用户名: 密码: 验证码:
细胞移植治疗脊髓损伤的优化方案及PDGF-B在脊髓修复中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】建立三种干细胞即神经干细胞(NSC)、骨髓问充质细胞(BMSC)和造血干细胞(HSC),及两种支持细胞即嗅鞘细胞(OEC)和雪旺细胞(SC)的体外培养技术,并将两种支持细胞分别和三种干细胞分别联合移植入SD大鼠和猴损伤的脊髓,筛选出细胞联合移植治疗SCI的优化方案,并探讨与其相关的分子表达,找出相对重要的调节分子,研究该分子在SCI中的作用。为寻找细胞移植治疗SCI的有效方法和相关的分子机制提供实验依据,为指导临床应用干细胞移植治疗SCI提供新思路。
     【方法】
     1.建立嗅鞘细胞、雪旺细胞、神经干细胞、骨髓间充质细胞和造血干细胞的体外培养技术,并对培养细胞进行鉴定。
     2.建立SD大鼠脊髓T10全横断损伤模型。将动物分假手术组、单纯脊髓全横断手术组、脊髓全横断手术注射免疫抑制剂组,NSC移植组、BMSC移植组、HSC移植组、SC细胞移植组,OEC移植组,以及NSC+OEC,BMSC+OEC,HSC+SC联合移植组。术后14d沿原切口暴露损伤脊髓,选取距离瘢痕5mm的脊髓上下端和瘢痕各取左右两个位点(脊髓上下端旁开脊髓后正中沟0.5mm,瘢痕处的左右侧位点参照脊髓上下端的左右位点定位),共6个位点用立体定向仪进行细胞移植(1.0×10~5/5uL,每个位点)。用5mg/kg/天腹腔注射环孢素(CsA)以减轻细胞移植后的免疫排斥反应。
     3.后肢运动功能评分:移植术后1~24周,采用双盲法由三名观察人员每周末进行大鼠后肢BBB运动功能评分。最后将三人所得分值求平均分后进行统计学处理。筛选出促进脊髓损伤功能恢复最好的一组为NSC+OEC联合移植组。
     4.神经电生理检测:对NSC+OEC联合移植组,及其相应对照组进行神经电生理检测,进一步探讨NSC+OEC联合移植组促进SCI的实验依据。
     (1)运动诱发电位(MEP)的测定
     采用了神经电生理经颅磁刺激器对NSC+OEC联合移植组14d组,及其对照组假手术组、脊髓全横断手术注射免疫抑制剂组、NSC移植组和OEC移植组的MEP进行检测。3.6%水合三氯乙醛麻醉固定动物后,用盘状电极通过导电膏粘附于大鼠耳朵作为地线,记录电极置于大腿股四头肌,正负电极间距1cm,磁力板中心置于大脑皮质运动区之上刺激大脑皮质,以刺激强度40%刺激大脑皮质,记录股四头肌收集到得电位变化,待波形稳定且重复3次时中止并描记结果。
     (2)皮层体感诱发电位(CSEP)的测定
     本实验采用了皮层体感诱发仪(MEDTRONIC公司产品-KEYPOINY)对移植14d的NSC+OEC联合移植组,及其对照组假手术组、脊髓全横断手术注射免疫抑制剂组、NSC移植组和OEC移植组进行了检测。电流为方波脉冲型,刺激电极置于大鼠左下肢胫后神经处,正负电极间距为1cm,参考电极置于大鼠鼻正中皮下,记录电极置于大鼠右侧大脑皮层处皮下,接地电极置于大鼠耳朵。参数设置:扫描速度10ms/D,灵敏度10uv/D,滤波低频10Hz,滤波高频2KHz,刺激强度以引起大鼠后爪抖动为止。每次均记录300次波形后将其叠加平均得到最终的检测结果。
     5.植入细胞存活检测:
     在第12和24W末取部分动物用3.6%的水合氯醛进行腹腔注射麻醉,4%的多聚甲醛灌注固定后取材、冰冻切片,荧光显微镜下观察植入细胞存活,迁移。
     6.PCR扩增疤痕组织的神经营养因子及其受体,和凋亡相关因子:
     将14d、21d、28d的各组全横断脊髓(手术注射免疫抑制剂组、NSC移植组、OEC移植组和NSC+OEC联合移植组)活体取出疤痕部位及临近组织,匀浆、裂解、提取总RNA、逆转录合成cDNA,进行神经营养因子NGF、BDNF、NT-3、CNTF、PDGF-B、IGF-1、bFGF、TGF-β1,及其受体TrkA、TrkB和TrkC,和凋亡相关因子Bax、Bcl-2、Caspase-3及内参照β-actin的PCR扩增,琼脂糖凝胶电泳检测扩增产物。测光密度值,进行统计学分析,筛选出有变化的因子。推测其中与SCI有关的重要分子。
     7.用高等动物灵长类猴验证NSC+OEC联合移植治疗SCI的效果:
     建立恒河猴半横断SCI模型。动物分半横断手术注射免疫抑制剂组、NSC移植组、OEC移植组和NSC+OEC联合移植组。通过运动功能评分(1-9周),神经电生理和核磁共振检测(1月),和形态学观察来阐明NSC+OEC联合移植对SCI的促进作用。
     8.选择通过PCR扩增后确定的疤痕组织内有变化的PDGF-B作为切入点:
     通过免疫组化,RT-PCR,Western Blot,细胞培养,RNA干扰,抗体封闭等技术来研究PDGF-BB在SCI中的作用和可能的作用机制。
     【结果】
     1.本实验成功建立了OEC、SC、NSC、BMSC和HSC的体外培养方法,并进行了鉴定。
     2.运动功能评分:所有大鼠脊髓全横断后,双侧后肢完全瘫痪,不能排尿。大鼠靠前肢拖动身体前行。1周末时,手术损伤组大鼠双后肢开始出现1个后肢关节(踝关节)的轻微活动。细胞移植组则开始出现1或2个后肢关节轻微活动(多为膝关节或/和踝关节)。在第2周末时,手术损伤组和细胞移植组大鼠在细胞移植后排尿障碍均较第1周末时稍有好转,膀胱残余尿仍较多,手术损伤组部分大鼠开始出现2个后肢关节的轻微活动,而细胞移植组部分大鼠开始出现1或2个后肢关节大幅运动。各细胞移植组的大鼠BBB评分在整个恢复的过程中均有明显的提高,但变化最明显的的就是OECs+NSCs组。说明OEC+NSC移植对运动功能恢复明显改善。
     3.神经电生理感觉和运动诱发电位检测
     3.1 CSEP检测
     N1波变化:脊髓全横断组没有测到波形,潜伏期无限延长,与假手术组比较差异显著;说明手术切断脊髓后上行传导通路明显受损。细胞移植后,OEC、NSC移植组均分别能测到N1波,其与SCI组相比较,有显著性统计学差异(P=0.001,≤0.001、P=0.045,<0.05)。但OEC+NSC移植组分别与OEC组和NSC组比较,均无统计学差异(P=0.720、0.323,>0.05)。说明OEC+NSC移植对感觉神经生理功能恢复改善不明显。
     P1波变化:脊髓全横断组亦没有测到波形,说明潜伏期无限延长,与假手术组比较差异显著;然而OEC、NSC移植组能测到P1波,其与SCI组完全消失的情况相比较,差异显著,P=0.001,≤0.001;然而,需注意的是,仅OEC移植组P1波的潜伏期较与假手术组比较明显延长,有统计学差异;而NSC移植组P1波的潜伏期与SCI组相比较,P=0.069,>0.05,无统计学差异;OEC+NSC移植组P1波的潜伏期与OEC组和NSC组的相比较,P值分别为0.688、0.247,>0.05,无统计学差异。进一步说明OEC+NSC移植对感觉神经生理功能恢复改善不明显。
     3.2 MEP检测:
     本实验中,假手术大鼠均能测到明显的诱发电位,这种诱发电位的波幅为均值在6mv左右,潜伏期5ms左右。而SCI后,波幅和潜伏期均测不到,MEP消失。但给予NSC或者OEC移植后,均能测到MEP。只是其潜伏期有些延长(说明传导速度减慢),且恢复波幅明显降低(说明突触功能受损)。细胞联合治疗对MEP没有明显影响。
     4.植入细胞的存活:脊髓切片上可见到GFP标记的绿色荧光细胞。而联合移植组脊髓既可见绿色荧光细胞,又可见Hochest33342标记的细胞核。标记细胞在损伤脊髓瘢痕,及其上段、下端均可见到。说明移植细胞向头、尾侧迁移,并在宿主脊髓存活。
     5.PCR扩增疤痕组织的神经营养因子及其受体,和凋亡相关因子的表达变化发现:①在疤痕组织中均未检测到BDNF、NT-3、bFGF、TrkA、TrkB表达;②NGF各时间点均没有变化。③凋亡基因变化:Bcl-2:在联合移植21d时与NSC移植组比较明显降低,P=0.011,<0.05,差异有统计学意义;Caspas-3:联合移植组在14d与NSC移植组、OEC移植组相比较,明显增加(P=0.039、0.032,<0.05),差异有显著统计学意义;但至在21d时,联合移植组与NSC移植组比较Caspas-3表达明显减P=0.006,<0.01,差异有显著统计学意义;在28d时,各处理方式之间比较,差异无统计学意义。Bax在联合移植组14d时与NSC移植比较,明显增加,P=0.031,<0.05,差异有统计学意义;但至21d时,联合移植组与手术组比较明显减少,P=0.040,<0.05,差异有统计学意义;在28d时,各处理方式之间比较,差异无统计学意义。④NTF变化:CNTF在联合移植14d时,与OEC移植组及NSC移植比较表达明显增加,P值分别为0.007、0.001、0.023,均<0.05,差异有显著统计学意义;在21d,联合移植组与NSC移植组比较明显减少,P值为0.000,<0.01,差异有显著统计学意义;在28d,联合移植组与OEC移植组、NSC移植组比较均明显减少,P值分别为0.028、0.028,均<0.05,差异有显著统计学意义。IGF-1:在14d时,联合移植组与OEC移植组及NSC移植比较,明显增加,尸值分别为0.003、0.001,均<0.05,差异有显著性统计学意义;而在21d和28d时,各处理方式之间比较,差异均无统计学意义;PDGF-B:在14d时,联合移植组、OEC、NSC移植与手术组比较,明显减少,P=0.044,<0.05,差异有统计学意义;联合移植组与NSC移植比较,明显减少,P=0.047,<0.05,差异有统计学意义。在21d时,联合移植组与NSC移植组、OEC移植组及手术组比较明显减少,P=0.039、0.039、0.031,<0.05,差异有统计学意义。在28d时,联合移植组与OEC移植组之间比较显著减少,P=0.011,<0.05,差异有统计学意义。TGF-betal:在14d时,联合移植组与NSC移植组、OEC移植组和手术组比较明显增加,p=0.001、0.019、0.001,<0.05,差异有统计学意义;而在21d和28d时,各处理方式之间比较,差异无统计学意义。Trkc:在14d时,联合移植组与NSC移植组比较,明显降低,P值分别为0.031,<0.05,差异有统计学意义;在21时,联合移植组与手术组比较(P=0.015,<0.05),和NSC移植组比较(P=0.010,<0.05)。差异有统计学意义,而在28d时,各处理方式之间比较,差异无统计学意义。
     可以看出,PDGF-B是细胞移植促进损伤脊髓修复中变化最明显的分子,提示其可能是细胞移植改进功能可塑性相关的重要分子。
     6.OEC+NSC移植对恒河猴SCI功能恢复的影响
     6.1后肢运动功能评分:改良的Tarlov's Method评分结果显示损伤侧、细胞联合移植侧评分均较假手术组明显降低,有统计学差异(P<0.05)。第1周、第2周、第3周、第4周、第7周,OEE+NSE移植细胞联合移植侧Tarlov's Method评分均明显高于损伤侧评分,均有统计学意义(P<0.05)。
     6.2移植细胞在宿主脊髓存活和迁移情况:在宿主脊髓可观察到大量荧光细胞,向头端或尾端迁徙;说明移植细胞在宿主脊髓存活,迁移。
     6.3神经电生理:
     CSEP:SCI后各组动物的CSEP信号均消失。损伤侧N1波波幅明显低于损伤对侧,有统计学差异(P<0.05);而NSC联合OEC细胞移植1个月,细胞联合移植侧N1波幅明显高于损伤侧,有统计学意义(P<0.05);
     MEP:SCI后各动物MEP信号均消失。而细胞移植1个月能检测到MEP,只是损伤侧损伤平面以下节段MEP的波幅明显低于损伤侧损伤平面以上节段的MEP波幅,有统计学差异(P<0.05);而损伤侧与细胞联合移植侧测得的波幅相比较没有明显差异,没有统计学意义(P>0.05)。比较之,损伤侧损伤平面以上节段测得的潜伏期较损伤侧损伤平面以下节段测得波幅明显延长,有统计学差异(P<0.05);而细胞联合移植测得的潜伏期较损伤侧测得的潜伏期明显缩短,有统计学差异(P<0.05)。
     6.4 MRI:脊髓左侧半横断+细胞移植瘢痕横切面积明显小于单纯脊髓左侧半横断组脊髓损伤对照节段面积,有统计学差异(P<0.05);而脊髓损伤上1节段和损伤下1阶段脊髓横切面面积无明显差异,均没有统计学差异(P>0.05)。
     7.PDGF-B在大鼠脊髓全横断损伤后的变化和作用研究:SCT后1天直至损伤后28天,PDGF-B蛋白质和mRNA在损伤脊髓中明显上调。PDGF-B免疫反应的产物分布在疤痕星型胶质细胞中。同时星型胶质细胞明显增值,疤痕组织内的PDGF-B信号分子转录激活因子3(STAT-3)的上调相一致。通过PDGB-B抗体封闭和iRNA对PDGF-B活性分别在蛋白水平和基因水平进行阻断和干扰,导致以下几方面的显著改变:(1)显著下调了PDGF-B下游信号分子的水平;(2)显著减少了星形细胞胶质增生和疤痕的形成;(3)增加轴突再生和出芽;(4)后肢运动功能和感觉功能的显著改善。
     【结论】
     1本实验通过不同的细胞组合治疗方法,在低等啮齿类动物SD大鼠和高等灵长类动物恒河猴SCI模型上证明了NSC联合OEC移植能够最有效促进损伤脊髓的运动功能恢复。是目前较为乐观的有效策略。移植细胞能够在大鼠和猴损伤脊髓长时间存活、迁徙。NSC联合OEC移植作为一种治疗SCI的有效方法,具有潜在的临床应用价值。
     2 NSC联合OEC移植有效促进损伤脊髓的运动功能恢复与多种细胞因子的表达调节有关。其中PDGF-B是较重要的分子。
     3 PDGF-B蛋白和基因干扰,能显著减少了星形胶质增生,抑制疤痕形成,促进轴突再生,并改善后肢运动功能。从而证明PDGF在SCI修复中是一个关键的调节分子。
[Objective]
     In present study, based on a great deal of reports and effective strategies of clinical therapy of SCI, we used different supporting cells (SC and OEC) to combined with different stem cells like neural stem cells(NSC), mensenchymal stem cells(BMSC) and heomopoietic stem cells(HSC) to seek for the optimal method which promotes SCI restoration, by means of co-transplantation of different supporting cells and different stem cells based on the theory that supporting cells can play a role in bridge grafting and NTF secretion and stem cells can differentiate into target cells so as to replace of host lost neurons. Our objective is to get the most effective methods for the SCI therapy by cellular coordination. Then we ask the possible mechnism.
