用户名: 密码: 验证码:
不同种源青钱柳幼苗对渗透胁迫适应机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青钱柳[Cyclocarya paliurus(Batal.)Iljinskaja]是我国特有单种属和国家重点保护的濒危植物,具有极高的开发利用价值。本论文以青钱柳为研究对象,在智能人工气候生长室内采用无土水培法,从细胞、组织、器官水平上探讨了渗透胁迫下供试幼苗的耐盐、抗旱机理。同时,结合形态、生理、生长等指标的测定结果,对供试不同种源幼苗的耐盐抗旱性进行综合评价,从而为今后合理扩大青钱柳人工林的栽培范围提供科学依据。主要结论如下:
     渗透胁迫下,供试种源幼苗叶肉细胞中ATP酶的活性大小及分布位置的差异较大。正常情况时,供试种源ATP酶活性较小,分布位置差异不大,均多分布于细胞核核膜及核染色质上;胁迫后,供试种源ATP酶活性均有所增加,而ATP酶分布位置因处理及种源而异。
     渗透胁迫下,供试种源幼苗叶片超微结构均受到不同程度的伤害。主要表现为类囊体片层结构肿胀,叶绿体发生降解,细胞核核膜消失,核染色质发生固缩,并伴随有质壁分离现象。
     渗透胁迫下,供试幼苗叶肉细胞失水,导致栅栏组织、海棉组织变薄,叶片肉质化程度降低,贮水能力下降。同时,由于叶片失水,引起气孔开度变小,尤其以PEG胁迫下的较为明显。
     盐胁迫下,供试幼苗根系离子微域分布受到显著影响。在0.3%或0.5%NaCl胁迫下,Na~+、Cl~-的相对含量增加,K~+、Ca~(2+)、Mg~(2+)的相对含量降低。随着盐浓度增加,根系各区Na~+/X(K~+、Ca~(2+)、Mg~(2+))值总体呈上升趋势,Na~+在表皮和皮层中富集,而Cl~-在中柱、皮层中均含量较高。
     盐浓度越高,根际pH值越大,根系由介质中吸收养分的潜力减弱。在耐盐阈值范围内,Na~+、Cl~-主要集中分布于根茎柄等运输器官中,在叶片中的分布较少,随着盐胁迫程度加重,幼苗离子区隔化能力遭到破坏,叶片中Na~+、Cl~-含量迅速增加。在离子选择性运输过程中,盐浓度越高,幼苗地上器官离子选择性运输能力越弱。
     渗透胁迫下,供试幼苗叶片发生水分亏缺,相应叶水势降低,进而引起细胞脱水,细胞膜损伤,质膜相对透性增大,叶绿体结构的完整性遭到破坏,加上水分亏缺引起气孔导度降低,导致叶绿素含量降低、光合速率和蒸腾速率下降。同时,叶片水分亏缺导致幼苗迅速启动渗透调节功能,叶片中的脯氨酸、可溶性糖含量增加。
     渗透胁迫下,供试幼苗器官热值、能量积累增长量及能量分配总体上以叶片较大、根茎居中、叶柄较小。随着胁迫强度增加,幼苗各器官热值减小,能量积累增长量降低,叶片能量所占比例减少,根系能量所占比例增加,茎柄能量所占比例变化不大。
     渗透胁迫下,供试幼苗受到伤害,根茎发育受阻,幼苗存活率下降。随着胁迫强度增加,苗高、地径、叶面积及生物量增量均呈现下降趋势,各构件及数量的生长变化主要表现为苗高、单株复叶数、侧根数减少,叶片生物量所占比例减少,根系所占比例增大。
     用主成分分析法对渗透胁迫下供试不同种源、不同处理幼苗的耐盐、抗旱性进行综合评价,结果表明,盐胁迫下供试3个种源幼苗的耐盐能力大小顺序为:安徽黄山>云南昆明>江西九江;PEG胁迫下供试3个种源幼苗的抗旱能力大小则为:云南昆明>安徽黄山>江西九江;等渗胁迫及其钙调节下,各钙处理幼苗的耐盐能力差异较小,而抗旱能力差异较大;高温与低盐胁迫交互作用下,供试4个种源幼苗的耐盐抗高温能力大小为:江西赣州>安徽黄山>云南昆明>江西九江。
     综合本试验结果可得,(1)供试4个种源中以江西九江种源的耐盐抗旱能力较弱,云南昆明种源居中,江西赣州和安徽黄山种源较强;(2)供试幼苗的耐盐阈值为1.0g.L~(-1)左右;(3)等渗胁迫下,外源钙对PEG胁迫调节作用较盐胁迫的明显,相对而言以0.2%Ca(NO_3)_2的作用效果佳。(4)相同胁迫程度时,高温条件下供试幼苗受到的伤害较适温条件下的重。
Cyclocarya paliurus (Batal.) Iljinskaja is native to China and is the sole species in its genus. The species has become a endanger species because of hard propagation. Howerver, its multiple values make the species have a big potential market. Until now no information has been presented on the salt and drought resistance of the species. Therefore, the paper discussed the mechanism of tested seedlings enduring salt and resisting drought under osmotic stress from cell, tissue and organ levels by the way of hydroponics in phytotron. At the same time, by combining with the measured results of morphological, physiological and growing index, the ability of seedlings enduring salt and resisting drought was comprehensively appraised for tested different provenances. Accordingly, a scientific basis for expanding the planting area of Cyclocaryapaliurus (Batal.) Iljinskaja plantation has been provided reasonably. The main conclusions were drawn as follows:
     The difference ATPase activity in mesophyll cells and its distributing location in tested provenances seedlings under osmotic stress was more evident. Under normal condition, the ATPase activity was lower and its distributing location difference was not significant among tested provenances, which located on nuclear membrane and karyotin. After osmotic stress, the ATPase activity in tested provenances all increased. However, ATPase distributing location varied from treatments and provenances.
     Leaf ultrastructure suffered from different degree damages in tested provenances seedlings under osmotic stress. The main performances was that thylakoids swelled, chloroplast disassembled, nuclear membrane disappeared, karyotin concreted and condensed. Moreover, the phenomenon of cytoplasm separating from cell wall was observed.
     Under osmotic stress, water losing of mesophyll cells resulted in palisade tissues and spongy tissues attenuated, leaf carnification degree reduced and the ability of leaf storing water declined. Furthermore, because of leaf losing water, stoma opening degree became small, especially, the variation was more distinct under PEG stress.
     Effect of salt stress on ion micro-distribution in root tissues Was significant. Under 0.3 percent and 0.5 percent NaCl stress, the relative concent of Na~+ and Cl~- increased, while that of K~+,Ca~(2+) and Mg~(2+) decreased. With the increasing of salinity, generally, the ratio of Na+ to X(K~+, Ca~(2+), Mg~(2+)) in root tissues presented ascending trend, and Na~+ aggregated to root epidermis and cortex, while the relative content of Cl~- in root stele and cortex was greater.
     The higher salt concentration was, the greater rhizosphere pH was. Therefore, the potential of root absorbing nutrition from medium decreased. Within the range of salt threshold, the distribution of Na~+ and Cl~- mainly converged in root stem and petiole, but was fewer in leaf. With the increasing of salt concentration, the ability of seedlings compartmentalizing ions was damaged, thus the content of Na~+ and Cl~- in leaf quickly increased. During the course of ion-selective transporting, the higher the salinity was, the worse the abilities for selective transporting ion of seedlings aboveground organs were.
     Under osmotic stress, resulting from leaf water losing in tested seedlings, leaf water potential decreased, cells were dehydrated, cell membrane damaged, the relative penetration of membrane augmented, as well as the integrity of chloroplast structure was destroyed. In addition, because of water waning, stomatal conductance descended, and then the content of chlorophyll decreased, photosynthetic rate and transpiration rate reduced. At same time, leaf water-deficient resulted in seedlings osmotic adjusting function being activated, and the content of proline and soluble sugar in leaf increased.
     Concerning of organs calorie, energy accumulation increment and energy allocation, generally, leaf was higher, rootstock was normal and petiole was lower under osmotic stress. With the increase of stress intensity, the calorie in seedlings organs, the increment of energy accumulation and the proportion of leaf energy accounting for total energy all decreased, while the proportion of root energy accounting for increased. But proportions stem and petiole accounting for energy varied slightly.
     The tested seedlings were damaged from osmotic stress, e. g. the developing of rootstock was blocked, and seedlings survival percentage descended. With the increase of stress intensity, the increment of height, caliper, leaf area and biomass of the seedlings all decreased. Concerning of the varying about component and quantity growth, in general, it showed that the height, the number of leaves per individual plant, the number of side-roots and the proportion of leaf biomass decreased compared to CK, while the proportion of root biomass increased.
