用户名: 密码: 验证码:
IR和IGF-1R在糖尿病大鼠拔牙窝愈合过程中的表达及作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是严重威胁人类健康的慢性病之一,其中90%以上为2型糖尿病(type 2 diabetes mellitus, T2DM)患者。糖尿病曾是人工种植体的禁忌证,但新的研究表明良好的血糖控制可提高糖尿病患者人工种植牙成功率。目前控制血糖最常用最有效的药物是胰岛素。刘洪臣等提出胰岛素局部给药对成骨细胞有保护作用,并在临床成功应用于糖尿病患者种植体局部获得良好效果。课题组通过体外实验已经证实适量浓度胰岛素影响成骨细胞的增殖和分化,而且发现成骨细胞上有胰岛素受体的表达。胰岛素必须与受体结合才能发挥其生理学效应,受体的数目和与胰岛素的亲和力同胰岛素的生物学效应有直接关系。胰岛素受体(insulin receptor, IR)和胰岛素样生长因子-Ⅰ受体(insulin-like growth factor-I receptor,IGF-IR)属于胰岛素样生长因子系统家族(insulin like growth factors, IGFs)的受体酪氨酸激酶,虽然两者具有高度相似的分子结构和细胞内信号系统,但是IR和IGF-IR在代谢过程、细胞增殖分化中发挥着不同作用,尤其将胰岛素局部应用于糖尿病大鼠拔牙窝后两种受体的表达和变化尚不清楚。Goto-Kakizaki (GK)大鼠是与人类2型糖尿病近似的自发性非肥胖2型糖尿病鼠种,主要表现为葡萄糖刺激的胰岛素分泌受损出现的胰岛素分泌绝对不足。本实验选用适宜生理浓度的胰岛素,利用壳聚糖/β-甘油磷酸钠凝胶(chitosan/β-glycerophosphate, C/GP)系统,将胰岛素溶液凝胶化后局部注射到GK大鼠拔牙窝中,观察IR和IGF-1R的表达与变化以及拔牙窝愈合过程中新生骨组织形成,初步探讨两种受体在糖尿病大鼠拔牙窝愈合过程中的作用。
     第一部分胰岛素对下颌骨成骨细胞增殖的影响及IR和IGF-1R在成骨细胞上的表达
     目的:探讨适宜浓度对成骨细胞生长增殖的影响,观察IR和IGF-1R在成骨细胞上的表达
     方法:原代培养Wistar大鼠下颌骨成骨细胞并鉴定,分别用正常及高糖浓度的培养液配制的不同浓度梯度胰岛素溶液,然后以不同浓度胰岛素液通过培养成骨细胞用噻唑蓝法(MTT法)检测成骨细胞的增殖,确定药物最适浓度;免疫组织化学法检测体外成骨细胞上IR和IGF-1R的表达
     结果:通过酶消化法成功培养了原代大鼠下颌骨成骨细胞;在相同浓度胰岛素条件下MTT结果显示成骨细胞在低糖培养基中增殖活跃;在四组不同胰岛素浓度10-6M浓度下成骨细胞增殖最为显著。在体外成骨细胞上IR和IGF-1R均阳性表达。
     结论:高糖条件抑制了大鼠下颌骨成骨细胞的增殖;在两种糖浓度下,10-6M胰岛素能显著促进大鼠下颌骨成骨细胞的增殖;而且成骨细胞均表达IR和IGF-1R蛋白。
     第二部分胰岛素凝胶缓释系统的制备
     目的:用C/GP凝胶系统结合胰岛素制备胰岛素缓释凝胶,并检测胰岛素凝胶效能
     方法:高效液相色谱法测定胰岛素局部给药凝胶系统释出胰岛素的量及释放趋势,同时检测胰岛素凝胶系统中β-甘油磷酸钠浓度、pH值对于凝胶系统从水溶液转变为凝胶时间的影响以及释出胰岛素影响
     结果:C/GP凝胶系统在25℃下呈液态,37℃时约8min形成凝胶,凝胶形态良好,并且在负载了胰岛素溶液后壳聚糖/β-GP凝胶形态未受影响;GP含量、pH值影响C/GP系统胶凝时间;GP在C/GP系统中终含量为5.6%时胰岛素体外释放较为理想
     结论:成功制备了胰岛素壳聚糖/β-甘油磷酸钠凝胶系统,确定了适当的GP含量和pH值范围。
     第三部分胰岛素凝胶局部给药促进GK大鼠拔牙窝愈合作用的观察及IR和IGF-1R在拔牙窝愈合过程中的表达及变化
     目的:通过组织学、免疫组织化学观察IR和IGF-1R在GK大鼠拔牙窝愈合过程中成骨情况的表达及变化,探讨胰岛素通过两种受体影响糖尿病大鼠拔牙窝愈合的机理
     方法:手术拔除大鼠下颌骨左侧切牙;拔牙窝局部注射胰岛素凝胶,设4组:正常大鼠拔牙组(WN);GK大鼠拔牙组(GN)、GK大鼠无胰岛素C/GP凝胶注射组(G1)、GK大鼠胰岛素C/GP凝胶注射组(G2);分别在拔牙后7d,14d,21d,28d取材,通过X线观察、组织形态学、免疫组织化学法及qPCR观察IR和IGF-1R在GK大鼠拔牙窝愈合过程中的表达及变化,分析胰岛素结合两种受体与下颌骨拔牙窝愈合的机理。
     结果:注射C/GP凝胶于下颌骨拔牙窝后,G2组大鼠血糖检测无统计学差异;免疫组织化学观察IR和IGF-1R均在成骨细胞的胞浆上阳性表达,IGF-1R阳性表达细胞多位于拔牙窝新生骨小梁周围,IR阳性表达的细胞位于拔牙窝内骨陷窝周围;IGF-1R阳性表达的细胞多于IR阳性表达的细胞。HE染色观察在G1,G2组28d时未见有c/GP;Goldner's三色法观察G2组在拔牙后28d拔牙窝内出现不规则骨基质和少许的新生骨小梁,围绕新生骨小梁周围的成骨细胞明显活跃,立方形、多边形的成骨细胞多见。在大鼠拔牙窝7-28d愈合过程中,WN组IR mRNA水平表现为持续下降,GN组则表现为IRmRNA水平在14d达到高峰后开始下降为先升高后降低的趋势,G1组也表现为先升高后降低趋势,21d时达到高峰,随后在28d时降到7d时水平,G2组与WN组表现一致,在7-28d过程中持续下降,其中GN组的IRmRNA水平最高(p<0.01),G1、G2组与WN组相近均低于GN组;此过程中GN、G1组的IGF-1RmRNA水平较低,G2组在7d,14d,21d明显高于其它两组,并在21d时达到峰值,WN组14d,21d显著高于GN、G1组(p<0.01)
     结论:胰岛素缓释的凝胶系统局部注射于大鼠拔牙窝内,未即刻改变大鼠血糖;胰岛素局部应用于拔牙窝改变了IR和IGF-1R水平,促进糖尿病大鼠拔牙窝中新生骨形成。