     [Method]
     Three Stem cells consisting of neural stem cells(NSC), mensenchymal stem cells(BMSC) and heomopoietic stem cells(HSC) as well as two support cells including olfactory ensheathing cell (OEC) , and Schwann cells (SC) were as seedcells to be impanted into spinal cord following injury. The the most Optimal strategyof stem cell transplantation into transected spinal cord, and the role of PDGF were investigated by using cells culture, Immunohistochemistry (IHC), Western-blot, Reverse Transcription polymerase Chain Reaction (RT-PCR), RNA intererence and antibody block method, and Behavioral test as well as electrophysiological test.
     [Result]
     1. Aafter spinal cord was transected, rats showed flaccid paralysis in hindlimbs immediately, indicating that the transection of the cord was completely transected. Moreover, cell transplantation results in spontaneous, howbeit incomplete, recovery of the hindlimb locomotor functions after spinal cord transection (SCT). The BBB score of cell transplantaion group was significant higher than operation group at all of the different time points (P<0.05), especially from 2 wekks to 6 month. Of 11 combination strategy, we found that NSC and OEC co-transplantation could provide the most significant amelioration for the recovery of rats behavior following SCT. This effect was confirmed from the test employed by monkey SCI model. The mechanism for this improvement is involved in regulation of various NTF in host spinal cord. Involved factors by RT-PCR including in brain derived neurotrophic factor (BDNF), Cilliary neurotrophic factor(CNTF), Isulin-like growth factor, (IGF), Fibroblast growth factor(FGF), Glia derived neurotrophic factor(GDNF), etc.
     2. The optimal strategy of stem cell transplantation into transected spinal cord was test in primate monkey so as to provide some evidences fo humanbeing usage.
     3. Based on the results from previous data that quantitative analysis demonstrated that the Pletlet derived neurotrophic factors (PDGF) was downregulated in the spinal cord following NSC and OEC transplantaion (P<0.05). This indicated that PDGF maybe a vital molecules that exert negtive effect in improving neuroplasticity. This push us to determine the role of PDGF in the traumatic spinal cord. Despite PDGF-BB plays a crucial role in regulating neuronal survival and cell differentiation during embryonic development and in the adulthood. The roles it plays in astrogliosis and the formation of scar tissue after spinal cord transection (SCT), however, has not been studied. Thereforem This part we explore the roles of PDGF-BB in regulating astrogliosis at molecular level and to correlate them with axonal regeneration and sprouting and functional recovery. As early as 1 day after SCT and continuing through 28days, PDGF-BB protein and mRNA were up-regulated in the injured spinal cord. PDGF-BB immunoreactive products were detected in both neurons and astrocytes, at 1 day after SCT and these gradually increased in astrocytes till 28days. This was paralleled by scar tissue formation, and upregulation of signal transducer and activator of transcription 3 (STAT-3), all of which are the downstream signaling molecules of PDGF-BB. Blocking of and interfering with the activity of PDGF-BB with PDGB-BB-antibody and siRNA (to spell out in full) respectively resulted in significant (i) down-regulation in the downstream signaling molecules of PDGF-BB; (ii) reduction in astrogliosis and scar tissue formation; (iii) reduction of STAT-3; and (iii) improvements in hindlimb locomotor and sensory functions.
     Taken together, our data suggest that OEC and NSC transplantaion could be as a optimal strategy into damaged spinal cord for future clinic usage, and the possible mechnism involved in several cytokines regulation. Of them, PDGF play a crucial role in neuroplasticity following spinal cord injury and cell transplantion.
引文
1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992,255(5052): 1707-10.
    2. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 1996,19(9):387-93.
    3. Kuhn HG, Svendsen CN. Origins, functions, and potential of adult neural stem cells. Bioessays. 1999,21(8):625-30.
    4. 李成仁,李巍,蔡文琴,苏炳银,陈德英.神经干细胞移植在恢复损伤脊髓传导功能中的作用解剖科学进展,2004.10(B08):30-30
    5. 李成仁,李巍,蔡文琴,陈德英,苏炳银.神经干细胞移植促进脊髓损伤大鼠脊髓功能的恢复中国临床康复,2004.8(29):6364-6366
    6. 付源,王廷华,张卫民,赵刚.神经干细胞在体外诱导向胆碱能神经元定向分化后移植治疗脊髓损伤.哈尔滨医科大学学报,2006.40(6):460-463.
    7. 郭家松,曾园山,李海标,黄文林,陈穗君. NT-3基因修饰许旺细胞与神经干细胞联合移植促进大鼠全横断脊髓受损伤神经元的存活及其轴突再生.中华显微外科杂志,2005.28(4):337-339.
    8. 孙广运,蔡培强,Oudega Martin,王学文,Blits Bas,舒运兵,蔡程.移植分泌神经营养因子-3的人胚神经干细胞对大鼠脊髓损伤后功能恢复的影响.中华创伤杂志,2007.23(2):122-126.
    9. 尹国栋,汤逊,林月秋,徐永清,周田华.人胚胎神经干细胞移植治疗火鼠脊髓完全横断损伤.中国脊柱脊髓杂志,2006.16(8):611-614.
    10.程映华,梁品,王晓冬,张沛云,郑祖根,顾晓松, 壳聚糖神经干细胞复合物修复火鼠完全性脊髓损伤的组织学观察.中华实验外科杂志,2004.21(1):26-27.
    11.汪璇.神经干细胞研究新进展及临床应用展望.北京人学学报(医学版),2001,33(6):571575.
    1. Sheth RN, Manzano G, Li X, Levi AD. Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats. J Neurosurg Spine. 2008 Feb; 8(2):153-62.
    2. Wu J, Feng D, Yang T. Effect of transplanting marrow mesenchymal stem cells via subarachnoid space on spinal cord injury and T cell subpopulation in rats .Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007 May; 21 (5):492-6.
    3. Lee J, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K, Tada M, Sawada K, Iwasaki Y. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003 Sep; 23(3): 169-80.
    4. Bi XB, Deng YB, Gan DH, Wang YZ.Salvianolic acid B promotes survival of transplanted mesenchymal stem cells in spinal cord-injured rats. Acta Pharmacol Sin. 2008 Feb; 29(2): 169-76.
    5. Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H, Shang YC, Li WY, Zhou C, Yu MJ, Feng SW.Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy. 2007; 9(5):414-26.
    6. Qing Ying Wu, Jin Li, Zhong Tang Feng, Ting-Hua Wang. Transplantation of bone marrow stromal cells into Alzheimer's disease model rats. Neurosci Lett. 2007; 417(3):281-5
    
