANG M. JIAO T. LIU M. Photochromic langmuir–blodgett films based onpolyoxomolybdate and gemini amphiphiles [J]. New Journal of Chemistry,2008,32(6):959-965.
    [65] LOVE J C. ESTROFF L A. KRIEBEL J K, et al. Self-assembled monolayers ofthiolates on metals as a form of nanotechnology [J]. Chemical Reviews-Columbus,2005,105(4):1103-1170.
    [66] FENDLER J H. Self-assembled nanostructured materials [J]. Chemistry of Materials,1996,8(8):1616-1624.
    [67] KNOLL W. Self-assembled microstructures at interfaces [J]. Current Opinion inColloid&Interface Science,1996,1(1):137-143.
    [68] ILER R. Multilayers of colloidal particles [J]. Journal of Colloid and InterfaceSciense,1966,21(6):569-594.
    [69] DECHER G. HONG J D Buildup of ultrathin multilayer films by a self-assemblyprocess,1consecutive adsorption of anionic and cationic bipolar amphiphiles on chargedsurfaces[A], In Makromolekulare Chemie. Macromolecular Symposia[C],1991; pp321-327.
    [70] DECHER G. HONG J. Buildup of ultrathin multilayer films by a self‐assemblyprocess: Ii. Consecutive adsorption of anionic and cationic bipolar amphiphiles andpolyelectrolytes on charged surfaces [J]. Berichte der Bunsengesellschaft für physikalischeChemie,1991,95(11):1430-1434.
    [71] DECHER G. HONG J. SCHMITT J. Buildup of ultrathin multilayer films by aself-assembly process: Iii. Consecutively alternating adsorption of anionic and cationicpolyelectrolytes on charged surfaces [J]. Thin Solid Films,1992,210:831-835.
    [72] BERNDT P. KURIHARA K. KUNITAKE T. Adsorption of poly (styrenesulfonate)onto an ammonium monolayer on mica: A surface forces study [J]. Langmuir,1992,8(10):2486-2490.
    [73] FOU A. ONITSUKA O. FERREIRA M E, et al. Fabrication and properties oflight-emitting diodes based on self-assembled multilayers of poly (phenylene vinylene)[J].Journal of Applied Physics,1996,79(10):7501-7509.
    [74] STOCKTON W. RUBNER M. Layer-by-layer manipulation of polyaniline viahydrogen-bonding interactions [J]. Macromolecules,1997,30(9):2717-2725.
    [75] LVOV Y. ARIGA K. KUNITAKE T. Layer-by-layer assembly of alternateprotein/polyion ultrathin films [J]. Chemistry Letters,1994,23(12):2323-2326.
    [76] LVOV Y. DECHER G. SUKHORUKOV G. Assembly of thin films by means ofsuccessive deposition of alternate layers of DNA and poly (allylamine)[J]. Macromolecules,1993,26(20):5396-5399.
    [77] DECHER G. LEHR B. LOWACK K, et al. New nanocomposite films for biosensors:Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA [J]. Biosensors andBioelectronics,1994,9(9):677-684.
    [78] VOIGT A. LICHTENFELD H. SUKHORUKOV G B, et al. Membrane filtration formicroencapsulation and microcapsules fabrication by layer-by-layer polyelectrolyteadsorption [J]. Industrial&Engineering Chemistry Research,1999,38(10):4037-4043.
    [79] LVOV Y. HAAS H. DECHER G, et al. Successive deposition of alternate layers ofpolyelectrolytes and a charged virus [J]. Langmuir,1994,10(11):4232-4236.
    [80] ARIGA K. LVOV Y. ONDA M, et al. Alternately assembled ultrathin film of silicananoparticles and linear polycations [J]. Chemistry Letters,1997,125(2):125-126.
    [81] LVOV Y. ARIGA K. ICHINOSE I, et al. Formation of ultrathin multilayer andhydrated gel from montmorillonite and linear polycations [J]. Langmuir,1996,12(12):3038-3044.
    [82] MAMEDOV A. OSTRANDER J. ALIEV F, et al. Stratified assemblies of magnetitenanoparticles and montmorillonite prepared by the layer-by-layer assembly [J]. Langmuir,2000,16(8):3941-3949.