     By the method of principal component analysis, properties of seedlings enduring salt and resisting drought in tested different provenances under osmotic stress were evaluated, and the results showed that the level of salt tolerance for tested three provenances seedlings was in the order of Huangshan provenance from Anhui>Kunming provenance from Yunnan>Jiujiang provenance from Jiangxi, the level of drought resistance for tested three provenances seedlings was in the order of Kunming provenance from Yunnan>Huangshan provenance from Anhui>Jiujiang provenance from Jiangxi. Under iso-osmotic stress and calcium regulation, the variation in enduring salt ability of seedlings among different calcium treatments was slighter. However, the variation in resistingdrought ability of seedlings among different calcium treatments was more remarkable. Under the interaction of high temperature and low salinity stress, the order in seedlings enduring salt and resisting high temperature ability for tested four provenances was Ganzhou provenance>Huangshan provenance>Kunming provenance>Jiujiang Provenance.
     In conclusion, firstly, for tested seedlings of four provenances, the ability of enduring salt and resisting drought was that Jiujiang provenance from Jiangxi was iow, Kunming provenance from Yunnan was middle, and Ganzhou provenance from Jiangxi and Huangshan provenance from Anhui were relatively better. Secondly, the threshold of tested seedlings enduring salt was about 1.0 gram per liter. Thirdly, under iso-osmotic stress, the effect of calcium regulation was more evident under PEG stress than under salt stress, and using 0.2% Ca(NO_3)_2 regulation was more effective. Fourthly, under the same osmotic stress, the interaction with the high temperature would speed the damage and make the damage more serious.
引文
1.蔡清泉.我国海涂资源开发利用的现状和展望[J].国土与自然资源研究,1990(2):33-37.
    2.曹慧,王孝威,韩振海等.水分胁迫诱导平邑甜茶叶片衰老期间内肽酶与活性氧累积的关系[J].中国农业科学,2004,37(2):274-279.
    3.昌小平.干旱胁迫下草坪草质量变化的研究[D].北京:中国农业科学院博士研究生论文,1998.
    4.陈存及,梁彦兰,郭玉硕等.青钱柳杉木混交林种内及种间竞争的研究[J].福建林学院学报,2004,24(1):1-4.
    5.陈文利,徐朗莱,沈文飚等.盐胁迫下两种大麦叶片H_2O_2累积及其清除酶活性的变化[J].南京农业大学学报,1999,22(2):97-100.
    6.程奇,吴翠云,阿依买木.不同处理对梨种子休眠与萌发的影响[J].塔里木大学学报,2005,17(1):28-30.
    7.戴建良,董源,陈晓阳等.不同种源侧柏鳞叶解剖构造及其与抗旱性的关系[J].北京林业大学学报,1999,21(1):26-31.
    8.代莉,谢双喜,杨荣和.水分胁迫对日本柳杉种子萌芽的影响[J].贵州林业科技,2003,31(4):15-19.
    9.董彩霞,周健民,赵世杰等.外源钙对不同钙敏感型番茄幼苗生理特性的影响[J].应用生态学报,2005,16(2):267-272.
    10.董云洲,王雪艳.转肌醇甲基转移酶基因烟草的耐盐性及其遗传分析[J].农业生物技术学报,2000,8(1):53-55.
    11.方升佐,洑香香.青钱柳资源培育与开发利用的研究进展[J].南京林业大学学报(自然科学版),2007,31(1):95-100.
    12.方升佐,杨万霞.青钱柳的开发利用与资源培育[J].林业科技开发,2003,17(1):49-51.
    13.冯利波,蒋卫杰,亢秀萍等.植物耐盐性机理及基因控制技术研究进展[J].农业工程学报,2005,21(增刊):5-9.
    14.冯志红,闫立英,王学东等.Na_2SO_4和CaCl_2胁迫下不同黄瓜品种幼苗期的耐盐性[J].河北科技师范学院学报,2005,19(1):24-28.
    15.高向阳,许志强,徐凤彩.水分胁迫下钙对大豆叶片膜脂过氧化程度的影响[J].华南农业大学学报,1999,20(3):67-71.
    16.葛红舟,方国斌,史廷先.青钱柳育苗技术[J].安徽林业,2004,(4):26.
    17.葛体达,隋方功,白莉萍等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,2005,38(5):922-928.
    18.龚明,李忠光.钙和钙调素对玉米幼苗抗旱性的调控[J].西北植物学报,1996,16(3):214-220.
    19.郭丽红,陈善娜,龚明.钙对玉米谷胱甘肽还原酶活性的影响[J].植物生理学通讯,2002,38(2):115-117.
    20.郭玉硕.青钱柳杉木混交林生物量研究[J].江西农业大学学报,2004,26(1):46-50.
    21.何宝坤,王玉洁,孙立平.蛋白质组学研究技术及其在植物抗渗透胁迫研究中的应用[J].生物技术通报,2005(2):18-21.
    22.洪俊溪.青钱柳人工林材性试验研究[J].福建林学院学报,1997,17(3):214-217.
    23.侯嫦英.水分胁迫对青檀等树种生长及生理特性的影响[D].南京:南京林业大学硕士学位论文,2003.
    24.侯嫦英,方升佐,薛建辉等.干旱胁迫对青檀等树种苗木生长及生理特性的影响[J].南京林业大学学报,2003,27(6):103-106.
    25.胡冬南,蒋艳,吴少福等.青钱柳组织培养的初步研究[J].江西农业大学学报,2005,2(1):39-41.
    26.胡荣海.农作物抗旱性鉴定方法和指标[J].作物品种资源[J],1986,(4):36-38.
    27.胡田田,康绍忠.植物淹水胁迫响应的研究进展[J].福建农林大学学报(自然科学版),2005,34(1):18-24.
    28.胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学,1998,34(2):77-85.
    29.黄建国,袁玲.CaCl_2对玉米种子抗旱作用的研究[J].西南农业大学学报,1990,12(4):192-195.
    30.黄敬耀,楼兰英.摇钱树叶的药理研究[J].中药通报,1986,11(11):61.
    31.惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,2004,23(1):5-9.
    32.霍秀文,云锦凤,米福贵等.共转化法获得蒙农杂种冰草转基因植株[J].中国农业科学,2006,39(10):1977-1983.
    33.霍书新,杜国强,张小红.钙缓解植物盐害的作用机制研究进展[J].土壤肥料,2005(6):3-6.
    34.贾庚祥,朱至清,李银心.甜菜碱与植物耐盐基因工程[J].植物学通报,2002,19(3):272-279.
    35.贾利强,李吉跃,郎南军等.干旱胁迫对黄连木和清香木幼苗的影响[J].北京林业大学学报,2003,25(3):55-58.
    36.江香梅,黄敏仁,王明庥.植物抗盐碱、耐干旱基因工程研究进展[J].南京林业大学学报(自然科学版),2001,25(5):57-62.
    37.姜义宝,崔国文,李红.干旱胁迫下外源钙对苜蓿抗旱相关生理指标的影响[J].草业学报,2005,14(5):32-36.
    38.蒋廷惠,占新华,徐阳春等.钙对植物抗逆能力的影响及其生态学意义[J].应用生态 学报,2005,16(5):971-976.
    39.柯玉琴,潘廷国.NaCl胁迫对甘薯叶片水分代谢、光合速率、ABA浓度的影响[J].植物营养与肥料学报,2001,7(3):337-343.
    40.赖声渭,曹兵.浅谈林木抗旱性评价方法[J].防护林科技,2002(3):48-49.
    41.冷任轩.青钱柳的基础理论研究和临床观察[J].江西中医药,1994,25(2):64-65.
    42.黎祜琛,邱治军.树木抗旱性及抗旱造林技术研究综述[J].世界林业研究,2003,16(4):17-22.
    43.黎裕,王天宇,刘成等.玉米抗旱品种的筛选指标研究[J].植物遗传资源学报,2004,5(3):210-215.
    44.李德全.土壤水分胁迫下叶片的渗透调节与膨压维持[J].华北农学报,1991,6(4):100-105.
    45.李广毅,高国雄,吕悦来等.灰毛滨藜茎解剖结构与抗逆性研究[J].西北林学院学报,1995,10(3):16-20.
    46.李广毅,高国雄,尹忠东.灰毛滨藜叶解剖结构与抗逆性研究[J].西北林学院学报,1995,10(1):48-51.
    47.李贵全,张海燕,季兰等.不同大豆品种抗旱性综合评价[J].应用生态学报,2006,17(12):2408-2412.
    48.李海玲,方升佐.青钱柳繁殖技术研究进展[J].林业科技开发,2005,19(6):3-5.
    49.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    50.李杰,陈丽华,朱延明.植物抗渗透胁迫基因工程研究进展[J].东北农业大学学报,2005,36(2):241-248.
    51.李磊,孙振华.青钱柳叶植物药中生命元素的溶出特性及其化学形态研究[J].高等学校化学学报,2000,21(5):707-709.
    52.李磊,谢明勇,邓泽元等.青钱柳无机元素的初级形态分析[J].南昌大学学报(自科版),2000,22(1):74-77.
    53.李磊,谢明勇,吴熙鸿等.胡桃科植物青钱柳多种微量元素的化学形态研究[J].江西农业大学学报,1999,21(4):546-551.
    54.李磊,谢明勇,易醒等.青钱柳多糖组分及其降血糖活性的研究[J].江西农业大学学报,2001,23(4):484-486.
    55.李磊,赵丽,谢明勇等.青钱柳多糖组分生物活性及其元素化学形态分析[J].厦门大学学报(自然科学版),2003,42(1):73-77.
    56.李善菊,任小林.植物水分胁迫下功能蛋白的研究进展[J].水土保持研究,2005,12(3):64-69.
    57.李燕,薛立,吴敏.树木抗旱生理及造林技术研究进展[J].山西林业科技,2005(2):19-25.
    58.李阳,齐曼·尤努斯,安萍.渗透胁迫对新疆大果沙枣幼苗叶片膜脂过氧化及膜保护酶的影响[J].新疆农业大学学报,2005,28(2):47-50.
    59.利容千,王建波.植物逆境细胞及生理学基础[M].武汉:武汉大学出版社,2002.
    60.连雷龙.青钱柳的栽培技术[J].林业科技开发,2003,17(3):51-52.
    61.连兆煌.无土栽培原理与技术[M].北京:中国农业出版社,1994.
    62.梁慧敏,夏阳,杜峰等.盐胁迫对草地早熟禾抗性生理生化指标的影响[J].草地学报,2001,9(4):283-286.
    63.梁建生,张建华.根源逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯,1998,34(5):329-338.
    64.廖红,严小龙.高级植物营养学[M].北京:科学出版社,2003.
    65.林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25.
    66.林艳,杜平,张全峰等.国内林木抗寒抗旱性评定的主要指标及方法[J].河北林业科技,2000(6):10-12.
    67.刘桂丰,杨传平,曲冠正等.盐逆境下三个树种的内源激素变化[J].东北林业大学学报,1998,26(1):1-3.
    68.刘鸿洲,柯金炼,胡维冀等.不同水分条件下施肥对侧柏苗木生长及抗旱性的影响[J].北京林业大学学报,2002,34(6):56-60.
    69.刘俊君,黄绍兴,彭学贤等.转mtlD基因烟草的耐盐性研究[J].生物工程学报,1995,11:381-384.
    70.刘瑞冬,王有年.外源甜菜碱对仁用杏抗旱生理指标的影响[J].内蒙古农业大学学报,2004,25(2):69-72.
    71.刘淑明,陈海滨,孙长忠等.黄土高原主要造林树种的抗旱性研究[J].西北农林科技大学学报,2003,31(4):149-153.
    72.刘伟,潘廷国.盐胁迫对甘薯叶片氮代谢的影响[J].福建农业大学学报,1998,27(4):490-494.
    73.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[M].见:余叔文,汤章城.植物生理与分子生物学.北京:科学技术出版社,1998:752-769.
    74.柳誉,梁彦兰,陈存及等.混交林中青钱柳生长规律的研究[J].江西农业大学学报,2004,26(3):381-384,438.
    75.路明,王艳东,元英进.甲基茉莉酸对悬浮培养南方红豆杉细胞自由基清除系统酶的影响[J].中草药,2002,33(11):985-988.
    76.罗华建,刘星辉.干旱胁迫对光合特性的影响[J].果树科学,1999,16(2):126-130.
    77.罗青红,李志军.树木水分生理生态特性及抗旱性研究进展[J].塔里木大学学报,2005,17(2):29-33.
    78.罗音,李卫民,孙明高等.几个经济树种抗旱性的评价及其抗早指标的选取[J].山东林业科技,2003,(3):3-5.
    79.罗音,王玉军,谢胜利等.等渗水分与盐分胁迫对烟草种子萌发的影响及外源甜菜碱的保护作用[J].作物学报,2005,31(8):1029-1034.