    1. 裴雪涛.1998.CD34+造血祖细胞的定向诱导分化研究.中华血液学杂志, 19(6):289-293
    2. 汪承亚.2003.造血干细胞的传统观念和现代观念.南京医科大学学报(自然科学版),23(6):639~641
    3. 朱海英.2002.骨髓细胞多向分化潜能的初步研究.第二军医大学学报,23(11):1172~1174
    4. Brugger W, Fetscher S, Hasse J, et al. 1998. Multimodality treatment including early high dose chemotherapy with peripheral blood stem cell transplantation in limited disease small cell lung cancer. Semin Oncol, 25:42
    5. Carlyle JR, Michie AM, Furlonger C, et al. 1997.Identification of a noval developmental stage marking lineage commitment of progenitor thymocytes. J Exp Med, 186:173
    6. Elias AD, Ayash L, Friei E, et al. 1993.Intensive combined modality therapy for limited stage small cell lung cancer. J Natl Cancer Inst, 85:559—566
    
    7. Engelhardt M, Kumar R, Albanell J, et al.1997. Telomerase regulation, cell cycle and telomere stability in primitive hematopoietic cells. Blood, 90:182-193
    8. Ferrari G, Cusella□De, Angelis G, et al. 1998,Muscle regeneration by bone marrow derived myogenitors. Science, 297:1528-1530
    9. Gussoni E, Soneoka Y, Stickland C, et al.1999. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 401:390-394
    10. Hurley CK, Wade JA, Oudshoom M, et al.1999. Histocompatibility testing for hematopoietic stem cell transplantation using volunteer donor: Report from The World Marrow Donor Association. Bone Marrow Transpl, 24:119-121
    11. Natt S, Heavey B, Rolink A, et al. 1999.Commitment to the B□lymphoid lineage depends on the transcription factor Pax5. Narure, 401:556~562
    12. Jackson KA, Majka SM, Wang HG, et al.2001. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 107(11): 1395-1402
    13. Jaleco A, Blom B, Res P, et al. 1997.Fetal liver contains committed NK progenitors, but is not a site for development of CD34+cells into T cell. J Immunol, 159:694
    14. Krause DS, Theise ND, Collector ML, et al. 2001.Mutil organ, Mutil□lineage engraftment by a single bone marrow□derived stem cell. Cell, 105(3): 369-377
    15. Orlic D, Kajstura J, Chimenti S, et al.2001. Bone Marrow Cell regenerate infracted myocardium. Nature, 401 (5) : 701-705
    16. Petersen B, Bowen W, Patrene L, et al. 1999. Bone marrow as a potential source of hepatic oval cells. Science, 284:1168-1170
    17. Shimizu E, Takaue Y, Yamamoto A, et al.1995. Patient with extensive small cell lung cancer given moderately dose intensified chemotherapy and peripheral blood stem cell support. Jpn J Clin Oncol, 25:213
    18. Smith C, Storms B. 2000. Hematopoietic stem cells. Clinical Orthopaedics and Related Research, 379:91 -97
    
    1. Martin LJ, Liu Z. Adult olfactory bulb neural precursor cell grafts provide temporary protection from motor neuron degeneration, improve motor function, and extend survival in amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol. 2007 Nov; 66(11):1002-18.
    2. Xiao M, Klueber KM, Guo Z, Lu C, Wang H, Roisen FJ.Human adult olfactory neural progenitors promote axotomized nibrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis. 2007 May; 26(2):363-74. Epub 2007 Feb 9.
    3. Deumens R, Koopmans GC, Honig WM, Hamers FP, Maquet V, Jérome R, Steinbusch HW, Joosten EA.Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp Neural. 2006 Jul; 200(1):89-103. Epub 2006 Mar 9.
    4. Wang B, Zhao Y, Lin H, Chen B, Zhang J, Zhang J, Wang X, Zhao W, Dai J. Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neurosci Lett. 2006 Jun 19; 401(1-2):65-70. Epub 2006 Apr 24.
    5. Xiao M, Klueber KM, Lu C, Guo Z, Marshall CT, Wang H, Roisen FJ. Human adult olfactory neural progenitors rescue axotomized rodent nibrospinal neurons and promote
    6. 薛庆善.体外培养的原理与技术.北京:科学出版社,2001
    7. 司徒镇强,吴军正.细胞培养.西安:世界图书出版公司西安分公司,1996.
    1.Woodhoo A,Sahni V,Gilson J,Setzu A,Franklin RJ,Blakemore WF,Mirsky R,Jessen KR.Schwann cell precursors:a favourable cell for myelin repair in the Central Nervous System.Brain.2007 Aug;130(Pt 8):2175-85.Epub 2007 Jun 4.
    2.Vroemen M,Caioni M,Bogdahn U,Weidner N.Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord.Cell Tissue Res.2007Jan;327(1):1-13.Epub 2006 Aug 29.
    3.Zeng YS,Ding Y,Wu LZ,Guo JS,Li HB,Wong WM,Wu WT.Co-transplantation of schwann cells promotes the survival and differentiation of neural stem cells transplanted into the injured spinal cord.Dev Neurosci.2005 Jan-Feb;27(1):20-6.
    4.Brokes JP,Fields KL,Raff MC.Studies on culture rat Schwann cells.I.establishment of purified population from culture of peripheral nerve[J].Brain Research,1979,165(1):105118.
    5.Fansa H,Keilhoff G,Forster G,et al.Acellular muscle with Schwann cell implantation:alterative biologic conduit[J].J Reconstr microsurg,1999,15(7):105118.
    6.劳杰,熊良俭,顾玉东等.改良成年SD大鼠雪旺细胞培养的实验研究[J].中华手外科杂志,1999,15,(2):106110.
    7.韩岩,汤朝武,王剑波等.利用Geneticin纯化雪旺细胞的实验研究[J].中华显微外科杂志,1997,20(4):227230.
    8.Levi AD,Guenard V,Aebischer P,et al.The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve.J Neurosci 1994:14:13091319.
    1.Ambrozaitis KV,Kontautas E,Spakauskas B,et al.Pathophysiology of acute spinal cord injury.Medicina(Kaunas),2006,42(3):255-261.
    2.吴江,高建新,刘克敬,等.实验性大鼠脊髓损伤后运动能力及病理学变化的研究.山东大学学报(医学版),2006,3,44(3):231-234.
    3.Reyes O,Sosa I,Kuffler DP.Neuroprotection of spinal neurons against blunt trauma and ischemia.P R Health Sci J,2003,22(3):277-286.
    4.Bareyre FM,Schwab ME.Inflammation,degeneration and regeneration in the injured spinal cord:insights from DNA microarrays.Trends Neurosci 2003;26(10):555-63.
    5.Kirshblum SC,Groah SL,McKinley WO,et al.Spinal cord injury medicine.1.Etiology,classification,and acute medical management.Arch Phys Med Rehabil,2002,83(3 Suppl 1):S50-57,S90-98.
    6.Dumont RJ,Okonkwo DO,Verma S,Hurlbert RJ,Boulos PT,Ellegala DB,et al.Acute spinal cord injury,part Ⅰ:pathophysiologic mechanisms.Clin Neuropharmacol 2001;24(5):254-64.
    7.Blight AR.Delayed demyelination and macrophage invasion:a candidate for secondary cell damage in spinal cord injury.Cent Nerv Syst Trauma 1985;2(4):299-315.
    8.胡苏华,武衡,刘爱群.中枢神经系统的免疫学特性与神经干细胞移植的免疫排斥问题.国际脑血管病杂志,2006,14(7):547-551.
    9.Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science.1992,255(5052):1707-10.
    10.Weiss S,Reynolds BA,Vescovi AL,Morshead C,Craig CG,van der Kooy D.Is there a neural stem cell in the mammalian forebrain? Trends Neurosci.1996,19(9):387-93.
    11.Sheth RN,Manzano G,Li X,Levi AD.Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats.J Neurosurg Spine.2008 Feb;8(2):153-62.
    12.Wu J,Feng D,Yang T.Effect of transplanting marrow mesenchymal stem cells via subarachnoid space on spinal cord injury and T cell subpopulation in rats.Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2007 May:21(5):492-6.
    13. Qing Ying Wu, Jin Li, Zhong Tang Feng, Ting-Hua Wang. Transplantation of bone marrow stromal cells into Alzheimer's disease model rats. Neurosci Lett. 2007; 417(3):281-5.
    
    14.裴雪涛.1998.CD34+造血祖细胞的定向诱导分化研究.中华血液学杂志,19(6):289-293.
    
    15. Martin LJ, Liu Z.Adult olfactory bulb neural precursor cell grafts provide temporary protection from motor neuron degeneration, improve motor function, and extend survival in amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol. 2007 Nov; 66(11):1002-18.
    
    16. Xiao M, Klueber KM, Guo Z, Lu C, Wang H, Roisen FJ.Human adult olfactory neural progenitors promote axotomized rubrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis. 2007 May; 26(2):363-74. Epub 2007 Feb 9.
    
    17. Woodhoo A, Sahni V, Gilson J, Setzu A, Franklin RJ, Blakemore WF, Mirsky R, Jessen KR.Schwann cell precursors: a favourable cell for myelin repair in the Central Nervous System. Brain. 2007 Aug; 130(Pt 8):2175-85. Epub 2007 Jun 4.
    
    18. Vroemen M, Caioni M, Bogdahn U, Weidner N. Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord. Cell Tissue Res. 2007 Jan; 327(1):1-13. Epub 2006 Aug 29.
    
    19. Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?. Stem Cells 2005; 23(10): 1443-52.
    
    20. Wu S, SuzukiY,EjiriY, et a.l Bonemarrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord[J].NeurosciRes,2003; 7(2):343-351.
    
    21. EglitisMA,Mezey E. [J] .ProcNatlAcad SciU SA, 1997, 94: 4080-4085.
    
    22. Eva M, Chandross KJ, Harta G, et al.[J] Science, 2000, 209: 1779-1782.
    
    23. Brokes JP, Fields KL, Raff MC. Studies on culture rat Schwann cells. I.establishment of purified population from culture of peripheral nerve [J]. Brain Research, 1979,165(1): 105118.
    