    [83] LEE G. LEE Y. YOON K. Layer-by-layer assembly of zeolite crystals on glass withpolyelectrolytes as ionic linkers [J]. American Chemical Society,2001,123:9769-9779.
    [84] LIU S. M HWALD H. VOLKMER D, et al. Polyoxometalate-based electro-andphotochromic dual-mode devices [J]. Langmuir,2006,22(5):1949-1951.
    [85] XU B. XU L. GAO G, et al. Nanosized multilayer films with concurrentphotochromism and electrochromism based on dawson-type polyoxometalate [J]. AppliedSurface Science,2007,253(6):3190-3195.
    [86] JIAN G. YAGUANG C. LUNYU Q, et al. Preparation and characterization of newperoxyniobium-containing phosphotungstates with dawson structures [J]. Polyhedron,1996,15(13):2273-2277.
    [87] HE T. YAO J. Photochromism in composite and hybrid materials based ontransition-metal oxides and polyoxometalates [J]. Progress in Materials Science,2006,51(6):810-879.
    [88] ZHANG G. CHEN Z. HE T, et al. Construction of self-assembled ultrathinpolyoxometalate/1,10-decanediamine photochromic films [J]. The Journal of PhysicalChemistry B,2004,108(22):6944-6948.
    [89] WANG Z. MA Y. ZHANG R, et al. Fabrication of self-assembled ultrathinphotochromic films containing mixed-addenda polyoxometalates h5[PMoA10v2o40] and1,10-decanediamine [J]. Journal of Solid State Chemistry,2009,182(4):983-988.
    [90] LVOV Y. ARIGA K. ONDA M, et al. A careful examination of the adsorption step inthe alternate layer-by-layer assembly of linear polyanion and polycation [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,1999,146(1):337-346.
    [91] YOO D. SHIRATORI S S. RUBNER M F. Controlling bilayer composition andsurface wettability of sequentially adsorbed multilayers of weak polyelectrolytes [J].Macromolecules,1998,31(13):4309-4318.
    [92] SHIRATORI S S. RUBNER M F. Ph-dependent thickness behavior of sequentiallyadsorbed layers of weak polyelectrolytes [J]. Macromolecules,2000,33(11):4213-4219.
    [93] SUKHISHVILI S A. KHARLAMPIEVA E. IZUMRUDOV V. Where polyelectrolytemultilayers and polyelectrolyte complexes meet [J]. Macromolecules,2006,39(26):8873-8881.
    [94] SALOM KI M. TERVASM KI P. AREVA S, et al. The hofmeister anion effect andthe growth of polyelectrolyte multilayers [J]. Langmuir,2004,20(9):3679-3683.
    [95] LEONTIDIS E. Hofmeister anion effects on surfactant self-assembly and theformation of mesoporous solids [J]. Current Opinion in Colloid&Interface Science,2002,7(1):81-91.
    [96] LEE G R. CRAYSTON J A. Sol-gel processing of transition-metal alkoxides forelectronics [J]. Advanced Materials,1993,5(6):434-442.
    [97] AVNIR D. LEVY D. REISFELD R. The nature of the silica cage as reflected byspectral changes and enhanced photostability of trapped rhodamine6g [J]. The Journal ofPhysical Chemistry,1984,88(24):5956-5959.
    [98] LEV O. TSIONSKY M. RABINOVICH L, et al. Using sol-gel chemistry tosynthesize a material with properites [J]. Analytical Chemistry,1995,67:22A-30A.
    [99] FENG W. ZHANG T R. LIU Y, et al. Controllable structure and photochromicproperties of inorganic-polymeric nanocomposite films [J]. Journal of Materials ScienceLetters,2002,21(6):497-499.
    [100]邵鑫.田军.薛群基,等.有机—无机纳米复合材料的合成,性质及应用前景[J].材料导报,2001,15(1):50-53.
    [101] PREMACHANDRAN R. BANERJEE S. JOHN V, et al. The enzymatic synthesis ofthiol-containing polymers to prepare polymer-CdS nanocomposites [J]. Chemistry ofMaterials,1997,9(6):1342-1347.
    [102] LI C. GE J. BAI F, et al. Phase transformations in a chiral main-chain liquidcrystalline polyester involving double-twist helical crystals [J]. Polymer,2000,41(25):8953-8960.