Diabetes is one of the chronic diseases that can cause many serious complications and pose a serious threat to human health. Type 2 diabetes (type 2 diabetes mellitus, T2DM) is by far the most common, affecting 90% of the diabetes population. Diabetes was one of the dental implant contraindications; while good blood glucose control could improve the success rate of dental implants in diabetics. Insulin therapy is a critical part of treatment for diabetics. Professor Liu Hongchen successfully used insulin around the dental implant in diabetics, he proposed that insulin may protect osteoblasts via insulin receptor (IR) and/or insulin-like growth factor 1 receptor. The research team has been confirmed that the effect of insulin on osteoblast proliferation and differentiation, and the expression of IR on osteoblast in vitro.Insulin molecule has docked onto the receptor and effected its action, IR and IGF-IR belongs to the family of tyrosine kinase receptor IGFs, although the IR and the IGF-IR are closely related sharing a high degree of homology, they play a different role in the cell proliferation, differentiation and metabolic process.However, the role of IR and IGF-IR in the healing process of tooth extraction when chitosan-based hydrogel insulin injected is not yet clear. Goto-Kakizaki (GK) rats is a non-obese animal model of spontaneous type 2 diabetes, they are mainly impaired glucose-stimulated insulin secretion. This study utilized the chitosan/β-glycerophosphate hydrogel (chitosan/β-glycerophosphate gels, C/GP) system loaded appropriate physiological concentrations of insulin, injected when the sol to gel in the tooth extraction socket in GK rats. To explore the role of two receptors in the healing process of teeth extraction socket in diabetic rats, expression of two receptors in osteoblasts and new bone formation were observed.
     Part I Insulin on osteoblasts proliferation and the expression of IR and IGF-IR in osteoblasts
     Objective:To select an appropriate physiological concentration of insulin, and observe the expression of IR and IGF-1R in the osteoblasts
     Methods:Isolated, cultured and identified osteoblasts were treated with physiological glucose concentration and high glucose concentration of culture medium prepared with 4 concentrations insulin treated, MTT assay the proliferation of osteoblasts, to determine the appropriate physiological concentration of insulin; identificated expression of IR and IGF-1R of in osteoblasts by immunohistochemistry.