    24. Fansa H, Keilhoff G, Forster G, et al. Acellular muscle with Schwann cell implantation: alterative biologic conduit[J]. J Reconstr microsurg, 1999,15(7): 105118.
    
    25. Wang B, Zhao Y, Lin H, Chen B, Zhang J, Zhang J, Wang X, Zhao W, Dai J. Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neurosci Lett. 2006 Jun 19;401(1-2):65-70.Epub 2006 Apr 24.
    26.Xiao M,Klueber KM,Lu C,Guo Z,Marshall CT,Wang H,Roisen FJ.Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery.Exp Neurol.2005 Jul;194(1):12-30.
    27.黄纯海,王廷华,李群。脊髓全横断大鼠神经生长因子和脑源性神经营养因子表达及三七皂苷的干预效应。中国组织工程研究与临床康复,2007,11(41):8276-8279.
    28.陈光学,王廷华,敖丽娟,於建鹏,胡忆,陆地。不同程度、类型脊髓损伤后活性氧水平的变化。昆明医学院学报,2007,28(1):1-4.
    29.黄纯海,李群,王廷华。银杏叶提取物对大鼠脊髓全横断损伤后NGF及BDNF表达的影响。中国医师杂志,2007,9(9):1200-1202.
    30.程昊钰,何明生,王廷华,张洪钿,王熙才,伍治平,王方方,刘鲲,黄桂琴,胡艳丽。绿色荧光蛋白转基因小鼠CD34+/CD45+细胞在脊髓全横断大鼠模型中的存活及迁移。中国病理生理杂志,2007,23(3):579-583.
    31.温石磊,齐建国,章为,王廷华,刘希伟。大鼠脊髓半横断损伤后大脑皮质初级运动区caspase-3的表达四川解剖学杂志。2008,16(3):24-26.
    32.王芳,齐建国,王廷华,章为,孙玲。大鼠脊髓半横断损伤后脊髓神经细胞凋亡与caspase-3的表达。神经解剖学杂志。2008,24(3):271-276.
    33.Dumitru D.Branisteanu;Mark Waer;Halina Sobis.Prevention of murine experimental allerimental allergic encephalomyelitis:cooperative effects of cyclosporine and 1α,25-(OH)_2D_3.Journal of Neuroimmunology,1995,61(199):151-160.
    34.Deng YB,Liu Y,Zhu WB,Bi XB,Wang YZ,Ye MH,Zhou GQ.The co-transplantation of human bone marrow stromal cells and embryo olfactory ensheathing cells as a new approach to treat spinal cord injury in a rat model.Cytotherapy.2008;10(6):551-64.
    35.Li LY,Li JT,Wu QY,Li J,Feng ZT,Liu S,Wang TH.Transplantation of NGF-Gene-Modified Bone Marrow Stromal Cells into a Rat Model of Alzheimer' Disease.J Mol Neurosci.2008;34(2):157-63.
    36.Michele Basso,Michael S.Beattle,Jacqueline C.Bresnahan.A sensitive and reliable locomotor rating scale for open field testing in rats.J Neurotrauma.1995,12(1):1-21.
    37.刘晓刚 邓宇斌 蔡辉 何杰民 沈慧勇.诱发电位在GDNF与MS Cs联合移植法治疗猴脊髓损伤评价中的应用。中国康复医学杂志,2009,24(6):509-51.
    38.谢兴文,李宁,施祀,王拥军。SEP与MEP对脊髓功能的监测作用。脊柱外科杂志,2005,3(5):310-312.
    
    39. BeckerD, Sadowsky CL, Mcdonald JW. Restoring function after spinal cord injury[J].Neurology, 2003, 9(1): 1.
    
    40. AmarAP, LevyML. Pathogenesis and pharmacological strategies formitigating secondary damage in acute spinal cord injury[J]. Neurosurgery, 1999,44(5): 1027-1039.
    
    41. Alexander GR, George MS. Therapeutic interventions following mammalian spinal cord injury[ J]. Arch Neuro,l 2001, 58(5): 721-726.
    
    42. Raisman GOlfactory ensheathing cells and repair of brain and spinal cord injuries.Cloning Stem Cells,2004, 6(4):364-8.
    
    43. McGee AW, Strittmatter SM.T he Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci,2003,26:193-198.
    
    44. Ying Z,Roy RR,Edgerton VR,et al.Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury.Exp Neurol,June 1,2005. 193(2):411419.
    
    45. Ramon CA, Cordero MI, Santos-Benito FF, et al. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron, 2000,25:425-435.
    
    46. Vroemen M, Aigner L, Winkler J, et al. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci,2003,18(4):743-751.
    
    47. Gao J, Coggeshall RE, Chung JM, Wang J, Wu P. Functional motoneurons develop from human neural stem cell transplants in adult rats. Neuroreport. 2007 Apr 16; 18(6):565-9.
    
    48. Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J,Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol. 2006 Jul; 60(1):32-44.
    
    49. Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF. Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci. 2006 Mar 22; 26(12):3256-68.
    
    50. Ray J, Palmer TD, Shihabuddin LS, et al. The use of neural progenitor cells for therapy in the CNS disorders[A]. In:Tuszynski M H, Kordower J H, eds. CNS Regeneration[M]. Academic Press.,1999.183-197.
    51. Dziewczapolski G, Lie DC, Ray J, et al. Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats. Exp Neurol.,2003,183(2):653-664.
    
    52. Lu P, Blesch A, Tuszynski MH. Neurotrophism without neurotropism:BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol.,2001,436:456-470.
    
    53. Tuszynski MH, Grill R, Leonard LL, et al. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol., 2003,181:47-56.
    
    54. Englund U, Fricker-Gates RA, Lundberg C, et al. Transplantation of human neural progenitor cells into the neonatal rat brain:extensive migration and differentiation with long-distance axonal projections. Exp Neurol.,2002,173(1):1-21.
    
    55. Angeletti RH, Brad Shaw PA. Nerve growth factor from the mouse submaxillary glands: amino acid sequence. Proc Natl Alad Sci USA, 1971,68:2417-2420.
    
    56. Leibrock J, Lottspeich F, Hohn A. Molecular cloning and expression of BDNF. Nature,1989,341:149-152.
    
    57. Maisonpierre PC, Lebeau MM, Espinosa IIIR. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structure, distribution and chromosomal localization.Geromics, 1991,10:558-568.
    
    58. Hallbook F, Ibanez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in xenopus ovary. Neuron, 1991,6:845-858.
    
    59. IP NY, Ibanez CF, Nye SH, et al. Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA, 1992,89:3060-3064.
    
    60. Rudolf Gotz, Reinhard Koster, Christoph Winkler, et al. Neurotrophin-6 is a new member of the nerve growth factor family. Nature, 1994,372(17):266-269.
    
    61. Barde Y-A. The nerve growth factor family. Prog growth factor Res, 1990,2:234-248.
    
    62. Ralph A. Brad Show, Toml. Blundell, Risto Lapatto, et al. Nerve growth factor revisited.TIBS, 18:48-52, 1993.
    63. Maisonpierre PC, Belluscio L, Stephen Squinto S, et al. Neurotrophin-3: A neurotrophic factor related to NGF and BDNF. Science, 247:1446-1451,1990.
    
    64. Rosenthal A, Goeddel DV, Nguyen I, et al. Primary structure and biological activity of a novel human neurotrophic factor. Neuron, 4:767-773,1990.
    1.McDonald JW,Sadowsky C.Spinal-cord injury.Lancet.2002;359(9304):417-425.
    2.Yick LW,Cheung PT,So KF,Wu W.Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC.Exp Neurol 2003;182(1):160-168.
    3.Privat A,Ribotta MG,Orsal D.What is a functional recovery after spinal cord injury? Nat Med 2000;6(4):358.
    4.Lindell SG,Schwandt ML,Sun H,et al.Functional NPY variation as a factor in stress resilience and alcohol consumption in rhesus macaques.Arch Gen Psychiatry.2010Apr;67(4):423-31.
    5.Lu P,Jones L L,Snyder E Y.Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury[J].Exp Neurol,2003,181(2):115-129.
    6.Bregman BS.Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection.Dev Brain Res 1987;34:265-79.
    7.McDonald JW,Liu XZ,Qu Y,Liu S,Mickey SK,Turetsky D,et al.Transplanted embryonic stem cells survive,differentiate and promote recovery in injured rat spinal cord.Nat Med 1999;5(12):1410-1412.
    8.Hideyuki Okano,Yuto Ogawa,Masaya Nakamura,Shinjiro Kaneko,Akio Iwanami,Yoshiaki Toyama.Transplantation of neural stem cells into the spinal cord after injury.Seminars in Cell & Developmental Biology 14(2003) 191-198
    9.Park K I,Himes B T,Stieg P E,et al.Neural stem cells may be uniquely suited for combined gene therapy and cell replacement:evidence from engraftment of neurotrophin 3 expressing stem cells in hypoxicis chemic brain injury[J].Exp Neurol,2006,199(1):179 190.
    10.Tarasenko Y I,Gao J,Nie L,et al.Human fetal neural stem cells grafted into contusion injured rat spinal cords improve behavior[J]. J Neurosci Res, 2007,85(1):47 57.
    
    11. Lu P,Jones L L,Snyder E Y. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury[J]. Exp Neurol,2003,181(2): 115 129.
    
    12. P. Lu, L.L. Jones, E.Y. Snyder, and M.H. Tuszynskia, Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury Experimental Neurology 181 (2003) 115-129.
    
    13. Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N, Ochi M.BDNF,NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine. 2007 May 20;32(12): 1272-8
    
    14. Barde YA (1989) Trophic factors and neuronal survival. Neuron 2:1525-1534
    
    15. Nakamura M,Toyama Y,Okano H. Transplantation of neural stem cells for spinal cord injury[J]. Rinsho Shinkeigaku, 2005,45(11):874 876.
    
    16. Andrews, M.R., Stelzner, D.J., Modification of the regenerative response of dorsal column axons by olfactory ensheathing cells or peripheral axotomy in adult rat. Exp. Neurol. 2004.190,311-327.
    
    17. Chuah, M.I., Choi-Lundberg, D., Weston, S., Vincent, A.J., Chung, R.S., Vickers, J.C., West,A.K., Olfactory ensheathing cells promote collateral axonal branching in the injured adult rat spinal cord. Exp. Neurol. 2004.185,15- 25.
    
    18. Plant, GW., Christensen, C.L., Oudega, M., Bunge, M.B., Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J. Neurotrauma . 2003.20, 1- 16.
    
    19. Keyvan-Fouladi, N., Raisman, G., Li, Y., Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J. Neurosci . 2003.. 23,9428- 9434.
    