    80.马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展[J].福建农业大学学报,2000,29(2):169-166.
    81.马翠兰,刘星辉.盐对柚幼苗的胁迫效应分析[J].热带作物学报,2004,25(1):28-31.
    82.马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报,1998,18(1):15-23.
    83.马宗仁.短芒披碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究[J].草业科学,1992,9(5):53-57.
    84.孟庆伟,李德全,赵世杰等.土壤缓慢脱水对冬小麦渗透调节、光合作用和膜脂过氧化的影响[J].山东农业大学学报,1994,(1):24-28.
    85.潘瑞炽.植物生理学[M].北京:高等教育出版社,1995.
    86.彭立新,王明启.渗透胁迫调节基因—Na~+/H~+ Antiporter基因与植物耐盐性[J].天津农学院学报,2005,12(2):45-47.
    87.齐秀东.钙在果树生理代谢中的作用[J].河北科技师范学院学报,2005,19(2):69-72.
    88.任丽花,翁伯琦,方金梅.施钙增强作物抗旱力的研究进展[J].亚热带农业研究,2005,1(3):19-25.
    89.尚旭岚,徐锡增,方升佐.青钱柳种子次生休眠的发生及贮藏物质的变化[J].南京林业大学学报 (自然科学版),2006,30(2):99-102.
    90.商振清.钙对生物膜透性的影响机制[J].河北农业大学学报,1988,11(1):113-117.
    91.施积炎,丁贵杰.水分胁迫对不同种源马尾松种子发芽的影响[J].山地农业生物学报,2000,19(5):332-337.
    92.史吉平,李广敏,池书敏.钙对干旱胁迫下玉米幼苗内源激素含量的影响[J].河北农业大学学报,1994,17(3):48-51.
    93.史晓华,徐本美,黎念林等.青钱柳种子休眠与萌发的研究[J].种子,2002,(5):5-7.
    94.舒任庚,徐昌瑞,黎莲娘.青钱柳甜味成分的研究[J].药学学报,1995,30(10):757-761.
    95.舒任庚,徐昌瑞,刘庆华等.青钱柳化学成分研究[J].中国中药杂志,1995,20(11):680-681.
    96.宋立奕,方升佐.水培青檀幼苗对NaCl胁迫的生理响应[J].南京林业大学学报 (自然科学版),2006,30(2):94-98.
    97.宋祖祥,邱先画.青钱柳播种育苗技术试验[J].江西林业科技,2005,(5):10-11.
    98.孙方行,李国雷,夏阳等.刺槐对盐分胁迫的生理生化反应[J].山东林业科技,2004,(1):5-7.
    99.孙国荣,关金,阎秀峰.盐胁迫对星星草幼苗保护酶系统的影响[J].草地学报,2001,9(1):34-37.
    100.孙立平,何宝坤,吴学友等.渗透胁迫下ABA及Ca~(2+)/CaM信使系统对玉米幼苗根系 63.5kD热稳定蛋白的调控作用[J].作物学报,2005,31(1):83-87.
    101.孙同兴,徐丽丽.青钱柳叶的结构鉴定[J].中草药,2006,37(2):271-273.
    102.孙永林.盐胁迫对白菜幼苗逆境指标及蛋白激酶活性的影响[J].襄樊学院学报,2005,26(2):52-54.
    103.谈建康,安树青,王铮峰等.NaCl、Na_2SO_4和Na_2CO_3胁迫对小麦叶片自由基浓度及质膜透性的比较研究[J].植物学通报,1998,15(增刊):82-86.
    104.檀建新,董永华,张伟等.钙对渗透胁迫下玉米幼苗内源激素和多胺含量的影响[J].植物生理学通讯,1998,34(2):94-96.
    105.汤章成,王育启.植物对水分胁迫的反应和适应[J].植物生理学通讯,1984,(4):1-7.
    106.唐连顺,李广敏,商振清等.水分胁迫对玉米幼苗膜脂过氧化及保护酶活性的影响[J].河北农业大学学报,1992,15(2):34-40.
    107.汪贵斌.落羽杉抗性生理机制的研究[D].南京:南京林业大学博士学位论文,2003.
    108.汪贵斌,曹福亮.盐分和水分胁迫对落羽杉幼苗的生长量及营养元素含量的影响[J].林业科学,2004,40(6):56-62.
    109.王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸累积与抗早性的关系[J].植物生理学报,1989,15(1):46-49.
    110.王宝山,邹琦,赵可夫.液泡膜转运蛋白与植物耐盐性研究进展[J].植物学通报,1996,13(3):30-36.
    111.王宝山,邹琦.质膜转运蛋白及其与植物耐盐性关系研究进展[J].植物学通报,2000,17(1):17-26.
    112.王海英,孙建设,王旭静等.果树耐盐性研究进展[J].河北农业大学学报,2000,23(2):54-58,61.
    113.王均明,孟丽,孙金花等.林木抗旱性与其根次生构造关系的研究[J],中国水土保持,1999,6:20-23.
    114.文建雷,张檀,胡景江等.三种杜仲无性系抗旱性比较[J].西北林学院学报,2000,15(3):12-15.
    115.吴强盛,夏仁学,张琼华.果树对水分胁迫反应研究进展[J].亚热带植物科学,2003,32(2):72-76.
    116.吴旭红.钙-钙调素对中东杨扦插苗的诱导抗冻作用[J].辽宁林业科技,2005(5):9-11.
    117.吴永波.四种白蜡树幼苗耐盐性的比较研究[D].南京:南京林业大学博士学位论文,2002.
    118.夏小华,庄伟瑛.神茶原料青钱柳扦插繁殖试验初报[J].蚕桑茶叶通讯,1994,(2):12-14.
    119.夏新莉,郑彩霞,尹伟伦.土壤干旱胁迫对樟子松针叶膜脂过氧、膜脂成份和乙烯释放的影响[J].林业科学,2003,(3):35-38.
    120.谢明勇,李磊.青钱柳化学成分和生物活性研究概况[J].中草药,2001,32(4):365-366.
    121.谢寅峰,沈惠娟.水分胁迫下三种针叶树幼苗抗旱性与硝酸还原酶、超氧歧化物活力关系研究[M].见:曹福亮.中国南方主要造林树种耐盐耐旱机理研究.北京:中国林 业出版社,1999:65-69.
    122.谢寅峰,沈惠娟,罗爱珍.水分胁迫下南方4种针叶树幼苗水分参数的测定[J].南京林业大学学报,1999,23(1):41-44.
    123.谢寅峰,沈惠娟,陈颖.水分胁迫下抗旱剂对南方6种林幼苗光合作用的影响[J].林业科技开发,2001,15(6):14-15.
    124.徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91.
    125.徐颖.盐分胁迫下植物的渗透调节[J].山东电大学报,2000,3:34,36.
    126.许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,9(4):379-387.
    127.许长成,邹崎.田间大豆叶片光合作用与活性氧清除酶的日变化[J].西北植物学报,1997,(3):25-27.
    128.杨根平,高爱丽,荆家海.钙与渗透胁迫下大豆细胞透性的关系[J].植物生理学通讯,1993,29(3):179-181.
    129.杨根平,王韶唐.钙在干旱胁迫植株内作用的初步研究[J].西北植物学报,1992,12(5):13-169.
    130.杨洪强,李军.植物根源逆境信使及其产生和运输[J].植物学通报,2002,19(1):56-62.
    131.杨万霞,方升佐.青钱柳种皮甲醇浸提液的生物测定[J].植物资源与环境学报,2005,14(4):11-14.
    132.杨万霞,洑香香,方升佐.青钱柳种子的种皮构造及其对透水性的影响[J].南京林业大学学报,2005,29(5):25-28.
    133.姚春娜,裴新梧,孔英珍等.盐胁迫下小麦新品系89122的抗氧酶活性和内源激素ABA浓度变化的研究[J].兰州大学学报(自然科学版),2001,37(4):76-79.
    134.姚满生,杨小环,郭平毅.脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响[J].棉花学报,2005,17(3):141-145.
    135.姚瑞玲.植物抗逆性的基因工程改良[EB/OL].http://219.239.34.169/was40/detail?record=1356&channelid=15444. 2007,4,7.
    136.易醒,石建功,周光雄等.青钱柳化学成分研究[J].中国中药杂志,2002,27(1):43-44.
    137.易醒,谢明勇.青钱柳对四氧嘧啶糖尿病小鼠降血糖作用的研究[J].天然产物研究与开发,2001,13(3):52-54.
    138.易醒,谢明勇,辜清等.青钱柳对胆固醇调节作用的初步研究[J].中国商办工业,2000,(4):51-52.
    139.易醒,谢明勇,王远兴等.反相高效液相色谱法测定青钱柳中黄酮化合物含量[J].南昌大学学报,2001,25(2):161-165.
    140.翟凤林,曹鸣庆.植物耐盐性及其改良[M].北京:农业出版社,1989.
    141.翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000.
    142.张改娜,何涛,王学仁等.盐胁迫下植物基因的表达与基因工程研究进展[J].武汉植物学研究,2005,23(2):188-195.
    143.张慧,董伟.果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育[J].生物工程学报,1998,14(2):180-186.
    144.张建霞,李新国,孙中海.外源钙对柑橘抗热性的相关生理生化指标的影响[J].华中农业大学学报,2005,24(4):397-400.
    145.张俊莲,张金文,陈正华等.植物Na~+/H~+逆向转运蛋白与植物耐盐性的研究进展[J].草原与草坪,2005(4):3-8.
    146.张立军,樊金娟,阮燕晔等.聚乙二醇在植物渗透胁迫生理研究中的应用[J].植物生理学通讯,2004,40(3):361-364.
    147.张楠楠,徐香玲.植物抗盐机理的研究[J].哈尔滨师范大学自然科学学报,2005,21(1):65-68.
    148.张岁歧,山仑.氮素营养对春小麦抗旱适应性及水分利用效率的影响[J].水土保持研究,1995,2(1):31-36.
    149.张晓蓉,廖循,丁立生.青钱柳的化学成分[J].应用与环境生物学报,2001,7(1):90-91.
    150.赵福庚.植物逆境生理生态学[M].北京:化学工业出版社,2004:138.
    151.赵金梅,周禾,王秀艳.水分胁迫下苜蓿品种抗旱生理生化指标变化及其相互关系[J].草地学报,2005,13(3):184-189.
    152.赵可夫.植物抗盐生理[M].北京:中国科技出版社,1993.
    153.赵可夫.盐分过多对植物的伤害作用和伤害机理[J].曲阜师院学报(植物抗盐生理专辑),1984:30-32.
    154.赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
    155.郑书,樊军锋,苏晓华等.欧洲黑杨无性系抗旱性综合鉴定研究[J].西北林学院学报,2005,20(1):57-64.
    156.钟瑞建,高幼衡,徐昌瑞等.青钱柳中五环三萜成分的研究[J].中草药,1996,27(7):387-388.
    157.朱建雯,杨文英,哈里旦等.Na_2SO_4胁迫对鞑靼滨藜氮同化作用的影响[J].干旱区研究,1997,14(4):30-33.
    158.朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    159.紫守玺.与小麦抗旱性相关的几个指标[J].甘肃农业科技,1990,(6):12-13.
    160. Abrams M. Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies[J]. TreePhysiol, 1994, 14: 833-842
    161. Anderberg R J, Walkersimmons M K. Isolation of a wheat cDNA clone for abscisic acid-inducible transcript whith hom ology to ptotein K inases[J]. Proc Natl Acad Sci USA, 1992, 89(2): 10183-10187.
    162. Angelopouios K, Dichio B, Xiloyannis C. Inhibition of photosynthesis in olive trees(Dlea europaea L.)during water stress and rewatering[J]. Exp. Bot., 1996, 47(3): 1093-1100.
    163.Ashraf M. Salt tolerance of cotton: some new advances[J]. Plant Sci, 2002, 21: 1-30.
    164.Bacon M A, Wilkinson S, Davies W J. PH-Regulated leaf cell lexpansion I droughted plants is abscisic acid dependent[J]. Plant Physiol, 1998, 118: 1507-1511.
    165. Barrett-Lennard E. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications[J]. Plant Soil. 2003, 253: 35-54.
    166.Bekowizi G A. Effect of osmotic stress on photosynthesis studied with the isolated spinch chloroplast[J]. Plant Physiolosy, 1982, 70: 1143-1148.
    167.Bressan R A. EEC symposium on drought resistance in plants[J]. Genetic and Physiology Aspects, 1987: 41.
    168.Cheeseman J M. Medhanisms of salinity tolerance in plants[J]. Plant Physiol, 1988, 87: 547-550.
    169.Cohen A, Bray E A. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogens abscisic acid[J]. Planta, 1990, 182: 27-33.
    