     Results:Treated insulin in the same concentration, the proliferation of osteoblasts is more active in L-DMEM; 10-6M concentration is the appropriate physiological concentration of insulin for osteoblasts in vitro; IR and IGF-1R expressed in osteoblasts in vitro.
     Conclusion:10-6 M concentration is the appropriate physiological concentration of insulin for osteoblasts in vitro; IR and IGF-IR expressed in osteoblasts in vitro.
     PartⅡPreliminary study of chitosan-based hydrogel for the local delivery of insulin
     Objective:To establish chitosan-based hydrogel for the local delivery of insulin
     Methods:Concentration and rate of insulin released were assayed by HPLC; to detect the gelation time and the amount of insulin released affected byβ-glycerophosphate concentration and pH value.
     Results:C/GP gel system was liquid at 25℃, from the sol to gel in 37℃within 8min; the chitosan/β-GP gel systems were not affected after loaded insulin solution; GP content and pH value affect the C/GP gelation time; the final optimal concentration of GP in C/GP system is 5.6%.
     Conclusion:Chitosan/β-glycerophosphate gel system has been successfully applied to the local administration of insulin.
     PartⅢLocal administration of insulin gel for tooth extraction sockets in GK rats and expression of IR and IGF-1R in the healing process
     Objective:To observe the expression of IR and IGF-1R in the healing process of tooth extraction socket in GK rat, and preliminary analyze the relevance of two receptors with new bone in the tooth extraction socket.
     Methods:Extraction of the rat incisor; local administration of the chitosan-based hydrogel insulin in tooth extraction socket. Randomized:Wistar group, only the extraction group (WN); GK rats,only the extraction group (GN), tooth extraction with chitosan/GP group (G1), tooth extraction of chitosan/GP contained insulin group (G2). After tooth extraction,7 days,14days,21 days and 28days, rats were sacrifced to remove the mandible quickly. To observe IR and IGF-1R in the healing process of tooth extraction socket in GK rat, and analyze the relevance of two receptors with new bone in the tooth extraction socket.
     Result:Immunohistochemical expression of IR and IGF-1R are in the cytoplasm of the osteoblast, IGF-1R positive cells were located around the new bone trabeculae, IR positive cells around the lacunae; the numbers of IGF-1R positive cells are more than those of IR positive cells. HE staining in G1, G2 group at 28 days there was no C/GP; G2 group was observed by Goldner's trichrome at 28 days after tooth extraction that there are some of the new bone formation and irregular bone matrix, active osteoblasts were also found near those area.During the period of tooth socket from 7d to 28d, WN group showed IR mRNA levels continued to decline, GN group showed IRmRNA level began to decrease after reaching a peak at 14d; IRmRNA level in G1 group were the same trend as the GN group, reached the peak at 21 d and, then dropped to the level which same to 7d when in 28d; G2 group consistent with the WN group performance, decreased in the healing process during 7-28d; IRmRNA level in GN group was the highest (p<0.01), toward GN group, IRmRNA level in G1 and G2 groups were lower than those of GN group but close to WN group; In this process, IGF-1R mRNA in GN and G1 group were lower than other groups; IGF-1R mRNA level in G2 group was significantly higher than other groups at 7d,14d,21d, and reached the peak at 21d, WN group were significantly higher than the GN and G1 group atl4d,21d(p<0.01).
     Conclusion:Successful injection of the C/GP system contained insulin in the tooth extraction socket in GK rats; local administration of insulin regulates IR mRNA and IGF-1RmRNA level, and new bone formation in G2 group is more active than in GN and G1 group.