    [103] SAPICH B. STUMPE J. KRICHELDORF H R, et al. Synthesis, dielectric, andphotochemical study of liquid crystalline main chain poly (ester imide) s containingcinnamoyl moieties [J]. Macromolecules,2001,34(16):5694-5701.
    [104] GEFFCKEN W. BERGER E. Verfahren zur nderung des reflexionsverm gensoptischer gl ser [J]. German Patent,1939,736:411-413.
    [105]姚建年.过渡金属氧化物半导体薄膜的光电化学研究及其应用[J].世界科技研究与展望,1998,20(6):121-123.
    [106] GUO Y. WANG Y. HU C, et al. Microporous polyoxometalates POMs/SiO2:Synthesis and photocatalytic degradation of aqueous organocholorine pesticides [J].Chemistry of Materials,2000,12(11):3501-3508.
    [107] POLARZ S. SMARSLY B. G LTNER C, et al. The interplay of colloidalorganization and oxo-cluster chemistry: Polyoxometalate-silica hybrids materials with ananochemical function [J]. Advanced Materials,2000,12(20):1503-1507.
    [108] CHUJO Y. SAEGUSA T. Organic polymer hybrids with silica gel formed by meansof the sol-gel method [J]. Advances in Polymer Science,1992,100:11-29.
    [109]征茂平.金燕苹.顾明元,等. Sol-gel法制备TiO2/PVP纳米复合材料薄膜及性能研究[J].功能材料,2000,4:431-432.
    [110]张隽.罗胜成.桂琳琳,等. PMMA-TiO2有机无机杂化玻璃的制备与表征[J].物理化学学报,1996,12(4):289-292.
    [111]蒋葵阳.张隽. PMMA—ZrO2等有机无机杂化材料的制备与表征[J].物理化学学报,1997,13(5):407-412.
    [112] JUDEINSTEIN P. OLIVEIRA P W. KRUG H, et al. Photochromicorganic–inorganic nanocomposites as holographic storage media [J]. Advanced Materials forOptics and Electronics,1997,7(3):123-133.
    [113] JUDEINSTEIN P. OLIVEIRA P W D. KRUG H, et al. Dynamics of the sol—geltransition in organic—inorganic nanocomposites [J]. Chemical Physics Letters,1994,220(1):35-39.
    [114] MO Y-G. DILLON R. SNYDER P, et al. Optical properties of photochromicorganic–inorganic composites [J]. Thin Solid Films,1999,355:1-5.
    [115] ZHANG T R. FENG W. FU Y Q, et al. Self-assembled organic–inorganic compositesuperlattice thin films incorporating photo-and electro-chemically active phosphomolybdateanion [J]. Journal of Materials Chemistry,2002,12(5):1453-1458.
    [116] ZHANG T R. FENG W. LU R, et al. Preparation of photochromic sol-gel compositeflms containing dodecaphosphotungstic acid [J]. Materials Chemistry and Physics,2002,78:380-384.
    [117] FENG W. ZHANG T R. LIU Y, et al. Novel hybrid inorganic-organic film based onthe tungstophosphate acid-polyacrylamide system: Photochromic behavior and mechanism[J]. Journal of Materials Research,2002,17:133-136.
    [118] FENG W. ZHANG T. LIU J, et al. Ultrasound-induced change of microstructure andphotochromic properties of polyacrylamide thin films containing a polyoxometalate [J].Journal of Materials Research,2003,13:709-713.
    [119] FENG W. ZHANG T R. LIU Y, et al. Sonochemical preparation of photochromicnanocomposite thin film based on polyoxometalates well dispersed in polyacrylamide [J].Journal of Solid State Chemistry,2002,169:1-5.
    [120] FENG W. ZHANG T. LIU Y, et al. Evaluation of photochromic properties inheteropolyoxometallate-based inorganic polymeric thin flms [J]. Materials Chemistry andPhysics,2002,77:294-298.
    [121] FENG W. ZHANG T. LIU Y, et al. Preparation, photochromic properties of keggintype tungstophosphoric acids based on polyacrylamide [J]. Chemical Journal of ChineseUniversities,2000,21:1563-1565.
    [122] FENG W. ZHANG T R. WEI L, et al. Photochromic behavior and mechanism of thinfilms in H3PW12O40/polyacrylamide system [J]. Materials Letters,2002,54(4):309-313.