    170.Dale G. Forests on saline land becoming a reality[J]. Agroforestry News, 2000, 9: 4-5.
    171.Elstner E F. Oxygen activation and oxygen toxicity[J]. Annu Rev Plant Physiol, 1982, 33:73-96.
    
    172. Fitler A H, May M. Environmental physiology of plant[M]. London: Academic press, 1987: 226-259.
    
    173. Flowers T J, Troke P F, Yeo A R. The mechanisms of salt tolerance in non-halophytes[J]. Plant physio, 1977, 31: 149-190.
    
    174.Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na~+/H~+ exchange gene in Oryza sativa[J]. Biochim Biophys Acta, 1999, 1446: 149-155.
    
    175. Guy R D, Warne P G, Reid D M. Glycinebetaine content of lhalophytes: improved analysis by liquid chromatography and interpretations of results[J]. Physiol Plant, 1984, 61: 195-202.
    
    176. Hajibagheri M A, Yeo, Flowers T J, Collins J C. Salinity resistance in Zea mayslfluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids[J]. Plant Cell Environ, 1989, 12: 753-757.
    
    177.Halliwell B. Chloroplast metabolism, the structure and function of chloroplast in Greenleaf cell[M]. Oxford: charendom Press, 1981: 186.
    178. Hartung W, Heilmann B. Do chloroplast play a role in abscisic acid synthesis[J]. Plant Sci. Lett, 1981, 22: 242-253.
    179.Hertwig H, Streb P, Feierabend J. Light dependaeo of catalcse synthesis and degradation in leave and influence of interfering stress condition[J]. Plant Physiolosy, 1992: 1547-1553.
    180.Inze D M, Montagu V. Oxidative stress in plants[J]. Curr Opin Biotechnol, 1995, (6): 153-158.
    181. Ishitani M, Xiong L, Stevenson B, Zhu J K. Genetic analysis of osmotic and cold stress sihnal transduction in Arabidopsis: interaction and convergence of abscisic acid-dependent and abscisic acid-independent pathways[J]. Plant Cell, 1997, 9: 1935-1959.
    182.Jonak C, Kiegerl S, Ligterink W et al. Stress signaling in plants: a mito-gen-activated protein kinase pathway is activated by cold and drought[J]. Proc Natl Acad Sci USA, 1996, 93(20): 11274-11279.
    183.JoensRC, Wyn, Lund O R. The function of calcium in Plants[M]. Bot. Rev, 1970, 36: 407-423.
    184. Juniper B E, Jeffree C E. plant surfaces[M]. Oxford&IBH. publishing, Co. New. Delhi, 1983: 10-25.
    185.Kause G H, Weis E. Chlorophy II fluorescence and photosyntheses: the basis[J]. Plant Mol Biol., 1991, 42: 313-349.
    186. Kennedy B F, Filippis L F. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria[J]. Plant Physiol, 1999, 155: 746-751.
    187.Kinght H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity[J]. The Plant, 1997, 12: 1067-1068.
    188.Kramer B M. Water Relation of Plants[M]. New York and London: Academic Press, 1983: 489.
    189.Kurihara H, Asami S, Shibata H, Fukami H, Tanaka T. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice[J]. Biol. Pharm. Bull., 2003, 26(3): 383-385.
    
    190. LaRosa P R, Hasegawa P M, Rhodes D et al. Abscisi acid stimulated osmotic adjustment and its involvement inadaptation of tobacco dells to NaCl[J]. Plant Physiology, 1987, 85: 174-185.
    
    191. Li J X, Lee Y R J, Assmann S M. Guard cells possess a calcium-dependent protein kinase that phosphorylates the potassium channel[J]. Plant Physiol, 1998, 116: 785-795.
    
    192. Li Y D, Wu Z M, Zeng Q B et al. Caloric values of main species in a tropical mountain rain forest at Jianfenling, Hainan Island[J]. Acta Phytoecol Sin, 1996, 20(1): 1-10.
    
    193. Lin G H, Lin P. The change of caloric values of a mangrove species, Kandelia candel in China[J]. Acta Ecol Sin, 1991, 11(1): 44-48.
    
    194. Lin P, Lin G H. Study on the caloric value and ash content of some mangrove species in China[J]. Acta Phytoecol et Geobot Sin, 1991, 15(2): 114-120.
    
    195.Lin P, Shao C, Zheng W J. Study on the caloric values of dominating plants in a subtropical rain forest in Hexi of Fujian[J]. Acta Phytoecol Sin, 1996, 20(4): 303-304.
    
    196.Ling J, Zhang J, Wong M H. How do roots control xylem sap ABA concentration in responses to soil drying[J]. Plant Cell Physiol, 1997, 38: 6-10.
    
    197. Liu L, Mcdonald A J S. Abscisic acid and stomatal conductance in willow[J]. Exp. Bot., 1998, 49: 36.
    198. Long F L. Application of calorimetric methods to ecological re2 search[J]. Plant Physiol, 1934, 9(2): 323-327.
    199.Maathuis F J M, Amtmann A. K~+ nutrition and Na~+ toxicity: the basis of cellular K~+/Na~+ ratios[J]. Ann Bot, 1999, 84: 123-133.
    
    200. MacAinsh M R, Brownlee C, Hetherington A M. Abscisic acid-induced elevation of guard cell cytosolic Ca~(2+) precedes stomatal closure[J]. Nature, 1990, 343: 186-188.
    
    201. MacAinsh M R, Rrownlee C, Hetherington A M. Visualizing changes in cytosolic free Ca~(2+) during the response of stomata guard cells to abscisic acid[J]. The Plant Cell, 1992, (4): 1113-1122.
    