引文
[1]许曼音.糖尿病学.上海:上海科学技术出版社.2003,12
    [2]Balshi TJ, Wolfinger GJ. Dental implants in the diabetic patient:a retrospective study. Implant Dent.1999,8(4):355-359
    [3]Hasegawa H, Ozawa S, Hashimoto K et al. Type 2 diabetes impairs implant osseointegration capacityin rats. Int J Oral Maxillofac Implants. 2008,23(2):237-246
    [4]Dowell S, Oates TW, Robinson M. Implant success in people with type 2 diabetes mellitus with varying glycemic control:a pilot study. Am Dent Assoc 2007,138(3):355-361
    [5]Albrektsson T, Dahl E, Enbom L, Engevall S et al. Osseointegrated oral implants:A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol.1988,59(5):287-96
    [6]Olson JW, Shemoff AF, Tarlow JL et al. Dental endosseous implant assessments in a type 2 diabetic population:a prospective study. Int J Oral Maxillofac Implant.2000,15(6):811-818
    [7]H.B. He, R.K. Liu, T. Desta et al. Diabetes Causes Decreased Osteoclastogenesis, Reduced Bone Formation, and Enhanced Apoptosis of Osteoblastic Cells in Bacteria Stimulated Bone Loss. Endocrinology. 2004,145(1):447-452
    [8]Siqueira JT, Cavalher-Machado SC, Arana-Chavez V E et al. Bone formation around titanium implants in the rat tibia:role of insulin. Implant Dent.2003, 12(3):242-251
    [9]Krakauer J, McKenna M, Burderer N et al. Bone loss and bone turnover in diabetes. Diabetes.1995,44(7):775-82
    [10]Abdulwass:e H, Dhanrajani PJ. Diabetes mellitus and dental implants:a clinical study. Implant Dent.2002,11(1):83-86
    [11]Peled M, Ardekian L, Tagger-Green N et al. Dental implants in patients with type 2 diabetes mellitus:a clinical study. Implant Dent. 2003,12(2):116-122
    [12]Fiorellini JP, Chen PK, Nevins M et al. A retrospective study of dental implants in diabetic patients. Int J Periodont Res Dent.2000,20(4):366-373
    [13]Hofbauer LC, Brueck CC, Singh SK et al. Osteoporosis in patients with diabetes mellitus. Bone Miner Res.2007,22(9):1317-28
    [14]McCabe LR. Understanding the pathology and mechanisms of type I diabetic bone loss. Cell Biochem.2007,102(6):1343-57
    [15]Gandhi A, Beam HA, O'Connor JP et al. The effects of local insulin delivery on diabetic fracture healing. Bone.2005,37(4):482-90
    [16]Lu H, Kraut D, Gerstenfeld L et al. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology.2003,144(1):346-52
    [17]Krakauer JC, McKenna MJ, Buderer NF, et al. Bone loss and bone turnover in diabetes. Diabetes.1995,44(7):775-782
    [18]Bouillon R, Bex M, Van Herck E et al. Influence of age, sex, and insulin on osteoblast function:osteoblast dysfunction in diabetes mellitus. Clin Endocrinol Metab.1995,80(4):1194-1202
    [19]Rosen CJ, Ackert-Bicknell CL, Adamo ML et al. Congenic mice with low serum IGF-I have increased body fat, reduced bone mineral density, and an altered osteoblast differentiation program. Bone.2004,35(5):1046-1058
    [20]Devlin, H. J. Hoyland, J.F. Newall et al. Trabecular bone formation in the healing of the rodent molar tooth extraction socket. Bone Miner Res.1997, 12(12):2061-2067
    [21]鄂玲玲,刘洪臣,吴霞等. 改良大鼠下颌骨成骨细胞原代培养与鉴定.中华老年口腔医学杂志.2007,5(4):226-229
    [22]鄂玲玲,王东胜,吴璇等.建模时间及糖浓度对糖尿病大鼠下颌骨成骨细胞培养的影响. 中华老年口腔医学杂志.2008,6(1):43-46
    [23]Kemink SA, Hermus AR, Swinkels LM et al. Osteopenia in insulin-dependent diabetes mellitus:prevalence and aspects of pathophysiology. Endocrinol Invest.2000,23(5):295-303
    [24]Yuksel, E., Weinfeld. A. B., Cleek. R. et al. Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast. Reconstr. Surg 2000,105(5):1712-1720
    [25]Boney, C. M., Moats-Staats, B. M., Stiles et al. Expression of insulin-like growth factor-1 (IGF-1) and IGF-binding proteins during adipogenesis. Endocrinology.1994,135:1863-1868
    [26]吴璇 刘洪臣.胰岛素对糖尿病大鼠下颌骨成骨细胞体外生物学活性的影响.2008年博士论文
    [27]Bouxsein ML, Rosen CJ, Turner CH et al. Generation of a new congenic mouse strain to test the relationships among serum insulin-like growth factor I, bone mineral density, and skeletal morphology in vivo. Bone Miner Res.2002,17(4):570-579
    [28]刘洪臣.人工种植牙全身给药系统的设计. 口腔颌面修复学杂志.2006,7(4):291-292
    [29]Terada M, M Inaba, Y Yano et al. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone.1998,22(1):17-23
    [30]B. Jeong, Y.H. Bae, D.S. Lee et al. Biodegradable block copolymers as injectable drug-delivery systems. Nature.1997,388:860-862
    [31]Taylor G, Burt B, Becker M et al. Non-insulin dependent diabetes mellitus and alveolar bone loss progression over 2 years. Perio.1998,69(1):76-83
    [32]Joseph BK, Savage NW, Young WG et al. Expression and regulation of Insulin-like growth factor-1 in the rat incisor. Gro Fact.1993,8(4):267-275
    [33]Hernandez-Sanchez C, Werner H, Roberts C et al. Differential regulation of Insulin-like growth factor-1 (IGF-1) receptor gene expression by IGF-1 and basic fibroblastic growth factor. Biol Chem.1997,272(8):4663-70
    [34]G. Peluso, O. Petillo, M. Ranieri et al. Chitosan-mediated stimulation of macrophage function. Biomaterials.1994,15(15):1215-1220
    [35]E. Ruel-Garie'py, J.C. Leroux. In situ-forming hydrogels-review of temperature-sensitive systems. Eur. J. Pharm and Biopharm.2004,58(2):409-426
    [36]H. Dai, Q. Chen, H. Quin et al. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules. 2006,39(19):6584-6589.