    20. Imaizumi, T., Lankford, K.L., Koksis, J.D., Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Res. 2000. 854, 70- 78.
    
    21. Sayer FT, Oudega M, Hagg T. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Exp Neurol 2002; 175( 1 ):282 -296
    22.Lu,J.,Fe ron,F.,Mackay-Sim,A.,Waite,M.E.,Olfactory ensheathing cells promote recovery after delayed transplantation into transected spinal cord.Brain.2002.125,14-21.
    23.Garci a-Ali as,G.,Lo pez-Vales,R.,Fore s,J.,Navarro,X.,Verdu,E.,Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.J.Neurosci.Res.2004.75,632-641.
    24.Camand,E.,Morel,M.P.,Faissner,A.,Sotelo,C.,Dusart,I.,Long- term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord.Eur.J.Neurosci.2004.20,1161-1176.
    25.Cao,L.,Liu,L.,Chen,Z.Y.,Wang,L.M.,Ye,J.L.,Qiu,H.Y.,Lu,C.L.,He,C.,Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair.Brain.2004 127,1-15.
    26.Lo pez-Vales,R.,Garci a-Ali as,G.,Fore s,J.,Navarro,X.,Verdu,E.,Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells.J.Neurotrauma.2004.21,1031-1043.
    27.沈慧勇、刘尚礼、曹德雄,三种诱发电位术中监测脊髓功能的实验研,中国脊柱脊髓杂志1998年第8卷第2期。
    28.SAPORTA S,KIM JJ,WILLING AE,FU ES,DAVIS CD,SANBERG PR.Human umbilical cord blood stem cells infusion in spinal cord injury:engraftment and beneficial influence on behavior.J Hematother Stem Cell Res 2003;12:271-278.
    29.TOTOIU MO,KEIRSTEAD HS.Spinal cord injury is accompanied by chronic progressive demyelination.J Comp Neurol 2005;486:373-383.
    30.Verdu,E.,Garci a-Ali as,G.,Fore s,J.,Lo pez-Vales,R.,Navarro,X.Olfactory ensheathing cells transplanted in lesioned spinal cord prevent loss of spinal cord parenchyma and promote functional recovery.Glia.2003.42,275-286.
    31.KEIRSTEAD HS,NISTOR G,BERNAL G,et al.Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.J Neurosci 2005;25:4694-4705.
    32.Choi KC,Yoo DS,Cho KS,Huh PW,Kim DS,Park CK.Effect of single growth factor and growth factor combinations on differentiation of neural stem cells.J Korean Neurosurg Soc. 2008 Dec;44(6):375-81.
    33.Wu CW,Chang YT,Yu L,Chen HI,Jen CJ,Wu SY,Lo CP,Kuo YM.Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice.J Appl Physiol.2008 Nov;105(5):1585-94.
    34.McLeod M,Hong M,Sen A,Sadi D,Ulalia R,Behie LA,Mendez ITransplantation of bioreactor-produced neural stem cells into the rodent brain.Cell Transplant.2006;15(8-9):689-97.
    35.Guo JS,Zeng YS,Li HB,Huang WL,Liu RY,Li XB,Ding Y,Wu LZ,Cai DZ.Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury.Spinal Cord.2007 Jan;45(1):15-24.Epub 2006 Jun 13.
    36.Deng YB,Liu XG,Liu ZG,Liu XL,Liu Y,Zhou GQ.Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery:evidence from a study in rhesus monkeysCytotherapy.2006;8(3):210-4.
    37.Christopher D.Pritchard,Jonathan R.Slotkin,Dou Yu,Haining Dai,Matthew S.Lawrence,Roderick T.Bronson,Francis M.Reynolds,Yang D.Teng,Eric J.Woodard and Robert S.Langer.Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells Journal of Neuroscience Methods.Volume 188,Issue 2,15 May 2010,Pages 258-269
    38.Y-B Deng;X-G Liu;Z-G Liu;X-L Liu;Y.Liu;G-Q Zhou.Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery:evidence from a study in rhesus monkeys.Cytotherapy,Volume 8,Issue 3 May 2006,pages 210-214
    39.Shen Ninjiang,Wang Shucheng.Monitoring spinal cord injury intraoperatively and attempting prognosis by cortical somatosensory evoked potentials:Experimental study.J Reconstr Microsurg,1998,14:61-66
    40.张雪青、韩璐、武俏丽、张丽萍,大鼠脊髓损伤的感觉及运动传导通路的电生理学检测中国现代神经疾病杂志2008年6月第8卷第3期
    41.Takami,T.,Oudega,M.,Bates,M.L.,Wood,P.M.,Kleitman,N.,Bunge,M.B.,Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord.J.Neurosci.2002.22,6670-6681.
    42.Kottenberg Assenmacher E,Armbruster W,Bornfeld N,et al.Hypothermia does not a lt er somatosensory evoked potential aiRplitude and global cerebral oxygen extraction during marked sodium nitmprusside induced arterial hypotension.Anesthesiology,2003。98:1112-1118.
    43.]Arunkumar MJ,Srinivasa Babu K,Chandy MJ.Motor and SO,matosensory evoked p otentials in a primate model of experimental spinal cord injury.Neurol India.2001,49:219-224
    44.翁义,陈成武,魏广华,MRI对脊髓损伤的诊断价值,实用医技杂志2007年11月第14卷第31期
    45.贾宁阳,肖湘生,王晨光,等.急性颈髓损伤的高场强MRI信号特征及临床意义[J].中国医学计算机成像杂志,2001,7(5):302-305
    46.Srihasam K,Sullivan K,Savage T,Livingstone MS.Non-invasive functional MRI in alert monkeys.Neuroimage.2010 Jan 27.
    1. Fitch MT, Doller C, Combs CK, Landreth GE, Silver J.1999. Cellularand molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19,8182-8198
    
    2. McKeon RJ, Schreiber RC, Rudge JS, Silver J.1991. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11,3398-3411.
    
    3. Lemons ML,Howland DR,Anderson DK.1999.Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 160,51-65.
    
    4. Asher R, Morgenstern D, Moon L, Fawcett J.2001. Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog Brain Res 132,611-619.
    
    5. Konya D, Gercek A, Akakin A, Akakin D, Tural S, Cetinel S, Ozgen S, Pamir MN.,2008. The effects of inflammatory response associated with traumatic spinal cord injury in cutaneous wound healing and on expression of transforming growth factor-beta1 (TGF-betal) and platelet-derived growth factor (PDGF-BB)-A at the wound site in rats. Growth Factors.26(2),74-9.
    
    6. Logan A, Berry M, Gonzalez AM, Frautschy SA, Sporn MB, Baird A. 1994. Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur J Neurosci 6,355-363.
    
    7. Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M, Junier MP.1998. A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18,10541-10552.
    
    8. Levison SW, Ducceschi MH, Young GM, Wood TL. 1996. Acute exposure to CNTF in vivo induces multiple components of reactive gliosis. Exp Neurol 141,256-268.
    
    9. Hudgins SN, Levison SW. 1998. Ciliary neurotrophic factor stimulates astroglial hypertrophy in vivo and in vitro. Exp Neurol 150,171-182.
    
    10. Valenzuela CF, Kazlauskas A, and Weiner JL. Roles of platelet-derived growth factor in the developing and mature nervous systems. Brain Res Rev 24,7-89, 1997.
    
    11. Nilsson, J.1983.Demonstration of stimulatory effects of Platelet derived growth factor on cultivated rat arteria smooth muscle cells. Exp Cell Res.145,231-237.
    
    12. Ross, R. 1987. Platelet-derived growth factor. Annu Rev Med. 38,71-9.
    
    13. Eriandsson, A., Enarsson, M., and Forsberg-Nilsson, M.2001. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci . 21,3483-3491.
    
    14. Heldin, C.-H., Wasteson, A. & Westermark, B. 1985 Mol. Cell Endocrinol. 39,169-187.
    
    15. Ross, R., Raines, E. W. & Bowen-Pope, D. F. 1986 Cell 46, 155-169.
    
    16. Claesson-Welsh L. Platelet-derived growth factor receptor signals. J Biol Chem 269,32023-32026,1994.
    
    17. Vignais L, Oumesmar BN, and Baron-Van Evercooren A. PDGF-BB-BB-a receptor is expressed by mature neurones of the central nervous system. Neuroreport 6,1993-1996, 1995.
    
    18. Consensus Conference.1999.Rehabilitation of persons with traumatic brain injury. N 1H consensus development panel on rehabilitation of persons with traumatic brain injury. JAMA. 282,947.
    
    19. BUTT A.M., BERRY M.(2000). Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum. J Neurosci Res. 59,477 - 488.
    
    20. Engel, U., and Wolswijk, G(1996). Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF-BB, bFGF andNT-3.Glia. 1,16-26.
    
    21. Leveen, P., Pekny, M., Gebre-Medhin, S., et al.1994. Mice deficient for PDGF-BB-B showed renal, cardiovascular and hematological abnormalities. Genes. 8, 1875.
    
    22. Zhou YB, Li ZL,Zhou L et al. Immune response induced by recombinant adenovirus combined with recombinant adeno-associated virus type 1 containing HPV16 L1 gene.Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2008 Dec;22(6):416-8.
    
    23. Basso DM, Beattie MS, Bresnahan JC .1995. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1-21
    
    24. Chaplan S.R., Bach F.W., Pogrel J.W., Chung J.M., Yaksh T.L..1994.Quantitative assessment of tactile allodynia in the rat paw, J. Neurosci. Methods 53, 55-63.
    
    25. K. Hargreaves, R. Dubner, F. Brown, C. Flores, J. Joris.l988.Anewand sensitive method for measuring thermal nociception in cutaneous hyperalgesia, Pain 32 ,77-88.
    26. Garci'a-Alf as, G, Verdu', E, Fore's, J., Lo'pez-Vales, R., Navarro, X.,2003. Functional and electrophysiological characterization of photochemical graded spinal cord injury in the rat. J.Neurotrauma 20,501-510
    
    27. Valero-Cabre', A., Fore's, J., Navarro, X., 2004. Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection. J. Neurophysiol. 91, 2838-2848.
    
    28. Sasahara, A., Kott, J.N., Sasahara, M., Raines, E.W., Ross, R., and Westrum,L.E.1992.Platelet-derived growth factor B-chain-like immunoreactivity in the developing and adult rat brain.Brain Res Dev Brain Res. 68,41-53.
    
    29. Ross, R., Bowen-Pope, D.F., and Raines, E.W.1990. Platelet-derived growth factor and its role in health and disease. Philos Trans R Soc Lond B Biol Sci. 327,155-69.
    