    202.Maslenkora L T. Adaptation to salinity as monitored by PSII oxygen evoling reactions in barley thylakoids[J]. Plant Physiol, 1993, 142: 629-634.
    203.McNeil S D. Betains and related osmoprotectants. Tragets for metabolic engineering of stress resistance[J]. Plant Physiology, 1999, 120: 945-949.
    204.Muller M, Santarius K A. Changes in chloroplast membrane lipids during adaptation of barley to extremesalinity[J]. Plant Physiol, 1978, 62: 326-333.
    205.Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ. 2002, 25: 241-252.
    206.Trifilo P,Raimondo F,Nardini A et al. Drought resistance of Ailanthus altissima: root hoot hydraulics and water relations [J]. Tree Physiology, 2004, 24: 107-114.
    207.Radin J W, Eidenbock M P. Water relations of cotton plant under N deficiency III[J]. Plant Physiol, 1982, 67: 115-119.
    208.Rodriguez H G, Boberts J K M, Jordan W R, Drew M C. Growth, water relations and accumulation of organic and inorganic solutes in roots of Maize seedlings during salt stress[J]. Plant Physiol, 1997, 113: 881-893.
    209.Rygol J, Zimmermann U. Radial and axial turgor pressure measurements in individual root cells of Msembryanthemum crystallinum grown under various saline conditions[J]. Plant Cell Environ, 1990, 13: 15-26.
    
    210. Sandalions J G. Oxygen stress and SOD[J]. Plant Physiology, 1993, 101: 7-12.
    
    211. Sanders D. Plant Organells[M]. London: Cambridge Univ. Press, 1992: 169.
    212.Shengzuo Fang, Jiayuan Wang, Zhaoyang Wei et al. Methods to break seed dormancy in Cyclocarya paliurus (Batal)Iljinskaja[J]. Scientia Horticulturae, 2006, 110: 305-309.
    
    213. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant Physiol, 1997, 115: 327-334.
    
    214. Smirnoff C , Thonke B , Popp M. The compatibility of D-Pinitol and 1D-1-o-methyl-mucoino sitol with malate dehydrogenase activity[J]. Bot Acta, 1990, 103: 270-273.
    
    215.Spickff C M, Smirnoff N, Ratcliffe R G.. Nuclear magneta investigation of ion transitory in maize and apartina anglica roots during exposed to high salt concentration[J]. Plant physiology, 1993, 102: 629-638.
    216.Sadiqov S T, Akbulut M, Ehmedov V. Role of Ca~(2+) in drought stress signaling in wheat seedlings[J]. Biochemistry, 2002, 67(4): 491-497.
    217. Sun G F, Zheng Z M, Wang Z Q. Dynamics of calorific values of rice[J]. Chin J Ecol., 1993, 12(1): 1-4.
    218.Tester M, Davenport R. Na~+ tolerance and Na~+ transport in higher plants[J]. Ann Bot, 2003, 91: 503-527.
    
    219. Vander-Moezel P G, Watson L E, Bell D T. Gas exchange response of two Eucalyptus species to salinity and water logging[J]. Tree Phsiolosy, 1989, 5: 251-257.
    
    220. Volkmar K M, HuY, Steppuhn H. Physiology response of plants to salinity: a review[J]. Can J Plant Sci, 1998, 78: 19-27.
    
    221. Xue Z Y, Zhi D, Xue G P. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L. )expressing a vacuolar Na~+/H~+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na~+[J]. Plant Sci., 2004, 167: 849-859.
    
    222. You W H, Song Y C. A study of energy in vascular aquatic macrophyte communities in Dianshan Lake[J]. Acta Phytoecol Sin, 1995, 19(3): 208-216.
    
    223. Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6: 441-445.
    1.陈金慧,施季森,甘习华等.杂交鹅掌楸体胚发生过程中ATP酶活性的超微细胞化学定位[J].工业西北植物学报,2006,26(1):0012-0017.
    2.陈玉银,包焕盛,吴玉澄.氟化物对桑蚕幼虫中肠ATP酶活性影响的电镜细胞化学定位[J].昆虫学报,1996,39(3):333-336.
    3.樊秀彩,关军锋,张继澍等.草莓采后微粒体膜Ca~(2+)-ATPase活性与膜脂过氧化水平[J].园艺学报,2003,30(1):15-18.
    4.冯兰东,丁同楼,王宝山.植物液泡膜H~+-ATPase及其在胁迫中的响应[J].湛江师范学院学报,2005,26(6):71-76.
    5.甘小洪,丁雨龙,尹增芳.毛竹茎秆纤维细胞发育过程中ATP酶的超微细胞化学定位研究[J].植物研究,2004,24(3):357-362.
    6.郭房庆,黄昊,汤章城.NaCl胁迫对小麦抗盐突变体根液泡膜H~+-ATP酶H~+-PP酶活性的影响[J].植物生理学报,1999,25(4):395-4130.
    7.化党领,介晓磊,郭天财等.小麦根质膜H~+-ATPase水解活性与吸钾关系研究[J].干旱地区农业研究,2005,23(2):109-114.
    8.黄薇,王静,赵文明等.渗透胁迫对春小麦根质膜H~+-ATPase活力的影响及其与脯氨酸积累的关系[J].海南大学学报(自然科学版),2002,20(1):33-36.
    9.贾敬鸾,陈正华,陈晓松.云杉针叶三磷酸腺苷酶活性的超微细胞化学定位[J].遗传,1997,19(1):26-27.
    10.蒋廷惠,占新华,徐阳春等.钙对植物抗逆能力的影响及其生态学意义[J].应用生态学报,2005,16(5):971-976.
    11.刘智慧,张明珍,张红等.羊柴根瘤中ATP酶活性的超微结构定位[J].四川大学学报(自然科学版),1999,36(4):747-751.
    12.马挺军,向远寅,王沙生.盐胁迫对胡杨液泡膜H~+-ATPase水解活性的影响[J].新疆农业大学学报,2003,26(2):43-48.
    13.米海莉,郑国琦,许兴等.NaCl胁迫对宁夏枸杞幼苗根系质膜和液泡膜H~+-ATPase活性的影响[J].西北植物学报,2006,26(4):0748-0752.
    14.潘有强,李杨瑞,陈如凯等.甘蔗节间Mg~(2+)-ATP酶活性与节间生长的关系[J].福建农林大学学报(自然科学版),2003,32(2):150-155.
    15.潘瑞炽.植物生理学[M].北京:高等教育出版社,1995.
    16.王精明,李洪清,李美茹.水稻幼苗根细胞质膜和液泡膜微囊Ca~(2+)-ATP酶的特性[J].植物生理学通讯,2004,40(1):22-26.
    17.王精明,李洪清,潘小平等.甲基紫对水稻幼苗根细胞膜微囊Ca~(2+)-ATP酶活性的影响[J].实验生物学报,2004,37(1):29-33.
    18.韦存虚,兰盛银,徐珍秀.水稻胚乳发育中ATP酶的超微细胞化学定位和功能分析[J].中国农业科学,2003,36(3):259-262.
    19.袁清昌.钙提高植物抗旱能力的研究进展[J].山东农业大学学报(自然科学版),1999,30(3):302-306.
    20.宰学明,钦佩,吴国荣等.外源钙对高温胁迫下花生幼苗叶绿体Ca~(2+)-ATPase、Mg~(2+)-ATPase活性及Ca~(2+)分布的影响[J].中国油料作物学报,2005,27(4):41-44.
    21.张立军.植物生理学[M/OL].http://www.syau.edu.cn/jwc/jingpinke/zwsl/content.asp?id=190,2006,12,29.
    22.张立军,樊金娟,阮燕晔,关义新.聚乙二醇在植物渗透胁迫生理研究中的应用[J].植物生理学通讯,2004,40(3):361-364.
    23. Liu J, Yu B J, Liu Y L. Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H~+-ATPase and H~+-PPase activities in barley roots[J]. Plant Physiol., 2001, 415: 854-857.
    24. Kerkeb L, Donaire J P, Rodriguez-Rosales M P. Plasma membrane H~+-ATPase activity is involved in adaptation of tomato calli to NaCl[J]. Plant Physiol., 2001, 111: 483-490.
    25. Martinez-Ballesta M C, Martinez V, Carvajal M. Aquaporin functionality in relation to H~+-ATPase activity in root cells of Capsicum annuum grown under salinity[J]. Plant Physiol, 2003, 117: 413-420.
    26. Morsomme P, Boutry M. The plant plasma membrane H~+-ATPase: structure, function and regulation[J]. Biochim Biophys Acta, 2000, 1465: 1-16.
    27. Palmgren M G. Plant plasma membrane H~+-ATPases: powerhouses for nutrient uptake[J]. Plant Physiol., 2001, 52: 817-845.
    28. Parks G E, Dietrich M A, Schumaker K S. Increased vacuolar Na~+/H~+(exchange activity in Salicornia bigelovii Torr. in response to NaCl[J]. Exp. Bot., 2002, 53: 1055-1065.
    29. Qiu Q S, Guo Y, Quintero F Jet al. Regulation of vacuolar Na~+/H~+ pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency[J]. Plant Physiol., 2004, 279: 207-215.
    30. Ravshan Z, Sabirov, Yasunobu Okada. ATP release via anion channels[J]. Purinergic Signalling, 2005, 1: 311-328.
    31. Salem Elkahoui, Micaela Carvajal, Rachid Ghrir. Study of the involvement of osmotic adjustment and H~+-ATPase activity in the resistance of Catharanthus roseus suspension cells to salt stress[J]. Plant Cell, Tissue and Organ Culture, 2005, 80: 287-294.
    32. Shi H, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane H~+-ATPase antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat. Biotechnol, 2003, 21: 81-85.
    33. Vera-Estrella R, Barkla B J, Bohnert H J et al. Salt stress in Mesembryanthe mum crystallinum suspension cells activates adaptive mechanism similar to those observed in the whole plant[J]. Planta, 1999, (207): 426-435.
    34. Wang B S, Luttge U, Rataj R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa[J]. Exp. Bot., 2001, 52: 2355-2365.
    35. Wang Y Z, Sze H. Similarities and differences between the tonoplast-type and mitochondrial H~+-ATPase of oat roots[J]. Biol., 1985, 260: 10434-10443.
    1.龚明,丁念诚,贺子义等.盐胁迫下大麦与小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    2.柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3):229-233.
    3.刘兵,张世权,郭家保.植物抗逆研究概况[J].安徽农学通报,2006,12(8):39,121.
    4.秘彩莉,黄占景,邵素霞等.近似等位基因系小麦盐胁迫下叶绿体超微结构下比较研究[J].电子显微学报,2001,20(2):98-101.
    5.孙辉,陆敏,徐爱菊.沙打旺组织培养中脱分化细胞的超微结构及细胞核的动态变化[J].武汉植物学研究,1994,12(1):53-59.
    6.王波,宋凤斌,任长忠等.盐碱胁迫对燕麦叶绿体超微结构及一些生理指标的影响[J]. 吉林农业大学学报,2005,27(5):473-477,485.
    7.王凤茹,张红,商振清等.干旱逆境下小麦幼苗叶片细胞核超微结构与钙离子的关系[J].华北农学报,2000,15(增刊):4-7.
    8.王仁雷,华春,刘友良.盐胁迫下水稻体内积累导致光合作用下降[J].植物生理学报,2002,28(5):385-390.
    9.韦存虚,王建军,王建波等.Na_2CO_3胁迫对星星草叶肉细胞超微结构的影响[J].生态学报,2006,26(1):108-114.
    10.韦小丽.喀斯特森林树种整体抗旱性研究[D].南京:南京林业大学博士学位论文,2005.
    11.徐呈祥.硅缓解金丝小枣盐胁迫的效应与机制[D].南京:南京林业大学博士学位论文,2005.
    12.徐呈祥,徐锡增.硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响[J].南京林业大学学报(自然科学版),2005,(1):25-28
    13.颜宏,赵伟,尹尚军等.羊草对不同盐碱胁迫的生理响应[J].草业学报,2006,15(6):49-55.
    14.于颖,刘元英,罗盛国等.重金属胁迫下硒对大豆叶绿体超微结构和叶片中微量元素含量的影响[J],应用生态学报,2003,14(4):573-576.
    15.赵曼蓉,贾恢先.几种典型盐地植物超微结构的研究[J].干旱区资源与环境研究,1993,7(3):334-337.
    16.朱守旌,张勇.盐胁迫下小花碱茅超微结构的研究[J].中国草地,2000,4:30-32.
    17.朱宇林.银杏对镉、铅及其复合污染的生理响应与抗性研究[D].南京:南京林业大学博士学位论文,2006.
    18. Barrett-Lennard E. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications[J]. Plant Soil, 2003, 253: 35-54.
    19. Hasegawa P M, Bressnan R A, Zhu J K. Plant cellular and molecular responses to high salinity[J]. Plant Physiol., 2000, 51: 463-499.
    20. Sam O, Ramirez C, Coronado M J et al. Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure[J]. Biol. Plant, 2003, 47: 361-366.
    1.程奇,吴翠云,阿依买木.不同处理对梨种子休眠与萌发的影响[J].塔里木大学学报,2005,17(1):28-30.
    2.道本迈尔R F著,曲仲湘,邱莲卿,吴玉树译.植物与环境[M].北京:科学出版社,1965.
    3.何纪星,姚立.茂兰喀斯特森林树种叶形态解剖特征研究[M].见:朱守谦著,喀斯特森林生态研究(Ⅱ).贵阳:贵州科技出版社,1997:33-34.
    4.侯江涛,克热木·伊力,迪利夏提等.NaCl胁迫对扁桃砧木叶片显微结构的影响[J].园艺园林科学:2005,21(7):258-261.
    5.孙同兴,徐丽丽.青钱柳叶的结构鉴定[J].中草药,2006,37(2):271-273.
    6.汪乐原,黄雄伟,刘义梅.青钱柳嫩叶的显微鉴别[J].中药材,2003,26(9):631-632.
    7.韦存虚,张军,王建军等.星星草营养器官适应盐胁迫的结构特征[J].植物资源与环境学报.2006,15(1):51-56.
    8.韦小丽.喀斯特森林树种整体抗旱性研究[D].南京:南京林业大学博士学位论文,2005.
    9.姚悦梅.GA3浸种对薰衣草种子萌发及幼苗生长的影响[J].种子科技,2005(6):343.
    10.张志刚,尚庆茂.不同试剂浸种对番茄种子萌发和幼苗生长发育的影响[J].种子科技,2005(6):344.
    11. Sam O, Ramirez C, Coronado M J et al. Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure[J]. Biol. Plant., 2003, 47: 361-366.
    1.霍书新,杜国强,张小红.钙缓解植物盐害的作用机制研究进展[J].土壤肥料,2005(6):3-6.
    2.蒋廷惠,占新华,徐阳春等.钙对植物抗逆能力的影响及其生态学意义[J].应用生态学报,2005,16(5):971-976.
    3.李怒云,龙怀玉.植物造林与21世纪我国盐渍土开发利用的关系[J].北京林业大学学报,2000,22(3):99-100.
    4.梁永超,丁瑞兴.硅对大麦根系中离子的微域分布的影响及其与大麦耐盐性的关系[J].中国科学(C辑),2002,32(2):113-121.
    5.徐呈祥.硅缓解金比小枣盐胁效应与机制[D].南京:南京林业大学博士学位论文,2005.
    6.徐锡增,徐呈祥.硅对盐胁迫下枣树根尖离子微域分布的影响[J].南京林业大学学报(自然科学版),2006,30(2):85-88.
    7. Blumwald E, Aharon G S, Apse P. Na~+ transport in plant cells[J]. Acta., 2000, 1465: 140-151.
    8. Chen S L, Li J K, Wang S S. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress[J]. Forest Ecol., Manage, 2002, 168: 217-230.
    9. John M. Plants pass the salt[J]. Trends in plant science, 2003, 8(5): 200-201.
    10. Lambers H. Dryland salinity: a key environmental issue in southern Australia[J]. Plant and soil, 2003, 257: v-vii.
    