    [37]司徒振强,吴军正.细胞培养.西安:世界图书出版公司.1996,111-188
    [38]Dongwoo K., Michiko S., Rachel L Price, et al. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns. Nanomedicine. 2006,1(1):65-72
    [39]Annalisa P., Furio P., Giorgio B. Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone. Jour Bio Sci.2007,14(6):777-782
    [40]Barboza E.P., de Souza R.O., Caula A.L. et al. Bone regeneration of localized chronic alveolar defects utilizing cell binding peptide associated with anorganic bo-vine-derived bone mineral:a clinical and histological study. J.Perio.2002,73(10):1153-1159
    [41]Carinci F., Piattelli A., Guida L., et al Effects of Emdogain on osteoblast gene expression. Oral Dis.2006,12(3):329-342
    [42]Qian J.J., Bhatnagar R.S. Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen. Biomed. Mater. Res.1996,31(4):545-554
    [43]Aubin JE. Osteoprogenitor cell frequency in rat bone marrow stromal populations:role for heterotypic cell-cell interactions in osteoblast differentiation. Cell Biochem.1999,72(3):396-410
    [44]Canalis E, Centrella M, Burch W et al. Insulin-like growth factor Ⅰmediates se-lective anabolic effects of parathyroid hormone in bone cultures. Clin Invest 1989,83(1):60-65
    [45]Toba K, Winton EF, Bray RA. Improved staining method for the simultaneous flow cytofluorometric analysis of DNA content, S-phase fraction, and surface pheno-type using single laser instrumentation. Cytometry. 1992,13(1):60-67
    [46]Y.H. Wang, Y.L. Liu, David W. Rowe Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblast in primary osteoblast culture. Phy Endo Metab.2007,292(2):594-603
    [47]L. Cai, F. W. Okumu, J. L. Cleland et al. A slow release formulation of insulin as a treatment for osteoarthritis. Oste Cart.2002,10(9):692-706
    [48]Paul J, Pearson ES. The action of insulin on the metabolism of cell cultures. Endocrinology.1960,21:287-94
    [49]Gebauer G, Lin S, Beam H, Vieira P et al. Low-intensity pulsed ultrasound in-creases the fracture callus strength in diabetic BB Wistar rats but does not affect cel-lular proliferation. Orthop.2002,20(3):587-592
    [50]Graves D. The potential role of chemokines and inflammatory cytokines in pe-riodontal disease progression. Clin Infect Dis.1999,28(3):482-490
    [51]Thrailkill KM, Lumpkin CK Jr, Bunn RC et al. Is insulin an anabolic agent in bone?Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab.2005,289(5):735-745.
    [52]Ituarte EA, Ituarte HG, Hahn TJ. Insulin and glucose regulation of glycogen synthase in rat calvarial osteoblastlike cells. Calcif Tissue Int. 1988,42(6):351-357
    [53]Berti L, Mosthaf L, Kroder G et al. Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase. J Biol Chem.1994,269(5):3381-6.
    [54]Muller HK, Kellerer M, Ermel B et al. Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase resistance in rat fat cells. Diabetes.1991,40(11):1440-1448.
    [55]Thomas DM, Hards DK, Rogers SD et al. Insulin receptor expression in bone. J Bone Miner Res.1996,11(9):1312-1320.