    [123] FENG W. ZHANG T R. LIU Y, et al. Photochromic behavior of nanocompositehybrid flms of fnely dispersed phosphotungstic acid particles into polyacrylamide [J].Journal of Materials Science,2003,38:1045-1048.
    [124] PANG Y. FENG W. CHEN J, et al. Controlled microstructure and photochromism ofinorganic-organic thin films by ultrasound [J]. Journal of Material Science and Technology,2007,23:477-480.
    [125] GONG J. LI X-D. SHAO C-L, et al. Photochromic and thermal properties ofpoly(vinyl alcohol)/H6P2W18O62hybrid membranes [J]. Materials Chemistry and Physics,2003,79(1):87-93.
    [126] WU Q. WANG H. YIN C, et al. Preparation and performance of pva filmscomposited with12-tungstogermanic heteropoly acid [J]. Materials Letters,2001,50:61–65.
    [127] YANG G-C. GONG J. PAN Y, et al. Preparation and photochromic properties ofultra-fine H3PW11MoO40/PVA fibre mats [J]. Journal of Physics D: Applied Physics,2004,37(14):1987-1992.
    [128] LI-HAO T. BIN Y. SI-SAN Z. Preparation, photochromism and electronic propertiesof keggin type ttungstophosphate, tungstosilicate acids/polyvinyl alcohol complexes [J].Chemical Journal of Chinese Universities,1999,20:1349-1351.
    [129] YANG G. PAN Y. GAO F, et al. A novel photochromic PVA fiber aggregatescontained H4SiW12O40[J]. Materials Letters,2005,59(4):450-455.
    [130] X C. YINGCAO S. CHUANXUAN C. Photochromism and photochromic stabilityof solid solution of12-molybdenum phosphoric acid in polyvinylalcohol [J]. Acta ChimicaSinica,2000,58:277-282.
    [131] KUBOYAMA K. HARA K. MATSUSHIGE K. Enhanced photochromism in thehybrid film of tungstic acid and polyethylene glycol [J]. Japanese Journal of Applied Physics,1992,31:1609-1610.
    [132] CHEN J. MEI AI L. FENG W, et al. Preparation and photochromism ofnanocomposite thin film based on polyoxometalate and polyethyleneglycol [J]. MaterialsLetters,2007,61(30):5247-5249.
    [133] BAO X-J. FENG W. CHEN J, et al. A novel structure and photochromism ofheteropolyoxometalates dispersed in polymer networks [J]. Journal of Solid State Chemistry,2012,191:158-161.
    [134] CHALKLEY L. Phototropy [J]. Chemical Reviews,1929,6(2):217-280.
    [135] ARAUJO R. Inorganic photochromic systems [J]. Molecular Crystals and LiquidCrystals,1997,297(1):1-8.
    [136] BROWN G H. SHAW W G. Phototropism [J]. Pure and Applied Chemistry,1961,11(2):1-1.
    [137] EXELBY R. GRINTER R. Photochromism [J]. Chemical Reviews,1965,65(2):247-260.
    [138] DEB S. CHOPOORIAN J. Optical properties and color-center formation in thinfilms of molybdenum trioxide [J]. Journal of Applied Physics,1966,37(13):4818-4825.
    [139] DEB S. Physical properties of a transition metal oxide: Optical and photoelectricproperties of single crystal and thin film molybdenum trioxide [J]. Proceedings of the RoyalSociety of London. Series A. Mathematical and Physical Sciences,1968,304(1477):211-231.
    [140] DEB S. Electrochromic characters of WO3[J]. Applied Optics Supply,1969,3:192-193.
    [141] YAO J N. HASHIMOTO K. FUJISHIMA A. Photochromism induced in anelectrolytically pretreated MoO3thin film by visible light [J]. Nature,1992,355(6361):624-626.
    [142] HAGFELDT A. GRAETZEL M. Light-induced redox reactions in nanocrystallinesystems [J]. Chemical Reviews,1995,95(1):49-68.
    [143] CAHEN D. HODES G. GRAETZEL M, et al. Nature of photovoltaic action indye-sensitized solar cells [J]. The Journal of Physical Chemistry B,2000,104(9):2053-2059.
    [144] ELDER S. COT F. SU Y, et al. The discovery and study of nanocrystallineTiO2-(MoO3) core-shell materials [J]. Journal of the American Chemical Society,2000,122(21):5138-5146.