    11. Li Q, Eberhard F, Li T Q et al. X-ray microanalysis of ion contents in stem tip meristem and leaves of Populus maximowiczii grown under Potassium and Phsphorus deficiency[J]. Plant physiol, 1990, 136: 61-65.
    
    12. Li Q, Eberhard F, Li T Q et al. X-ray microanalysis of ion contents in roots of Populus maximowizii grown under potassium and phosphorus deficiency[J]. Plant Physiol, 1991, 138: 180-185.
    
    13. Li Q, ShenY B, Wang S S. X-ray microanalysis of Ce and ions concents in stem tip meristem and leaves of Populus deltoids Bortr c. v. "Lux"grown in nutritrient solutions with different level of Ce(NO_3)_3 treatment[J]. Journal of Beijing forestry university, 1996, 5(2): 47-55.
    
    14. Lindsay E F, Ma H C, Wang S S. X-ray microanalysis of ion distribution in salt tolerancy and salt intolerant poplar genotypes[J]. Journal of Beijing forestry university, 1996, 5(2): 23-30.
    
    15. Xu C X, Liu Y L, Zheng Q S, Liu Z P. Silicate improves growth and ion absorption and distribution in Aloe vera under salt stress[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32 (1): 73-78 .
    1.曹帮华,郁万文,吴丽云等.盐胁迫对刺槐无性系生长和离子吸收、运输、分配的影响[J].山东农业大学(自然科学版),2005,36(3):353-358.
    2.龚明.钙对玉米幼苗抗盐性的响应[J].植物生理学通讯,1994,6.
    3.霍书新,杜国强,张小红.钙缓解植物盐害的作用机制研究进展[J].土壤肥料,2005(6):3-6.
    4.刘伟,魏日凤:潘廷国.NaCl胁迫及外源Ca~(2+)处理下甘薯幼苗叶片多胺水平的变化[J].福建农林大学学报(自然科学版),2005,34(2):244-247.
    5.石庆华,李木英,许锦彪.高温胁迫对早稻根系质膜ATPase活性及NH_4~+的影响[J].作物学报,2006,32(7):1044-1048.
    6.王利军,李绍华,李家永.温度逆境交叉适应对葡萄叶片膜脂过氧化和细胞钙分布的影响[J].植物生态学报,2004,28(3):326-332.
    7.杨静慧,刘玉冬.介质盐碱铁对八棱海棠根际pH值的影响[J].西南农业大学学报,1995,17(2):115-117.
    8.杨静慧,杨巴芹.介质及根际pH值对苹果植株失绿的影响研究[J].西南农业大学学报,1995,17(4):355-358.
    9.杨敏生,李艳华,梁海永等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277.
    10.於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长及其离子分布的影响[J].作物学报,2001,27(6):776-780.
    11.于天行.土壤分析化学[M].科学出版社,1988:277-279.
    12.张俊莲,陈勇胜,武季玲等.向日葵对盐逆境伤害的生理反应及耐盐性研究[J].中国油料作物学报,2003,25(1):45-49.
    13.郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001,27:325-330.
    14.周厚基,仝月澳.苹果树缺铁失绿研究的进展Ⅰ生态因子对缺铁失绿的影响[J].中国农业科学,1987,20(3):23-27.
    15. Balagurova N I, Akimova V T, Titov A F. The effect of local cooling of cucumber and wheat seedlings on various kinds of stress resistance of their leaves and roots[J]. Russian Journal of Plant Physiology, 2001, 48: 95-99.
    16. Bernstein L. Effect of salinity on plant growth[J]. Plant Physiol, 1975(26): 295-312.
    17. Fu P, Wilen R W, Robertson A J, Low N H et al. Heat tolerance of cold acclimation poma xinter rye seedlings and the effect of a heat shock on freezing tolerance[J]. Plant and Cell Physiology, 1998, 39: 942-949.
    