    [56]Gandhi A, Beam HA, O'Connor JP et al. The effects of local insulin delivery on diabetic fracture healing. Bone.2005,37(4):482-490
    [57]Lobmann R, Zemlin C, Motzkau M et al. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. Diabetes Complications.2006,20(5):329-335
    [58]Qiu Z, Kwon AH, Kamiyama Y. Effects of plasma fibronectin on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats. Surg Res.2007,138(1):64-70
    [59]Siqueira JT, Cavalher-Machado SC, Arana-Chavez VE et al. Bone formation around titanium implants in the rat tibia:role of insulin. Implant Dent 2003,12(3):242-251
    [60]Margonar RM, Sakakura CE, Holzhausen M et al. The influence of diabetes mellitus and insulin therapy on biomechanical retention around dental implants:a study in rabbits. Implant Dent.2003,12(4):333-339
    [61]Ever G, Jean C L. In situ-forming hydro gels review of temperature-sensitive systems. Euro J Pharm Bio.2004,58(2):409-426
    [62]Sanjaykm, Shruti C, Sushma T et al. Chitosan2sodium alginate nanopar2 ticles as submicroscopic reservoirs for ocular delivery:Formulation, optimization and in vitro characterization. Euro J Pharm Bio.2008,66(3):513-525
    [63]余婷婷.壳聚糖的药物制剂学进展.广东药学院学报.2001,17(1):26-28
    [64]E. Ruel-Garie'py, G. Leclair, P. Hildgen, A. Gupta. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. Con Rel.2002,82(2-3):373-383
    [65]Back, J.F., Oakenfull, D., Smith, M.B. Increased thermal stability of proteins in the presence of sugars and polyols. Biochem.1979,18(23):5191-5196
    [66]Gekko, K., Koga, S. Increased thermal stability of collagen in the presence of sugars and polyols. Biochem.1983,94(1):199-205
    [67]K. Gekko, H. Mugishima, S. Koga. Effects of sugars and polyols on the sol-gel transition of k-carrageenan:calorimetric study. Biol Mac. 1987,9(3):146-152
    [68]K. Gekko, S.N. Timasheff. Mechanism of protein stabilization by glycerol: Preferential hydratation in glycerol-water mixtures. Biochem. 1981,20:(16):4667-4676
    [69]A. Chenite, C. Chaput, D. Wang et al. Novel injectable neutral solutions of chitosan form biodegradible gels in situ for bioactive therapeutic delivery. Biom.2000,21(21):2155-2161.
    [70]E. Ruel-Garie'py, Ma. Shive, Ali Bic., et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Euro J of Pharm and Bio.2004,57(1):53-63
    [71]M. Hasegawa, K. Yagi, S. Iwakawa et al. Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells, Jpn. Cancer Res. 2001,92(4):459-466.
    [72]H.O. Pae, W.G. Seo, N.Y. Kim et al. Induction of granulocytic differentiatior in acute promyelocytic leukemia cells (HL-60) by water-soluble chitosan oligomers. Leuk. Res.2001,25(4):339-346.
    [73]M. Mori, M. Okumura, K. Matsuura et al. Effects of chitin and its derivative on the proliferation and cytokine production of fibroblasts in vitro. Biom.1997, 18(13):947-951
    [74]Fiorellini JP, Chen PK, NevinsM et al. A retrospective study of dental implants in diabetes patients. Peri Rest Dent.2000,20(4):366-373
    [75]Beilker T, Flemming TF. Implants in the medically compromised patient.. C Revi Oral Biol,Med.2003,14(4):305-316
    [76]Pillaio, Panchagrlula R. Insulin therapies, present and future. D.Disc.2001,5(12):547-553
    [77]Carino GP, Matitiowit ZE. Oral insulin delivery. A D Deli Revi.1999, 35(2-3):249-257
    [78]E.v Kriegstein, K. v Kriegstein. Inhaled insulin for diabetes mellitus. N Eng J Medi.2007,356(20):2106-210
    [79]Isis R., Edward W. Harhaj, S.C. Sun. Involvement of NF-AT in Type Ⅰ Human T-cell Leukemia Virus Tax-mediated Fas Ligand Promoter Transactivation. J Biol Chem.1998,273(28):22382-22388
    [80]Lobmann R, Zemlin C, Motzkau M et al. Expression of matrix metalloproteinase and growth factors in diabetic foot wounds treated with a protease absorbent dressing. Dia Comp.2006,20(5):329-335
    [81]Qiu Z, Kwon AH, Kamiyama Y. Effects of plasma fibronectin on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats. Surg Res.2007,138(1):64-70
    [82]Andersen P, Buschard K, Flyvbjerg A et al. Periodontitis deteriorates metabolic control in type 2 diabetic Goto-Kakizaki rats. Peri. 2006,77(3):350-3561
    [83]王芬,何华亮,刘铜华. 自发的2型糖尿病动物模型. 中国实验动物学报.2007,15(5):395-398
    [84]Morrison L, Bogan. Bone development in diabetic children:a roentgen study. Med Sei.1927,174(3):313-318
    [85]Albright F, Reifenstein E. Parathyroid glands and metabolic bone disease:Selected studies. Baltimore:The Williams and Wilkins Company 1948
    [86]Ahmad T, Ohlsson C, Saaf M et al. Skeletal changes in type-2 diabetic Goto-Kakizaki rats. Endoc.2003,178(1):111-116
    [87]顾迁,高鑫. GK糖尿病大鼠生物学特性观察. 中国比较医学杂志.2007,17(12)
    [88]Makiko W., Naoyuku M., Tai-ichiro C. et al. Delayed Wound Closure and Phenotypic Changes in Corneal Epithelium of the Spontaneously Diabetic Goto-Kakizaki Rat. Inv Oph Vis Sci.2007,48(2):590-596
    [89]Daigo S., Joji O., Yutaka K. Bone Healing of Tooth Extraction Socket in Type 2 Diabetes. Oral Tissue Engin.2008,5(3):134-144
    [90]Zhang L.P., Liu Y.P., Wang D. et al. Bone biomechanical and histomorphometrical investment in type 2 diabetic Goto-Kakizaki rats. Acta Diabetol.2009,46(2):119-126.