    [145] KULLMAN L. AZENS A. GRANQVIST C. Electrochromism and photochromismof reactively dc magnetron sputtered Mo–Ti oxide films [J]. Solar Energy Materials and SolarCells,2000,61(2):189-196.
    [146] BECHINGER C. WIRTH E. LEIDERER P. Photochromic coloration of wo3withvisible light [J]. Applied Physics Letters,1996,68(20):2834-2836.
    [147] QUEVEDO-LOPEZ M. RAMIREZ-BON R. OROZCO-TERAN R, et al. Effect of acds interlayer in thermochromism and photochromism of moo3thin films [J]. Thin SolidFilms,1999,343:202-205.
    [148] QUEVEDO-LOPEZ M. REIDY R. OROZCO-TERAN R, et al. Enhancement of thephotochromic and thermochromic properties of molybdenum oxide thin films by a cadmiumsulfide underlayer [J]. Journal of Materials Science: Materials in Electronics,2000,11(2):151-155.
    [149] RAO K S. MADHURI K. UTHANNA S, et al. Photochromic properties of doublelayer CdS/MoO3nano-structured films [J]. Materials Science and Engineering: B,2003,100(1):79-86.
    [150] ELDER S H. SU Y. GAO Y, et al Nanocrystalline heterojunction materials[P].2003-07-15.
    [151] HAUS J W. ZHOU H. HONMA I, et al. Quantum confinement in semiconductorheterostructure nanometer-size particles [J]. Physical Review B,1993,47(3):1359-1359.
    [152] KORTAN A. HULL R. OPILA R, et al. Nucleation and growth of cadmium selendieon zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media [J]. Journalof the American Chemical Society,1990,112(4):1327-1332.
    [153] KITAO M. YAMADA S. HIRUTA Y, et al. Electrochromic absorption spectramodulated by the composition of WO3/MoO3mixed films [J]. Applied Surface Science,1988,33:812-817.
    [154] VIGIL O. VASCO E. ZELAYA-ANGEL O. Oxygen desorption process in cds thinfilms studied by thermally stimulated current measurements [J]. Materials Letters,1996,29(1):107-110.
    [155] KAMAT P V. DIMITRIJEVI N M. Colloidal semiconductors as photocatalysts forsolar energy conversion [J]. Solar Energy,1990,44(2):83-98.
    [156] HE T. MA Y. CAO Y, et al. Enhanced visible-light coloration and its mechanism ofmoo3thin films by au nanoparticles [J]. Applied Surface Science,2001,180(3):336-340.
    [157] YANG Y. CAO Y. CHEN P, et al. Microstuctural properties of an electrochromic wo3thin film [J]. Journal of Physics Chemistry Solids,1998,59:1667-1670.
    [158] SANT P A. KAMAT P V. Interparticle electron transfer between size-quantized cdsand TiO2semiconductor nanoclusters [J]. Physical Chemistry Chemical Physics,2002,4(2):198-203.
    [159] LINDSTR M H. RENSMO H. LINDQUIST S-E, et al. Redox properties ofnanoporous tio2(anatase) surface modified with phosphotungstic acid [J]. Thin Solid Films,1998,323(1):141-145.
    [160] TATSUMISAGO M. HONJO H. SAKAI Y, et al. Proton-conducting silica-gel filmsdoped with a variety of electrolytes [J]. Solid State Ionics,1994,74(3):105-108.
    [161] TANGAR U L. OREL B. R GIS A, et al. Chromogenic wpa/tio2hybrid gels andfilms [J]. Journal of Sol-Gel Science and Technology,1997,8(1-3):965-971.
    [162] OREL B. LAVREN I-TANGAR U. HUTCHINS M G, et al. Mixedphosphotungstic acid/titanium oxide gels and thin solid xerogel films withelectrochromic-ionic conductive properties [J]. Journal of Non-Crystalline Solids,1994,175(2):251-262.
    [163] CLEMENTE-LE N M. CORONADO E. GAL N-MASCAR S J R, et al. Hybridmolecular materials based upon organic π-electron donors and inorganic metal complexes.Conducting salts of bis (ethylenediseleno) tetrathiafulvalene (best) with the octahedral anionshexacyanoferrate (iii) and nitroprusside [J]. Journal of Solid State Chemistry,2002,168(2):616-625.