    18. Gue-Frler G. Fluxe of Na~+, K~+and Cl~- and osmotic adjuistment on L. youpimpinellifolium and L. esculenium during shortand long term exposures to NaCl[J]. Physiol Plantarum, 1996. 97: 583-591.
    19. Knight H, Knight M R. Abiotic stress pathways: specificity and signaling during chilling and cold acclimation in plants[J]. Physiologia Plantarum, 2001, 113: 158-164.
    20. Lahaye P A, Epstein E. Calcium and salt toleration by bean plants[J]. Physiol plant, 1971, 25: 213
    21. Lu C M, Zhang J H. Thermostability of photosystem II is increased in salt-stressed sorghum[J]. Australian Journal of Plant Physiology, 1998, 25: 317-324.
    22. Maathuis F J M, Amtmann A. K~+ nutrition and Na~+ toxicity: the basis of cellular K~+/Na~+ ratios[J]. Ann Bot, 1999, 84: 123-133.
    23. McNulty I B. Rapid osmotic adjustment by a succulent halophytes to saline shock[J]. Plant Physiol, 985, 78: 100-103.
    24. Muhammed S, AkbarM, Neue H. Effect of Na~+/Ca~(2+) and Na~+/K~+ ratioes in saline culture solution on the growth and mineral nutrition of rice(Oryw sativa L )[J]. Plant and Soil, 1987, 104: 57-62.
    25. Teakle N L, Real D, Colmer T D. Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis[J]. Plant Soil, 2006, 289: 369-383.
    26. Fang S Z, Wang J Y, Wei Z Y et al. Methods to Break Seed Dormancy in Cyclocarya paliurus[J]. Scientia Horticulturae, 2006, 110: 305-309.
    27. Zeng S X, Wang Y R, Li M R. Effect of different pretreament on membrane protect[J]. Acta, 1997, 41: 156-160.
    1.董彩霞,周健民,赵世杰等.外源钙对不同钙敏感型番茄幼苗生理特性的影响[J].应用生态学报.2005,16(2):267-272.
    2.段爱国,保尔江,张建国.水分胁迫下华北地区主要造林树种离体枝条叶片的叶绿素荧光参数[J].林业科学研究,2005,18(5):578-584.
    3.付爱红,陈亚宁,李卫红等.干旱、盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5):744-749.
    4.高光林,姜卫兵,俞开锦等.盐胁迫对果树光合生理的影响[J].果树学报,2003,20(6):493-497.
    5.韩德梁,王彦荣,余玲等.离体干旱胁迫下三种紫花苜蓿相关生理指标的测定[J].草原与草坪,2005(2):38-42.
    6.郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004,9:101-104.
    7.侯玉慧,韩晓日,杨家佳等.硅对盐胁迫下黄瓜幼苗细胞膜伤害及其保护酶活性的影响[J].中国农学通报,2005,21(9):252-254.
    8.胡美君,郭延平,沈允钢等.柑橘属光合作用的环境调节[J].应用生态学报,2006,17(3):535-540.
    9.姬兰柱,肖冬梅,王淼.模拟水分胁迫对水曲柳光合速率及水分利用效率的影响[J].应用生态学报,2005,16(3):408-412.
    10.孔东,史海滨,李延林等.不同盐分条件下油葵光合日变化特征研究[J].干旱地区农业研究,2005,23(1):111-115.
    11.李青云,葛会波,胡淑明等.外源钙对盐胁迫下草莓叶绿素荧光参数的影响[J].沈阳农业大学学报,2006,37(3):482-484.
    12.李志亮,王刚,吴忠义等.脯氨酸与植物抗渗透胁迫基因工程改良研究进展[J].河北师范大学学报(自然科学版),2005,329(4):404-408.
    13.梁洁,严重玲,李裕红等.Ca(NO_3)_2对NaCl胁迫下木麻黄扦插苗生理特征的调控[J].生 态学报,2004,24(5):1073-1077.
    14.刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报,2005,31 (4):389-395.
    15.刘丹,陈祥伟.水分胁迫对银中杨耗水特征与水分利用的影响[J].生态学杂志,2006,25(3):290-294.
    16.刘惠芬,高玉葆,张强等.土壤干旱胁迫对不同种群羊草光合及叶绿素荧光的影响[J].农业环境科学学报,2005,24(2):209-213.
    17.刘建新,王鑫,王凤琴.水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响[J].草业科学,2005,22(3):18-21.
    18.刘建新,赵国林.干旱胁迫下骆驼蓬抗氧化酶活性与渗透调节物质的变化[J].干旱地区农业研究,2005,23(5):127-131.
    19.刘学师,宋建伟,任小林等.水分胁迫对果树光合作用及相关因素的影响[J].河南职业技术师范学院学报,2003,31(1):45-48.
    20.刘祖贵,陈金平,段爱旺等.不同土壤水分处理对夏玉米叶片光合等生理特性的影响[J].干旱地区农业研究,2006,24(1):90-95.
    21.毛桂莲,许兴,张渊.NaCl胁迫对枸杞叶绿素荧光特性和活性氧代谢的影响[J].2005,23(5):118-121.
    22.蒲光兰,周兰英,胡学华等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究,2005,23(3):44-48.
    23.蒲光兰,周兰英,胡学华等.土壤干旱胁迫对杏树渗透调节物质的影响[J].北方园艺,2005(2):50-51.
    24.裘丽珍,黄有军,黄坚钦等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报(农业与生命科学版),2006,32(4):420-427.
    25.单长卷,刘遵春.水分胁迫对嘎拉苹果苗期生理特性的影响[J].西北农业学报,2006,15(1):183-185.
    26.单长卷,杨小丽.土壤干旱对冬小麦幼苗根、叶渗透调节和保护酶活性的影响[J].河南农业科学,2006(8):28-30.
    27.时连辉,牟志美,姚健.不同桑树品种在土壤水分胁迫下膜伤害和保护酶活性变化[J].蚕业科学,2005,31(1):13-17.
    28.孙宏勇,张喜英,陈素英等.水分胁迫对冬小麦冠层结构及光合特性的研究[J].灌溉排水学报,2005,24(2):31-34.
    29.王长泉,刘涛.硒对盐胁迫下耐盐常夏石竹生物量和渗透物质含量的影响[J].植物生理学通讯,2005,41(3):325-327.
    30.王芳,刘鹏,史锋等.镁对大豆叶片细胞膜透性和保护酶活性的影响[J].植物营养与肥 料学报,2005,11(5):659-664.
    31.王瑾,刘桂茹,杨学举.PEG胁迫下不同抗旱性小麦品种幼苗形态及主要理化特性的比较[J].河北农业大学学报,2005,28(5):6-10.
    32.王晶英,赵雨森,王臻等.干旱胁迫对银中杨生理生化特性的影响[J].水土保持学报,2006,20(1):197-200.
    33.王丽燕.NaCl胁迫对植物光合作用的影响[J].德州学院学报,2005,21(4):12-15.
    34.王丽燕,赵可夫.NaCl胁迫对海蓬子离子区室化、光合作用和生长的影响[J].植物生理与分子生物学学报,2004,30(1):94-98.
    35.王弋博,王建平,李勃等.NaCl胁迫对菠菜PSⅡ颗粒荧光特性的影响[J].草业学报,2005,14(1):69-72.
    36.韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化[J].南京林业大学学报(自然科学版)2005,29(2):46-50.
    37.魏海霞,孙明高,夏阳等.NaCl胁迫对苦楝细胞膜透性和有机渗透调节物质含量的影响[J].2005,40(5):599-603.
    38.夏阳,梁慧敏,束怀瑞等.NaCl胁迫下苹果幼树叶片膜透性、脯氨酸及矿质营养水平的变化[J].果树学报,2005,22(1):1-5.
    39.夏阳,孙明高,李国雷等.盐胁迫对四园林绿化树种叶片中叶绿素含量动态变化的影响[J].山东农业大学学报(自然科学版),2005,36(1):30-34.
    40.徐呈祥,马艳萍,胡恒康等.硅对盐胁迫下金丝小枣生长与生理的效应[J].西北农林科技大学学报(自然科学版),2005,33(5):142-146.
    41.徐呈祥,徐锡增.硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响[J].南京林业大学学报(自然科学版)2005,29(1):25-28.
    42.杨俊兴,张彤,王磊.Ca-GA合剂和磷浸种对水分胁迫条件下冬小麦萌发及幼苗叶绿素荧光参数的影响[J].安徽农业科学,2005,33(2):210-212.
    43.尹增芳,何祯祥,王丽霞等.NaCl胁迫下海滨锦葵种子萌发和幼苗生长过程的生理特性变化[J].植物资源与环境学报,2006,15(1):14-17.
    44.张海燕,李贵全.大豆抗旱性与生理生态指标关系的研究[J].农艺科学,2005,21(8):140-142.
    45.张淑红,张恩平,庞金安等.NaCl胁迫对黄瓜幼苗光合特性及水分利用率的影响[J].中国蔬菜,2005(1):11-13.
    46.张淑红,张恩平,司龙亭等.盐胁迫对黄瓜幼苗渗透调节物质含量的影响[J].中国蔬菜,2005(12):30-31.
    47.赵凤君,高荣孚,沈应柏等.水分胁迫下美洲黑杨不同无性系间叶片δ~(13)C和水分利用效率的研究[J].林业科学,2005,41(1):36-41.
    48.赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报,2005,16(7):1261-1264.
    49.周莉娜,曲东,邵丽丽等.干旱胁迫下硫营养对小麦光合色素及MDA含量的影响[J].西北植物学报,2005,25(8):1579-1583.
    50.朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响[J].北京林业大学学报,2006,28(2):57-63.
    51. Abraham E, Rigo G, Szekely G. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis[J]. Plant Mol. Biol., 2003, 51: 363-372.
    52. Al-Khayri J M, Al-Bahrany A M. Callus growth and proline accumulation in response to sorbitol and sucrose-induced osmotic stress in rice[J]. Biol Plant., 2002, 45: 609-611.
    53. Allakhverdiev S I A, Sakamoto A, Nishiyama et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystems Ⅰ and Ⅱ in Synechococcus sp[J]. Plant Physiol., 2000, 123: 1047-1056.
    54. Filiz Ozdemir, Melike Bor, Tijen Demiral. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid eroxidation, proline content and antioxidative system of rice (Oryza sativa L. ) under salinity stress[J]. Plant Growth Regulation, 2004, 42: 203-211.
    55. Fung L E, Wang S E, Altman A. Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes[J]. Forest Ecol. Manage, 1998, 107: 135-146.
    56. Garcia-Sanchez F, Jifon J L, Carvaial M. Gas exchange, chlorophyll and nutrient contents in relation to Na~+ and Cl~- accumulation in 'Sunburst' mandarin grafted on different rootstocks[J]. PlantSci., 2002, 162: 705-712.