    30. Ross, R., Raines, E. W. & Bowen-Pope, D. F. 1986 Cell 46,155-169.
    
    31. Eccleston, P. A., Funa, K., and Heldin, C.H.1993.Expression of platelet-derived growth factor (PDGF-BB) and PDGF-BB alpha- and beta-receptors in the peripheral nervous system: an analysis of sciatic nerve and dorsal root ganglia.Dev Biol. 155,459-70.
    
    32. Eriandsson, A., Enarsson, M., and Forsberg-Nilsson, M.(2001). Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci . 21,3483-3491.
    
    33. Tchougounova E, Kastemar M, et al. Loss of Arf causes tumor progression of PDGF-B-induced oligodendroglioma.Oncogene, 2007 SEP 20;26(43):6289-96
    
    34. Velazquez E, Santos A, Montes A, Blazquez E, Ruiz-Albusac JM.(2006).25-Hydroxycholesterol has a dual effect on the proliferation of cultured rat astrocytes.Neuropharmacology. 51, 229-37
    
    35. Tseng HC, Ruegg SJ, Maronski M, Messam CA, Grinspan JB, Dichter MA.(2006).Injuring neurons induces neuronal differentiation in a population of hippocampal precursor cells in culture. Neurobiol .22, 88-97.;
    
    36. Heldin, C.-H., Westermark, B. & Wasteson, A. 1979. Proc. Natl Acad. Sci. USA 76,3722-3726.
    
    37. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 26,7907-18.
    
    38. Dai C, Lyustikman Y, Shih A, Hu X, Fuller GN, Rosenblum M, Holland EC.(2005).The characteristics of astrocytomas and oligodendrogliomas are caused by two distinct and interchangeable signaling formats. Neoplasia.7, 397-406.
    
    39. Ito M, Natsume A, Takeuchi H, Shimato S, Ohno M, Wakabayashi T, Yoshida J.(2009).Type I Interferon Inhibits Astrocytic Gliosis and Promotes Functional Recovery after Spinal Cord Injury by Deactivation of the MEK/ERK Pathway. J Neurotrauma. 26,41-53.
    
    40. Gris P, Tighe A, Levin D, Sharma R, Brown A.(2007).Transcriptional regulation of scar gene expression in primary astrocytes. Glia. 55,1145-55._
    
    41. Codeluppi S, Svensson CI, Hefferan MP, Valencia F, Silldorff MD, Oshiro M, Marsala M,Pasquale EB.(2009).The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci. 29, 1093-104.
    
    42. Johnsson, A., Heldin, C.-H., Westermark. B. & Wasteson, A. 1982. Biochem. Biophys. Res.Commun. 104,66-74.
    
    43. Hsu JY, Bourguignon LY, Adams CM, Peyrollier K, Zhang H, FandH T, Cun CL, Werb Z,Noble-Haeusslein LJ.(2008).Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J Neurosci.28,13467-77.
    
    44. Krsko P, McCann TE, Thach TT, Laabs TL, Geller HM, Libera MR.(2009). Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels. Biomaterials. 30,721 -9.
    
    45. Xia Y, Zhao T, Li J, Li L, Hu R, Hu S, Feng H, Lin J.(2008). Antisense vimentin cDNA combined with chondroitinase ABC reduces glial scar and cystic cavity formation following spinal cord injury in rats. Biochem Biophys Res Commun. 377, 562-6.
    
    46. Ferguson MW, O'Kane S.(2004)Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 359, 839-50.
    
    47. Kostyk SK, Popovich PG, Stokes BT, Wei P, Jakeman LB.(2008).Robust axonal growth and a blunted macrophage response are associated with impaired functional recovery after spinal cord injury in the MRL/MpJ mouse. Neuroscience. 156,498-514.
    
    48. Vavrek R, Pearse DD, Fouad K.(2007).Neuronal populations capable of regeneration following a combined treatment in rats with spinal cord transection. J Neurotrauma. 24,1667-73.
    
    49. Pizzi MA, Crowe MJ.(2006).Transplantation of fibroblasts that overexpress matrix raetalloproteinase-3 into the site of spinal cord injury in rats. J Neurotrauma. 23,1750-65.
    
    50. Zhang SX, Geddes JW, Owens JL, Holmberg EG(2005).X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol.20,519-30
    
    51. Ban DX, Kong XH, Feng SQ, Ning GZ, Chen JT, Guo SF.(2009).Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury. Brain Res. 23, 1256:149-61.
    
    52. Lee YS, Lin CY, Robertson RT, Hsiao I, Lin VW.(2004).Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J Neuropathol Exp Neurol.63,23345.
    
    53. Jin P, Yamaguchi A, Tan J et al. Glucose sensing based on interdigitated array microelectrode.Anal Sci. 2001 Jul:17(7):841-6
    
    54. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zhang YJ, Li Y, Dong H, Zeng YS.(2009).Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci.10, 35.
    
    55. Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, Nishio Y, Kadota R,Mannoji C, Miyashita T, Okawa A, Yoshinaga K, Yamazaki M.(2008). Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine. 9, 600-10.
    
    56. Dill J, Wang H, Zhou F, Li S.(2008).Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci. 28,8914-28.
    
    57. Chung, K., Lee, W.T., Park, M.J.(1993). Spinal projections of pelvic visceral afferents of the rat: a calcitonin gene-related peptide (CGRP) immunohistochemical study. J. Comp. Neurol.337, 63- 69.
    
    58. Gibson, S.J., Polak, J.M., Bloom, S.R., Sabate, I.M., Mulderry, P.M., Ghatei, M.A., McGregor,GP., Morrison, I.M., Kelly, J.S., Evans, R.M., Rosenfeld, M.G, 1984. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J. Neurosci. 4,3101-3111.
    59. Sharkey, K.A., Sobrino, J.A., Cervero, F., Varro, A., Dockray, GJ., 1989. Visceral and somatic afferent origin of calcitonin gene-related peptide immunoreactivity in the lower thoracic spinal cord of the rat. Neuroscience 32,169- 179.
    
    60. Wilson, P., Kitchener, P.D., 1996. Plasticity of cutaneous primary afferent projections to the spinal dorsal horn. Prog. Neurobiol. 48, 105-129.
    
    61. Benowitz, L.I., Routtenberg, A., 1987. A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism and synaptic plasticity. Trend Neurosci. 10,527-532.
    
    62. Curtis, R., Averill, S., Priestley, J.V., Wilkin, GP., 1993. The distribution of GAP-43 in normal rat spinal cord. J. Neurocytol. 22, 39- 50.
    
    63. Wong, T.P., Campbel, P.M., Ribeiro-da-silva, A., Cuello, A.C., 1998. Synaptic numbers across cortical laminae and cognitive performance of the rat during aging. Neuroscience 84,403-412.
    7. Koliatsos VE, Xu L, Yan J. Human stem cell grafts as therapies for motor neuron disease. Expert Opin Biol Ther. 2008 Feb; 8(2): 137-41.
    
    1. Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K, Koliatsos VE. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med. 2007 Feb;4(2):e39.
    
    2. Calz(?) L, Fernandez M, Giuliani A, Pirondi S, D'Intino G, Manservigi M, De Sordi N,Giardino L. Stem cells and nervous tissue repair: from in vitro to in vivo. Prog Brain Res.2004; 146:75-91.
    
    3. Lepore AC, Fischer I.Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol. 2005 Jul;194(1):230-42
    
    4. Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND,Tabar V, Studer L. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells. 2007 Aug; 25(8): 1931-9. Epub 2007 May 3.
    
    5. Gao J, Coggeshall RE, Chung JM, Wang J, Wu P. Functional motoneurons develop from human neural stem cell transplants in adult rats. Neuroreport. 2007 Apr 16; 18(6):565-9.
    
    6. Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J,Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol. 2006 Jul; 60(1):32-44.
    
    7. Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF. Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci. 2006 Mar 22; 26(12):3256-68.
    
    8. Hendricks WA, Pak ES, Owensby JP, Menta KJ, Glazova M, Moretto J, Hollis S, Brewer KL,Murashov AK. Predifferentiated embryonic stem cells prevent chronic pain behaviors and restore sensory function following spinal cord injury in mice. Mol Med. 2006 Jan-Mar;12(l-3):34-46.
    
    9. Lowry N, Goderie SK, Adamo M, Lederman P, Charniga C, Gill J, Silver J, Temple S.Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Exp Neurol. 2008 Feb; 209(2):510-22.Epub 2007 Oct 12.
    
    10. Tarasenko YI, Gao J, Nie L, Johnson KM, Grady JJ, Hulsebosch CE, McAdoo DJ, Wu P.Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res. 2007 Jan; 85(1):47-57.
    
    11. Nakamura M, Okano H, Toyama Y, Dai HN, Finn TP, Bregman BS. Transplantation of embryonic spinal cord-derived neurospheres support growth ofsupraspinal projections and functional recovery after spinal cord injury in theneonatal rat. J Neurosci Res. 2005 Aug 15;81(4):457-68.
    
    12. Grumbles RM, Casella GT, Rudinsky MJ, Godfrey S, Wood PM, Thomas CK. The immunophilin ligand FK506, but not the P38 kinase inhibitor SB203580,improves function of adult rat muscle reinnervated from transplants of embryonic neurons. Neuroscience. 2005;130(3):619-30.
    
    13. Li P, Tessler A, Han SS, Fischer I, Rao MS, Selzer ME. Fate of immortalized human neuronal progenitor cells transplanted in rat spinal cord. Arch Neurol. 2005 Feb; 62(2):223-9.
    
    14. Cizkova D, Kakinohana O, Kucharova K, Marsala S, Johe K, Hazel T, Hefferan MP, Marsala M. Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience. 2007 Jun 29; 147(2):546-60. Epub 2007 May 23.
    
    15. Macias MY, Syring MB, Pizzi MA, Crowe MJ, Alexanian AR, Kurpad SN. Pain with no gain: allodynia following neural stem cell transplantation in spinalcord injury. Exp Neurol. 2006 Oct; 201(2):335-48. Epub 2006 Jul 12.
    
    16. Sun Y, Shi J, Fu SL, Lu PH, Xu XM. Effects of embryonic neural stem cells and glial cell line-derived neurotrophic factor in the repair of spinal cord injury. Sheng Li Xue Bao. 2003 Jun 25; 55(3):349-54.
    
    17. Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003 Jun; 181(2): 115-29.
    
    18. MacDonald SC, Fleetwood IG, Hochman S, Dodd JG, Cheng GK, Jordan LM, Brownstone RM.F unctional motor neurons differentiating from mouse multipotent spinal cord precursor cells in culture and after transplantation into transected sciatic nerve. J Neurosurg. 2003 May,98(5): 1094-103.
    
    19. Stepanov GA, Karpenko DO, Aleksandrova MA, Podgornyi OV, Poltavtseva RA, Pevishchin AV, Marey MV, Sukhikh GT. Xenotransplantation of stem/progenitor cells from human fetal brain to adult rats with spinal trauma. Bull Exp Biol Med. 2003 Apr; 135(4):397400.
    