    [164] ECKERT H. WARD M. Controlling the length scale through"soft" chemistry: Fromorganic-inorganic nanocomposites to functional materials [J]. Chemistry of Materials,2001,13(10):3059-3060.
    [165] CHEN Z-H. MA Y. YAO J-N. Self-assembled inorganic/organic compositesuperlattice thin films with photochromic properties [J]. Thin Solid Films,2001,384(2):160-165.
    [166] RHULE J T. HILL C L. JUDD D A, et al. Polyoxometalates in medicine [J].Chemical Reviews,1998,98(1):327-358.
    [167] INOUE M. YAMASE T. Crystal structure of the pentamolybdate complexcoordinated by adenosine-5'-monophosphoric acid [J]. Bulletin of the Chemical Society ofJapan,1996,69(10):2863-2868.
    [168] YAMASE T. INOUE M. NARUKE H, et al. X-ray structural characterization ofmolybdate-tripeptide complex,[mo4o12(glycylglycylglycine)2]9h2o [J]. Chemistry Letters,1999,1999(7):563-564.
    [169] LIHUA B. QIZHUANG H. QIONG J, et al. Synthesis, properties and crystalstructure of (gly)2h4siw12o40·5.5h2o [J]. Journal of Molecular Structure,2001,597(1):83-91.
    [170] HAN Z. WANG E. LUAN G, et al. Synthesis, properties and structuralcharacterization of an intermolecular photosensitive complex:(hgly-gly)3PMoA12o40·4h2o[J]. Journal of Materials Chemistry,2002,12(4):1169-1173.
    [171] POPE M T. JEANNIN Y. FOURNIER M, Heteropoly and isopoly oxometalates. InSpringer-Verlag Berlin: New York,1983; Vol.8.
    [172] SANCHEZ C. LEBEAU B. CHAPUT F, et al. Optical properties of functionalhybrid organic–inorganic nanocomposites [J]. Advanced Materials,2003,15(23):1969-1994.
    [173] KNOWLES D B Photochromic naphthopyrans[P].1993.
    [174] LEVY D. DEL MONTE F. OT N J, et al. Photochromic doped sol-gel materials forfiber-optic devices [J]. Journal of Sol-Gel Science and Technology,1997,8(1-3):931-935.
    [175] LEVY D. Recent applications of photochromic sol-gel materials [J]. MolecularCrystals and Liquid Crystals,1997,297(1):31-39.
    [176] LEVI O. SHALOM S. BENJAMIN I, et al. Conjugated polymeric composites forholographic storage [J]. Synthetic Metals,1999,102(1):1178-1181.
    [177] SUN X. WANG X-J. SHAN W, et al. Nonlinear effects in chromophore dopedsol-gel photonic materials [J]. Journal of Sol-Gel Science and Technology,1997,9(2):169-181.
    [178] CHENG T. LIN T. BRADY R, et al. Fast response photochromic textiles fromhybrid silica surface coating [J]. Fibers and Polymers,2008,9(3):301-306.
    [179] CHENG T. LIN T. BRADY R, et al. Photochromic fabrics with improved durabilityand photochromic performance [J]. Fibers and Polymers,2008,9(5):521-526.
    [180] CHODOROWSKI-KIMMES S. QUINN F. SIMONNET J-T Process for thephotostabilisation of sunscreens through block-copolymers and cosmetic sunscreencompositions[P].2006.
    [181] CRANO J C. FLOOD T. KNOWLES D, et al. Photochromic compounds: Chemistryand application in ophthalmic lenses [J]. Pure and Applied Chemistry,1996,68(7):1395-1398.
    [182] OCK K. JO N. KIM J, et al. Thin film optical waveguide type uv sensor using aphotochromic molecular device, spirooxazine [J]. Synthetic Metals,2001,117(1):131-133.
    [183] VOLKAN M. STOKES D L. VO-DINH T. A sol–gel derived agcl photochromiccoating on glass for sers chemical sensor application [J]. Sensors and Actuators B: Chemical,2005,106(2):660-667.
    [184] FERINGA B L. BROWNE W R, Molecular switches. In Wiley Online Library:2001;Vol.42.
    [185] IRIE M. Photochromism: Memories and switches [J]. Chemical Reviews,2000,100(5):1683-1890.