    57. Gibberd M R, Turner N C, Storey R. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L)[J]. Ann Bot., 2002, 90: 715-724.
    58. Helen J, Corney, Jennethm, Sasse, Peter K, Ades. Assessment of salt toleranc(?) in eucalypts using chlorophyll fluorescence attributes[J]. New Forests, 2003, 26: 233-2(?)6.
    59. Jorge L, Zurital, Mercedes Roncell. A thermoluminescence study of photosystem Ⅱ back electron transfer reactions in rice leaves-effects of salt stress[J]. Photosynthesis Research, 2005, 84: 131-137.
    60. Maggaio A, Miyazaki S, Veronese P et al. Does proline accumulation play an active role in stress induced growth reduction[J]. Plant, 2002, 31: 699-712.
    61. Martinez-Ballesta M C, Martinez V, Carvajal M. Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCI[J]. Environ Exp. Bot., 2004, 52: 161-174.
    62. Meloni D A, Oliva M A, Martinez C A. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Exp. Bot., 2003, 49: 69-76.
    63. Percival G C, Fraser G A, Oxenham G. Foliar salt tolerance of Acer genotypes using chlorophyll fIuorescence[J]. Arboriculture, 2003, 29: 61-65.
    64. Sayed. Chlorophyll fluorescence as a tool in cereal crop research[J]. Photosynhetica, 2003, 41 (3): 321-330.
    65. Sixto H, Aranda I, Grau J M. Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence[J]. Photosynhetica, 2006, 44(2): 169-173.
    66. Stepien P, Kiobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress[J]. Bilologia Plantarum, 2006, 50(4): 610-616.
    67. Tezera W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature, 1999, 401: 914-917.
    68. Zakhidov E A, Zakhidova M A, Kasymdzhanov M A. Chlorophyll fluorescence as a tool for diagnostics of optimal temperatures of photosynthesis in plants[J]. Dokl. ross. Akad. Nauk., 2002, 382: 563-566.
    1.毕玉芬,车伟光.几种苜蓿属植物植株热值研究[J].草地学报,2002,10(4):265-269.
    2.官丽莉,周小勇,罗艳.我国植物热值研究综述[J].生态学杂志,2005,24(4):452-457.
    3.郭继勋,王若丹.松嫩草原碱茅热值和能量动态的研究[J].生态学报,2001,21(6):896-899.
    4.林光辉,林鹏.海莲、秋茄两种红树群落能量的研究[J].植物生态学与地植物学学报,1988,12(1):31-38.
    5.林鹏,王文卿.盐胁迫下红树林植物秋茄(Kandelia candel)热值变化的研究[J].植物生态学报,1999,23(5):466-470.
    6.林瑞余,谢锦升,蔡丽平等.木荚红豆群落的能量现存量[J].南京林业大学学报(自然科学版),2002,26(1):37-40.
    7.林益明,柯莉娜,王湛昌等.深圳福田红树林区7种红树植物叶热值的季节变化[J].海洋学报,2002,24(3):112-118.
    8.林益明,黎中宝,陈奕源.福建华安竹园一些竹类植物叶的热值研究[J].植物学通报,2001,18(3):356-362.
    9.林益明,林鹏.华安县绿竹林能量的研究[J].厦门大学学报(自然科学版),1998,37(6):908-914.
    10.林益明,林鹏,王通.几种红树植物木材热值和灰分含量研究[J].应用生态学报,2000,1(2):181-184.
    11.王文卿,叶庆华,王笑酶等.盐胁迫对木榄幼苗各器官热值、能量积累及分配的影响[J].应用生态学报,2001,12(1):8-12.
    12.杨盛昌,李云波,林鹏.冷胁迫下红树植物白骨壤和桐花树叶片热值的变化[J].台湾海峡,2003,22(1):46-52.
    13.于应文,胡自治,张德罡等.天祝金强河高寒地区金缕梅的热值及其季节动态[J].草业科学,2000,17(2):1-4.
    14.咎启杰,王伯荪,王勇军.深圳福田无瓣海桑—海桑林能量的研究[J].应用生态学报,2003,14(2):170-174.
    15. Chaudhary B L, Deora G S. Calorfic value of Mosses[J]. India Botanical Contactor, 1993, 10(1): 5-6.
    16. Golley F B. Caloric value of wet tropical forest vegetation[J]. Ecology, 1969, 50(3): 517-519.
    17. Jak T, Bolhar, Nordenkam H R. Energy conversion efficiency and energy partitioning of white lupins[J]. Biore-source Technology, 1991, 36(2): 193-197.
    18. Kutbay H G and Kilinc M. Seasonal changes is energy values of Philly rea la tiflia L[J]. Turkish Journal of Botany , 1994, 18(6): 489-491.
    19. Li Y D, Wu Z M, Zeng Q B et al. Caloric values of main species in a tropical mountain rain forest at Jianfenling, Hainan Island[J]. Acta Phytoecol Sin, 1996, 20(1): 1-10.
    20. Lin G H, Lin P. The change of caloric values of a mangrove species, Kandelia candel in China[J]. Acta Ecol Sin, 1991, 11(1): 44-48.
    21. Lin P, Lin G H. Study on the caloric value and ash content of some mangrove species in China[J]. Acta Phytoecol et Geobot Sin, 1991, 15(2): 114-120.
    22. Lin P, Shao C, Zheng W J. Study on the caloric values of dominating plants in a subtropical rain forest in Hexi of Fujian[J]. Acta Phytoecol Sin, 1996, 20(4): 303-304.
    23. Long F L. Application of calorimetric methods to ecological 2nd search[J]. Plant Physiol, 1934, 9(2): 323-327.
    24. Long R J, Xu C L, Hu Z Z et al. Caloric value and its seasonal dynamics of fodder shrub species on Tianzhu alpine grasslands[J]. Chin J Ecol, 1993, 12(5): 13-16.
    25. Sun G F, Zheng Z M, Wang Z Q. Dynamics of calorific values of rice[J]. Chin J Ecol, 1993, 12(1): 1-4.
    26. You W H, Song Y C. A study of energy in vascular aquatic macrophyte communities in Dianshan Lake[J]. Acta Phytoecol Sin, 1995, 19(3): 208-216.
    1.郝树荣,郭相平,王为木等.胁迫后复水对水稻叶面积的补偿效应[J].2005,24(4):19-21.
    2.刘长利,王文全,魏胜利.干旱胁迫对甘草各营养器官生物量及分配的影响[J].中药材,2005,28(1):7-8.
    3.裘丽珍,黄有军,黄坚钦等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报(农业与生命科学版),2006,32(4):420-427.
    4.宋秀华,王秀峰,魏珉等.沸石添加对NaCl胁迫下黄瓜幼苗生长及离子含量的影响[J].植物营养与肥料学报,2005,11(2):259-263.
    5.汤海军,周建斌,陈竹君等.水分胁迫下不同化学物质浸种对玉米发芽及幼苗生长的影响[J].干旱地区农业研究,2005,23(1):116-120.
    6.王瑾,刘桂茹,杨学举.PEG胁迫下不同抗旱性小麦品种幼苗形态及主要理化特性的比较[J].河北农业大学学报,2005,28(5):6-10.
    7.尉秋实,赵明,李昌龙等.不同土壤水分胁迫下沙漠蒇的生长及生物量的分配特征[J].生态学杂志,2006,25(1):7-12.
    8.徐呈祥,马艳萍,胡恒康等.硅对盐胁迫下金丝小枣生长与生理的效应[J].西北农林科技大学学报(自然科学版),2005,33(5):142-146.
    9.姚悦梅.GA3浸种对薰衣草种子萌发及幼苗生长的影响[J].种子科技,2005(6):343.
    10.张志刚,尚庆茂.不同试剂浸种对番茄种子萌发和幼苗生长发育的影响[J].种子科技,2005(6):344.
    1.何方著.应用生态学[M].北京:科学出版社,2003:46-49.
    2.姜义宝,崔国文,李红.干旱胁迫下外源钙对苜蓿抗旱相关生理指标的影响[J].草业学报,2005,14(5):32-36.
    3.李燕,薛立,吴敏.树木抗旱生理及造林技术研究进展[J].山西林业科技,2005(2):19-25.
    4.李壮,许文娟,薛兵东等.玉米苗期抗旱性评价方法探讨[J].玉米科学,2004,12(2):73-75.
    5.利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002:2-5.
    6.刘志民,蒋德明,高红瑛等.植物生活史繁殖对策与干扰的关系[J].应用生态学报,2003,14(3):418-422.
    7.罗青红,李志军.树木水分生理生态特性及抗旱性研究进展[J].塔里木大学学报,2005,17(2):29-33.
    8.罗音,李卫民,孙明高等.几个经济树种抗旱性的评价及抗旱指标的选取[J].山东林业科技,2003(3):3-5.
    9.孙彩霞,武志杰,张振平等.玉米抗旱性指标的系统分析[J].农业系统科学与综合研究, 2004,20(1):43-47.
    10.文建雷,张檀,胡景江等.三种杜仲无性系抗早性比较[J].西北林学院学报,2000,15(3):12-15
    11.吴慎杰,李贵全,李捷等.大豆抗旱品种的筛选[J].干旱地区农业研究,2003,21(1):139-142.
    12.张敦论,乔勇进,郗金标等.水分胁迫下8个树种几项生理指标的分析[J].山东林业科技,2000(3):5-9.
    13.张建霞,李新国,孙中海.外源钙对柑橘抗热性的相关生理生化指标的影响[J].华中农业大学学报,2005,24(4):397-400.
    14.张正斌。植物对环境胁迫整体抗逆性研究若干问题[J].西北农业学报,2000,9(3):112-116.
    15.赵金梅,周禾,王秀艳.水分胁迫下苜蓿品种抗旱生理生化指标变化及其相互关系[J].草地学报,2005,13(3):184-189.
    16. Kpogonou B K, Sapra V T, Singh B P et al. Evaluation of soybean germplasm for stress tolerance and biological efficiency[J]. Soybean Genet Newsletter, 1986, 13: 186-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700