    20. Benninger F, Beck H, Wernig M, Tucker KL, Br(?)stle O, Scheffler B.Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures. J Neurosci. 2003 Aug 6;23(18):7075-83.
    
    21. Alexanian AR, Crowe MJ, Kurpad SN.Efficient differentiation and integration of lineage-restricted neural precursors in the traumatically injured adult cat spinal cord. J Neurosci Methods. 2006 Jan 15; 150(1):41-6. Epub 2005 Aug 8.
    
    22. TimTing Hua Wanga,c, Ai-Hong Jingc, Xiang-Ying Luoc, Ming Lie, Yan Kangc, Xiao-Li Zoub,Hui Chenc, Jian Dongd and Su Liuc .neural stem cells: isolation and di rentiation into cholinergic neurons. DEVELOPMENTALNEUROSCIENCEN Vol 17 No 13 18 September 2006 1433-36
    
    23. Kulbatski I, Mothe AJ, Nomura H, Tator CH. Endogenous and exogenous CNS derived stem/progenitor cell approaches for neurotrauma. Curr Drug Targets. 2005 Feb; 6( 1): 111 -26.
    
    24. Yan J, Welsh AM, Bora SH, Snyder EY, Koliatsos VE.Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J Comp Neurol. 2004 Nov 29;480(1):101-14.
    
    25. Ferrer-Alcon M, Winkler-Hirt C, Perrin FE, Kato AC. Grafted neural stem cells increase the life span and protect motoneurons in pmn mice. Neuroreport. 2007 Sep 17; 18(14):1463-8.
    
    26. Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, Hatfield G, Koliatsos VE. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation. 2006 Oct 15; 82(7):865-75.
    
    27. Cummings BJ, Uchida N, Tamaki SJ, Anderson AJ. Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurol Res. 2006 Jul; 28(5):474-81.
    28. Guo JS, Zeng YS, Li HB, Huang WL, Liu RY, Li XB, Ding Y, Wu LZ, Cai DZ. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord. 2007 Jan; 45(1):15-24. Epub 2006 Jun 13.
    
    29. Pfeifer K, Vroemen M, Caioni M, Aigner L, Bogdahn U, Weidner N. Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen Med. 2006 Mar; 1 (2):255-66.
    
    30. Webber DJ, Bradbury EJ, McMahon SB, Minger SL. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med. 2007 Nov; 2(6):92945.
    
    31. Lepore AC, Neuhuber B, Connors TM, Han SS, Liu Y, Daniels MP, Rao MS, Fischer I.Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience. 2006 Sep 29; 142(1):287-304.
    
    32. Watanabe K, Nakamura M, Iwanami A, Fujita Y, Kanemura Y, Toyama Y, Okano H.Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury. Dev Neurosci. 2004 Mar-Aug ;26(2-4):275-87.
    
    33. Marsala M, Kakinohana O, Yaksh TL, Tomori Z, Marsala S, Cizkova D. Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia. Eur J Neurosci. 2004 Nov; 20(9):2401-14.
    
    34. Roy NS, Nakano T, Keyoung HM, Windrem M, Rashbaum WK, Alonso ML, Kang J, Peng W, Carpenter MK, Lin J, Nedergaard M, Goldman SA. Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nat Biotechnol. 2004 Mar; 22(3):297-305. Epub 2004 Feb 15.
    
    35. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006 Mar 29; 26( 13):3377-89.
    
    36. Mligiliche NL, Xu Y, Matsumoto N, Idel C. Survival of neural progenitor cells from the subventricular zone of the adult rat after transplantation into the host spinal cord of the same strain of adult rat. Anat Sci Int. 2005 Dec; 80(4):229-34.
    37. Wachs FP, Couillard-Despres S, Engelhardt M, Wilhelm D, Ploetz S, Vroemen M, Kaesbauer J, Uyanik G, Klucken J, Karl C, Tebbing J, Svendsen C, Weidner N, Kuhn HG, Winkler J,Aigner L. High efficacy of clonal growth and expansion of adult neural stem cells. Lab Invest.2003 Jul; 83(7):949-62.
    
    38. Enomoto M, Shinomiya K, Okabe S. Migration and differentiation of neural progenitor cells from two different regions of embryonic central nervous system after transplantation into the intact spinal cord. Eur J Neurosci. 2003 Mar; 17(6): 1223-32.
    
    39. Shindo T, Matsumoto Y, Wang Q, Kawai N, Tamiya T, Nagao S. Differences in the neuronal stem cells survival, neuronal differentiation and neurological improvement after transplantation of neural stem cells between mild and severe experimental traumatic brain injury. J Med Invest. 2006 Feb; 53(1-2):42-51.
    
    40. Cloutier F, Siegenthaler MM, Nistor G, Keirstead HS.Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med. 2006 Jul; 1(4):469-79.
    
    41. Bambakidis NC, Miller RH Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adultrats after contusion. Spine J. 2004 Jan-Feb; 4( 1): 16-26.
    
    42. McMahon SS, McDermott KW.Developmental potential of radial glia investigated by transplantation into the developing rat ventricular system in utero. Exp Neurol. 2007 Jan;203(1): 128-36. Epub 2006 Sep 29.
    
    43. Ding S, Messam CA, Li P, Selzer ME, Dichter MA, Haydon PG. Murine brain progenitor cells have the ability to differentiate into functional neurons and integrate into the CNS. Cell Transplant. 2006; 15(8-9):699-710.
    
    44. Hill CE, Proschel C, Noble M, Mayer-Proschel M, Gensel JC, Beattie MS, Bresnahan JC. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries:survival, differentiation, and effects on lesion environment and axonal regeneration. Exp Neurol. 2004 Dec; 190(2):289-310.
    
    45. Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB,Whittemore SR. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci. 2005 Jul 27;25(30):6947-57.
    
    46. Lee KH, Yoon DH, Park YG, Lee BH. Effects of glial transplantation on functional recovery following acute spinal cord injury. J Neurotrauma. 2005 May; 22(5):575-89.
    
    47. Lepore AC, Han SS, Tyler-Polsz CJ, Cai J, Rao MS, Fischer I. Differential fate of multipotent and lineage-restricted neural precursors following transplantation into the adult CNS. Neuron Glia Biol. 2004 May; 1(2):113 -126.
    
    48. Alexanian AR, Crowe MJ, Kurpad SN. Efficient differentiation and integration of lineage-restricted neural precursors in the traumatically injured adult cat spinal cord. J Neurosci Methods. 2006 Jan 15; 150(1):41 -6. Epub 2005 Aug 8.
    
    49. Sheth RN, Manzano G, Li X, Levi AD. Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats. J Neurosurg Spine. 2008 Feb;8(2):153-62.
    
    50. Wu J, Feng D, Yang T. Effect of transplanting marrow mesenchymal stem cells via subarachnoid space on spinal cord injury and T cell subpopulation in rats .Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007 May; 21(5):492-6.
    
    51. Lee J, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K, Tada M, Sawada K, Iwasaki Y.Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003 Sep; 23(3): 169-80.
    
    52. Bi XB, Deng YB, Gan DH, Wang YZ.Salvianolic acid B promotes survival of transplanted mesenchymal stem cells in spinal cord-injured rats. Acta Pharmacol Sin. 2008 Feb;29(2):169-76.
    
    53. Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H, Shang YC, Li WY, Zhou C, Yu MJ, Feng SW.Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy. 2007; 9(5):414-26.
    
    54. Cizkov(?) D, Rosocha J, Vanick(?) I, Jergov(?) S, Cizek . M.Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol.2006 Oct-Nov; 26(7-8): 1167-80. Epub 2006 Jul 29.
    55. Satake K, Lou J, Lenke LG.Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine. 2004 Sep 15 ; 29( 18): 1971 -9.
    
    56. Cabanes C, Bonilla S, Tabares L, Martinez S. Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration. Neurobiol Dis. 2007 May;26(2):408-18.Epub 2007 Feb 6.
    
    57. Zhao ZM, Li HJ, Liu HY, Lu SH, Yang RC, Zhang QJ, Han ZC. Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant. 2004; 13(2): 113-22.
    
    58. Koshizuka S, Okada S, Okawa A, Koda M, Murasawa M, Hashimoto M, Kamada T,Yoshinaga K, Murakami M, Moriya H, Yamazaki M. Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol. 2004 Jan; 63(1):64-72.
    
    59. Martin LJ, Liu Z.Adult olfactory bulb neural precursor cell grafts provide temporary protection from motor neuron degeneration, improve motor function, and extend survival in amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol. 2007 Nov; 66(11): 1002-18.
    
    60. Xiao M, Klueber KM, Guo Z, Lu C, Wang H, Roisen FJ.Human adult olfactory neural progenitors promote axotomized rubrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis. 2007 May; 26(2):363-74. Epub 2007 Feb 9.
    
    61. Wang B, Zhao Y, Lin H, Chen B, Zhang J, Zhang J, Wang X, Zhao W, Dai J. Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neurosci Lett.2006 Jun 19; 401(1-2):65-70. Epub 2006 Apr 24.
    
    62. Deumens R, Koopmans GC, Honig WM, Hamers FP, Maquet V, Jerome R, Steinbusch HW,Joosten EA.Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp Neurol. 2006 Jul; 200( 1):89-103. Epub 2006 Mar 9.
    
    63. Xiao M, Klueber KM, Lu C, Guo Z, Marshall CT, Wang H, Roisen FJ. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp Neurol. 2005 Jul; 194( 1): 12-30.
    64. Keyvan-Fouladi N, Raisman G, Li Y. Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci. 2003 Oct 15;23(28):9428-34.
    
    65. Biernaskie J, Sparling JS, Liu J, Shannon CP, Plemel JR, Xie Y, Miller FD, Tetzlaff W.Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci. 2007 Sep 5;27(36):9545-59.
    
    66. Woodhoo A, Sahni V, Gilson J, Setzu A, Franklin RJ, Blakemore WF, Mirsky R, Jessen KR.Schwann cell precursors: a favourable cell for myelin repair in the Central Nervous System. Brain. 2007 Aug; 130(Pt 8):2175-85. Epub 2007 Jun 4.
    
    67. Vroemen M, Caioni M, Bogdahn U, Weidner N. Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord. Cell Tissue Res. 2007 Jan; 327(1):1-13. Epub 2006 Aug 29.
    
    68. Zeng YS, Ding Y, Wu LZ, Guo JS, Li HB, Wong WM, Wu WT. Co-transplantation of schwann cells promotes the survival and differentiation of neural stem cells transplanted into the injured spinal cord. Dev Neurosci. 2005 Jan-Feb; 27(1):20-6.
    