    [91]A Brunetti, B A Maddux, K Y Wong. Muscle cell differentiation is associated with increased insulin receptor biosynthesis and messenger RNA levels. J Clin Invest.1989,83(1):192-198.
    [92]Beguinot, F., C. R. Kahn, A. C. Moses et al. Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells. J. Biol. Chem.1985,260 (29):15892-15998
    [93]Douglas J. D., Aditi M., Keertik F. Mode of Growth Hormone Action in Osteoblasts. J. Biol. Chem.2007,282(43):31666-316
    [94]Bar RS, Kahn CR. Insulin inhibition of antibody dependent cytotoxicity and insulin recep tor in macrophages. Nature.1977,265 (5595):632-635.
    [95]G. Sesti, M. Federici, D. Lauro, P. Molecular mechanism of insulin resistance in type 2 diabetes mellitus:role of the insulin receptor variant forms. Diabetes/Metabolism Research and Reviews.2001,17(5):363-373.
    [96]A. Ullrich, A. Gray, A.W. Tam, T. et al. Insulin-like growth factor I receptor primary structure:comparison with insulin receptor suggests structural determinants that define functional specificity. Embo J.1986, 5(10):2503-2512
    [97]P. Fischer-Posovszky, H. Tornqvist, K.M. Debatin. Inhibition of death-receptor mediated apoptosis in human adipocytes by the insulin-like growth factor Ⅰ (IGF-Ⅰ)/IGF-Ⅰ receptor autocrine circuit. Endo.2004,145(4):1849-1859.
    [98]S.I. Chisalita, H.J. Arnqvist. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro-and macrovascular endothelial cells. Amer J Physi.2004,286(6):896-901.
    [99]Santana RB, Xu L, Chase HB. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Dia.2003,52(6):1502-1510.
    [100]Zhang M, Xuan S, Bouxsein ML. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002,277(46):44005-440012.
    [101]Devlin H. Early bone healing events following rat molar tooth extraction. C Tiss Org.2000,167(1):33-37.
    [102]Raymond S. D., Terry J. S., et al. B Cells from Patients with Graves' Disease Aberrantly Express the IGF-1 Receptor:Implications for Disease Pathogenesis. J Immun.2008,181(8):5768-5774
    [1]Mounier C, Posner BI. Transcriptional regulation by insulin:from the receptor to the gene. Can J Physiol Pharmacol.2006; 84(7):713-24
    [2]Arnqvist, Hans J et al. Changes in insulin and IGF-I receptor expression during differentiation of human preadipocytes. Growth Horm IGF Res.2009;19(2):101-11
    [3]Morris DL,Cho KW, Zhou Y et al. SH2B1 enhances insulin sensitivity by both stimulating the insulin receptor and inhibiting tyrosine dephosphorylation of insulin receptor substrate proteins. Diabetes.2009; 58 (9):2039-2047
    [4]Barbara P. Craddock, Christopher Cotter, W. Todd Miller. Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region. FEBS Lett.2007; 581 (17):3235-3240.
    [5]Rubin JB, Shia MA, Pilch PF. Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor I. Nature.1983; 305 (5933):438-40.
    [6]F E Bertrand, L S Steelman, W H Chappell. Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-lR-mediated growth in hematopoietic cells. Leukemia. 2006;20 (7):1254-1260.
    [7]De Meyts P. Insulin and its receptor:structure, function and evolution. Bioessays.2004;26(12):1351-62.
    [8]Huang K, Xu B, Hu SQ et al. How insulin binds:the B-chain alpha-helix contacts the L1 beta-helix of the insulin receptor. J Mol Biol.2004; 341(2):529-50.