    [186] KAWATA S. KAWATA Y. Three-dimensional optical data storage usingphotochromic materials [J]. Chemical Reviews,2000,100(5):1777-1788.
    [187] TIAN H. YANG S. Recent progresses on diarylethene based photochromic switches[J]. Chemical Society Reviews,2004,33(2):85-97.
    [188] PARDO R. ZAYAT M. LEVY D. Reaching bistability in a photochromicspirooxazine embedded sol–gel hybrid coatings [J]. Journal of Materials Chemistry,2009,19(37):6756-6760.
    [189] FENEYROU P. SOYER F. LE BARNY P, et al. Photochromic compounds as opticallimiters in the nanosecond time range: The example of mercury dithizonate complex [J].Photochemical&Photobiological Sciences,2003,2(3):195-202.
    [190] ALAM M M. LUCAS F O. DANIELUK D, et al. Hybrid organic–inorganicspin-on-glass cucl films for optoelectronic applications [J]. Journal of Physics D: AppliedPhysics,2009,42(22):225307-225311.
    [191] KIM C W. OH S W. KIM Y H, et al. Characterization of the spironaphthooxazinedoped photochromic glass: The effect of matrix polarity and pore size [J]. The Journal ofPhysical Chemistry C,2008,112(4):1140-1145.
    [192] PIERONI O. FISSI A. ANGELINI N, et al. Photoresponsive polypeptides [J].Accounts of Chemical Research,2001,34(1):9-17.
    [193] HAFIZ H. NAKANISHI F. Photoresponsive liquid crystal display driven by newphotochromic azobenzene-based langmuir–blodgett films [J]. Nanotechnology,2003,14(6):649-654.
    [194]张寒琦.孙书菊.金钦汉,光谱分析.吉林大学出版社:长春,1995.
    [195]北京大学化学系仪器分析化学组,仪器分析教程.北京大学出版社:北京,1997.
    [196]武汉大学化学系,仪器分析.高等教育出版社:北京,2001.
    [197]吴正龙,表面分析(引论)(XPS和AES)华东理工大学出版社上海,2008.
    [198]杨国昱,氧基簇合物化学科学出版社:北京,2012.
    [199] KOZHEVNIKOV I V. Catalysis by heteropoly acids and multicomponentpolyoxometalates in liquid-phase reactions [J]. Chemical Reviews,1998,98(1):171-198.
    [200] MIZUNO N. MISONO M. Heterogeneous catalysis [J]. Chemical Reviews,1998,98(1):199-218.
    [201] http://www.chemicalbook.com/
    [202] KEGGIN J F. The structure and formula of12-phosphotungstic acid [J]. Proceedingsof the Royal Society A: Mathematical, Physical and Engineering Sciences,1934,144(851):75-100.
    [203] Vibrational investigations of polyoxometalates.2. Evidence for anion-anioninteractions in molybdenum(ⅵ) and tungsten(ⅵ) compounds related to the keggin structure[J]. Inorganica Chemistry,1983,22:207-216.
    [204] HASIK M. PRON A. PO?NICZEK J, et al. Physicochemical and catalytic propertiesof ployaniline protonated with12-molybdophosphoric acid [J]. Journal of the ChemicalSociety, Faraday Transactions,1994,90(14):2099-2106.
    [205] POPE M T, Heteropoly and isopoly oxometalates. In Springer-Verlag: New York,1983.
    [206]冯威.含杂多化合物的无机-有机复合膜的制备和光致变色性能的研究[D].吉林大学,2001.
    [207] MAYER C R. THOUVENOT R. LALOT T. New hybrid covalent networks based onpolyoxometalates: Hybrid networks based on poly(ethyl methacrylate) chains covalentlycross-linked by heteropolyanions: Synthesis and swelling properties [J]. Chemistry ofMaterials,2000,12(2):257-260.
    [208] JIANG M. WANG E. WEI G, et al. Photochromic inorganic–organic multilayer filmsbased on polyoxometalates and poly(ethylenimine)[J]. Journal of Colloid and InterfaceSciense,2004,275(2):596-600.
    [209] CHEN Z-H. MA Y. ZHANG X-T, et al. Photochromic inorganic/organicself-assembled superlattice films [J]. Journal of Colloid and Interface Science,2001,240(2):487-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700