    69. Parr AM, Kulbatski I, Tator CH. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma. 2007 May; 24(5):835-45.
    
    70. Sun J, Gao Y, Yang L, Li Z, Lu G, Yew D. Neural-tube-derived neuroepithelial stem cells: a new transplant resource for Parkinson's disease. Neuroreport. 2007 Apr 16; 18(6):543-7.
    
    71. Wu ZY, Hui GZ, Lu Y, Wu X, Guo LH. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl). 2006 Dec 20;119(24):2101-7.
    
    72. Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003; 118( 1): 11 -7.
    
    73. Sieber-Blum M, Schnell L, Grim M, Hu YF, Schneider R, Schwab ME. Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci. 2006 May-Jun; 32(1-2):67-81. Epub 2006 Apr 19.
    
    74. Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, Kawakami Y,Toyama Y, Toda M.Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res. 2004 May 15; 76(4):453-65.
    
    75. Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol. 2003 Nov; 184(1):97-113.
    
    76. Wu ZY, Hui GZ, Lu Y, Wu X, Guo LH. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl). 2006 Dec 20;119(24):2101-7.
    
    77. Tarasenko YI, Gao J, Nie L, Johnson KM, Grady JJ, Hulsebosch CE, McAdoo DJ, Wu P.Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res. 2007 Jan; 85(l):47-57.
    
    78. Fernandez E, Mannino S, Tufo T, Pallini R, Lauretti L, Albanese A, Denaro L. The adult "paraplegic" rat: treatment with cell graftings. Surg Neurol. 2006 Mar; 65(3):223-37.
    
    79. Bakshi A, Barshinger AL, Swanger SA, Madhavani V, Shumsky JS, Neuhuber B, Fischer
    
    80. Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation. J Neurotrauma. 2006 Jan; 23(1):55-65.
    
    81. Lepore AC, Bakshi A, Swanger SA, Rao MS, Fischer I. Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord.Brain Res. 2005 May 31; 1045(1-2):206-16. Epub 2005 Apr 26.
    
    82. Kakinohana O, Cizkova D, Tomori Z, Hedlund E, Marsala S, Isacson O, Marsala M.Region-specific cell grafting into cervical and lumbar spinal cord in rat: a qualitative and quantitative stereological study. Exp Neurol. 2004 Nov; 190(1): 122-32.
    
    83. Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine. 2004 Sep 15; 29( 18): 1971 -9.
    
    84. Phillips MI, Tang YL. Genetic modification of stem cells for transplantation. Adv Drug Deliv Rev. 2008 Jan 14; 60(2): 160-72. Epub 2007 Oct 11.
    
    85. Blits B, Kitay BM, Farahvar A, Caperton CV, Dietrich WD, Bunge MB. Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue. Restor Neurol Neurosci. 2005; 23(5-6):313-24.
    
    86. Chen J, Bernreuther C, Dihne M, Schachner M.Cell adhesion molecule 11-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. J Neurotrauma. 2005 Aug; 22(8):896-906.
    
    87. Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats。王
    
    88. Zhang L, Gu S, Zhao C, Wen T. Combined treatment of neurotrophin-3 gene and neural stem cells is propitious to functional recovery after spinal cord injury. Cell Transplant. 2007;16(5):475-81.
    
    89. Hayashi Y, Shumsky JS, Connors T, Otsuka T, Fischer I, Tessler A, Murray M.
    
    90. Immunosuppression with either cyclosporine a or FK506 supports survival of transplanted fibroblasts and promotes growth of host axons into the transplant after spinal cord injury. J Neurotrauma. 2005 Nov; 22(11):1267-81.
    
    91. Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.Acta Neurochir (Wien). 2005 Sep; 147(9):985-92; discussion 992. Epub 2005 Jull 1.
    
    92. Kitagawa A, Nakayama T, Takenaga M, Matsumoto K, Tokura Y, Ohta Y, Ichinohe M,Yamaguchi Y, Suzuki N, Okano H, Igarashi R. Lecithinized brain-derived neurotrophic factor promotes the differentiation of embryonic stem cells in vitro and in vivo. Biochem Biophys Res Commun. 2005 Mar 25; 328(4):1051-7.
    
    93. Crang AJ, Gilson JM, Li WW, Blakemore WF .The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. Eur J Neurosci. 2004 Sep; 20(6): 1445-60.
    
    94. Blesch A, Tuszynski MH Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. J Comp Neurol. 2003 Dec 15; 467(3):403-17.
    
    95. Tuszynski MH, Grill R, Jones LL, Brant A, Blesch A, Low K, Lacroix S, Lu P. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol. 2003 May; 181(1 ):47-56.
    96. Jones LL, Sajed D, Tuszynski MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci. 2003 Oct 15; 23(28):9276-88.
    
    97. Arvanian VL, Homer PJ, Gage FH, Mendell LM. Chronic neurotrophin-3 strengthens synaptic connections to motoneurons in the neonatal rat. J Neurosci. 2003 Sep 24;23(25):8706-12.
    
    98. Zhang SC, Goetz BD, Duncan ID. Suppression of activated microglia promotes survival and function of transplanted oligodendroglial progenitors. Glia. 2003 Jan 15; 41 (2): 191 -8.
    
    99. Su H, Chu TH, Wu W. Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp Neurol.2007 Aug; 206(2):296-307. Epub 2007 Jun 2.
    
    100.Su H, Chu TH, Wu W. Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp Neurol.2007 Aug; 206(2):296-307. Epub 2007 Jun 2.
    
    101. Potter W, Kalil RE, Kao WJ. Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci. 2008 Jan 1; 13:806-21.
    
    102. Watanabe K, Nakamura M, Okano H, Toyama Y. Establishment of three-dimensional culture of neural stem/progenitor cells in collagen Type-1 Gel. Restor Neurol Neurosci. 2007;25(2):109-17.
    
    103. Wang B, Zhao Y, Lin H, Chen B, Zhang J, Zhang J, Wang X, Zhao W, Dai J. Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neurosci Lett.2006 Jun 19; 401(1-2):65-70. Epub 2006 Apr 24.
    
    104. Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Suzuki N, Nakamura M, Okano H, Igarashi R . Plasma as a scaffold for regeneration of neural precursor cells after transplantation into rats with spinal cord injury. Cell Transplant. 2007; 16(l):57-65.
    
    105. Cizkova D, Kakinohana O, Kucharova K, Marsala S, Johe K, Hazel T, Hefferan MP, Marsala M. Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience. 2007 Jun 29; 147(2):546-60. Epub 2007 May 23.
    106. Du C, Yang D, Zhang P, Jiang B. Single neural progenitor cells derived from EGFP expressing mice is useful after spinal cord injury in mice. Artif Cells Blood Substit Immobil Biotechnol. 2007; 35(4):405-14.
    
    107. Girard C, Tenenbaum L, Chtarto A, Attali B, Salvetti A, Bachelin C, Evercooren AB,Lachapelle F. Efficiency of adeno-associated virus type-2 vectors in non-human primate Schwann cells. Neuroreport. 2005 Nov 7; 16( 16): 1757-62.
    
    108. Howard MJ, Liu S, Schottler F, Joy Snider B, Jacquin MF. Transplantation of apoptosis-resistant embryonic stem cells into the injured rat spinal cord. Somatosens Mot Res.2005 Mar-Jun; 22(1-2):37-44.
    
    109. Pfeifer K, Vroemen M, Blesch A, Weidner N. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Eur J Neurosci. 2004 Oct; 20(7): 1695-704.
    
    110. Shapiro EM, Sharer K, Skrtic S, Koretsky AP. In vivo detection of single cells by MRI.Magn Reson Med. 2006 Feb; 55(2):242-9.
    
    111. Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, Iwamoto Y, Nakamura M,Miyoshi H, Okano HJ, Contag CH, Toyama Y, Okano H. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J. 2005 Nov, 19(13): 1839-41. Epub 2005 Sep 1.
    
    112. Kennea NL, Mehmet H. Perinatal applications of neural stem cells. Best Pract Res Clin Obstet Gynaecol. 2004 Dec; 18(6):977-94.
    
    113. Silani V, Cova L, Corbo M, Ciammola A, Polli E. Stem-cell therapy for amyotrophic lateral sclerosis. Lancet. 2004 Jul 10-16; 364(9429):200-2.
    
    114. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans.Amyotroph Lateral Scler Other Motor Neuron Disord. 2003 Sep; 4(3): 158-61.
    
    115. 118: Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C,Pastore I, Marasso R, Madon E. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans.Amyotroph Lateral Scler Other Motor Neuron Disord. 2003 Sep; 4(3): 158-61.
    116. Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, Svendsen CN. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS ONE. 2007 Aug 1; 2(1):e689.
    
    117. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P,Svendsen CN. GDNF delivery using human neural progenitor cells in a rat model of ALS.Hum Gene Ther. 2005 Apr; 16(4):509-21.
    
    118. 来源于GFP转基因大鼠的神经干细胞移植对PD老鼠的影响.王
    
    119. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Del Bo R, Crimi M, Bordoni A,Forrunato F, Strazzer S, Menozzi G, Salani S, Bresolin N, Comi GP. Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1 .Hum Mol Genet. 2006 Jan 15; 15(2): 167-87. Epub 2005 Dec 8.
    
    120. Thorarinsdottir HK, Rood B, Kamani N, Lafond D, Perez-Albuerne E, Loechelt B, Packer RJ,MacDonald TJ.Outcome for children <4 years of age with malignant central nervous system tumors treated with high-dose chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer. 2007 Mar; 48(3):278-84.
    
    121. Regala C, Duan M, Zou J, Salminen M, Olivius P . Xenografted fetal dorsal root ganglion,embryonic stem cell and adult neural stem cell survival following implantation into the adult vestibulocochlear nerve. Exp Neurol. 2005 Jun; 193(2):326-33.
    
    122. Totoiu MO, Nistor GI, Lane TE, Keirstead HS. Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol. 2004 Jun; 187(2):254-65.
    
    123. Rosenbluth J, Schiff R, Liang WL, Dou W. Antibody-mediated CNS demyelination II. Focal spinal cord lesions induced by implantation of an IgM antisulfatide-secreting hybridoma. J Neurocytol. 2003 Mar; 32(3):265-76.
    
    124. Kerr DA, Llado J, Shamblott MJ, Maragakis NJ, Irani DN, Crawford TO, Krishnan C, Dike S,Gearhart JD, Rothstein JD. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci. 2003 Jun 15; 23(12):5131-40.
    
    125. Thorarinsdottir HK, Rood B, Kamani N, Lafond D, Perez-Albuerne E, Loechelt B,Packer RJ,MacDonald TJ. Outcome for children <4 years of age with malignant central nervous system tumors treated with high-dose chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer. 2007 Mar; 48(3):278-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700