    [9]Denley A, Wang CC, McNeil KA Structural and functional characteristics of the Val44Met insulin-like growth factor I missense mutation: correlation with effects on growth and development. Mol Endocrinol.2005; 19(13): 711-21.
    [10]Payal Soni, Montaha Lakkis et al. The differential effects of pp120 (Ceacam 1) on the mitogenic action of insulin and insulin-like growth factor 1 are regulated by the nonconserved tyrosine 1316 in the insulin receptor.Molecular and Cellular Biology.2000; 20(11):3896-3905
    [11]Fresnida J. Ramos, Paul R. Langlais, Derong Hu. Grb10 mediates insulin-stimulated degradation of the insulin receptor:a mechanism of negative regulation. Am J Physiol Endocrinol Metab.2006; 290 (6):1262-1266
    [12]Zhiheng He, Darren M. OplanJ, Kerrie J. Regulation of vascular endothelial growth factor expression and pathways vascularization in the myocardium by insulin receptor and PI3K/Akt way in insulin resistance and ischemia. Arterioscler Thromb Vasc Biol.2006; 26 (4):787-793
    [13]Gabriella Gruden, Shawanna Araf. IGF-I induces vascular endothelial growth factor in human mesangial cells via a Src-dependent mechanism. Kidney International.2003; 63 (4):1249-1255
    [14]Wojtaszewski, Jakob N. Nielsen, Erik A. Richter. Effect of acute exercise on insulin signaling and action in humans J Appl Physiol.2002; 93 (1):384-392
    [15]Zong CS,Chan J Levy DE et al. Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem.2000; 275 (20):15099-15105
    [16]Judith Staerk,Anders Kallin, Jean-Baptiste Demoulin. JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation cross-talk with IGF-1 receptor. J Biol Chem.2005; 280 (51):41893-99
    [17]Yong Lin, Qingfeng Yang, Xia Wang. The essential role of the death domain kinase receptor-interacting protein in insulin growth factor-I-induced c-Jun N-terminal kinase activation. J Biol Chem.2006; 281 (33):23525-23532
    [18]Jane J. Kim, Byung-Chul Park, Yoshiaki Kido et al. Mitogenic and metabolic effects of type Ⅰ IGF receptor overexpression in insulin receptor-deficient hepatocytes. Endocrinology.2001; 142 (8):83354-3360
    [19]Birgitte Urso, Carola U. Niesler, Stephen O'Rahilly. Comparison of anti-apoptotic signalling by the insulin receptor and IGF-Ⅰ receptor in preadipocytes and adipocytes. Cell Signal.2001; 13 (4):279-285
    [20]Adam Denley, Gemma V. Brierley, Julie M. Carroll. Differential activation of insulin receptor isoforms by insulin-like growth factors is determined by the C domain. Endocrinology.2006; 147 (2):1029-1036
    [21]P Kornprat, P Rehak, J Ruschoff. Expression of IGF-Ⅰ, IGF-Ⅱ, and IGF-IR in gallbladder carcinoma. A systematic analysis including primary and corresponding metastatic tumours J Clin Pathol.2006; 59(2):202-206
    [22]G6tz W, Heinen M, Lossdorfer S, Jager A. Immunohistochemical localization of components of the insulin-like growth factor system in human permanent teeth. Arch Oral Biol.2006; 51(5):387-95.
    [23]Javier Caviedes-Bucheli, Hugo Roberto Mu, Carlos Eduardo Rodr guez. Expression of insulin-like growth factor-1 receptor in human pulp tissue. J Endodotics.2004; 30(11):766-769
    [24]Termsuknirandorn S, Hosomichi J, Soma K. Occlusal stimuli influence on the expression IGF-1 and the IGF-1 receptor in the rat periodontal ligament. Angle Orthod.2008; 78(4):610-6..
    [25]马攀,刘洪臣,吴霞.PI3 kinase/Akt通路对颌骨代谢的调节.中华老年口腔医学杂志.2009;7(2):110-113
    [26]吴璇,刘洪臣,马卫东糖尿病大鼠下颌骨成骨细胞体外特性的研究. 中华老年口腔医学杂志.2008;6(2):97-100
    [27]吕娇,刘洪臣,王东胜 二甲双胍对成骨细胞葡萄糖摄取及葡萄糖转运蛋白-1表达的影响. 口腔颌面修复学杂志.2008;9(2):121-123
    [28]吴霞,刘洪臣,刘宇.大鼠下颌骨来源的成骨细胞对甲硝唑和替硝唑的转运.口腔颌面修复学杂志.2007;8(1):59-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700