用户名: 密码: 验证码:
十字花科黑腐病菌锌吸收调控蛋白基因zur启动子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在细菌中,锌吸收调控蛋白Zur(zinc uptake regulator)(由zur基因编码)的主要功能是当细胞内锌离子浓度过高时抑制锌吸收系统的表达。但是,本实验室的研究表明,在十字花科黑腐病菌(Xanthomonascampestris pv.campestris)中,zur(基因编号为XC1430)除了调控锌离子平衡外,还参与了该菌的致病过程和EPS产生。在完成zur基因的功能鉴定后,本实验室还对zur基因的启动子进行了初步研究,推测zur基因可能存在两个独立的启动子P1(基因组注释的ATG前面114 bp)和P2(基因组注释的zur基因读码框内,ATG下游63 bp处的另一个翻译起始密码子GTG前108 bp)。为了证实这一假设,本研究分别构建了启动子P1和P2与无启动子gusA基因的融合报告质粒pL6PlgusA和pL6P2gusA,并检测它们在野生型菌株8004中的GUS活性,结果表明,P1和P2均有启动子活性;进一步的实验研究结果表明P1和P2的表达均不受锌离子的影响。为了确定P1和P2的转录起始位点,我们进行了5′-RACE实验,结果表明在ATG上游23 bp处的A碱基是P1的转录起始位点,但是在我们所用的实验条件下没有检测到P2的转录起始位点。
     由于GUS活性结果表明P1和P2都具有启动子活性,因此我们推测zur既可以从ATG起始也可以从GTG起始翻译,分别编码两种Zur蛋白即ZurL(从ATG起始)和ZurS(从GTG起始)。为了证实这一点,我们分别构建了带有翻译起始密码子ATG→ATA和GTG→GTA点突变的zur基因的质粒pL6zurATG和pL6zurGTG并分别导入zur的缺失突变体中,然后对点突变互补菌进行锌敏感性、EPS产量以及致病性进行检测。结果发现,将GTG点突变后(只能合成ZurL蛋白),重组质粒pL6zurATG可以互补zur突变体的锌敏感、致病力和EPS合成表型;而将ATG点突变后(只能合成ZurS蛋白),重组质粒pL6zurGTG可以互补突变体的致病力、EPS合成而不能互补其锌敏感表型,表明从ATG起始或从GTG起始编码的蛋白均有生物学功能,且在功能有交叉也有差异:从ATG起始编码的蛋白ZurL具有锌平衡、EPS合成、致病调控功能,而从GTG起始编码的蛋白ZurS,只有EPS合成、致病调控功能而没有锌平衡功能。为了进一步鉴定ZurL和ZurS蛋白是否存在,我们在NYGB培养条件下对点突变互补菌株和缺失突变体菌株的Zur蛋白进行了Western blotting检测,结果发现在点突变体菌株的细胞提取物均能检测到一条杂交带,而在缺失突变体菌株的细胞提取物中未能检测到杂交带,其结果表明在各自的点突变互补菌株中ZurL和ZurS是存在的,其结果与点突变体的表型检测结果相符。但Western blotting检测野生型菌株Xcc 8004的细胞提取物时,未能检测到两条杂交带。
     以上这些结果证明,(1)除了ATG前面的启动子(P1)外,zur基因读码框内GTG上游-108 bp区域(P2)具有启动子活性;(2)从ATG起始编码的蛋白ZurL具有锌平衡、EPS合成、致病调控功能,而从GTG起始编码的蛋白ZurS,只有EPS合成、致病调控功能而没有锌平衡功能。但在所用的实验条件下,用Western blotting未能检测到Xcc 8004细胞内有两种Zur蛋白。
In bacteria,the zinc uptake regulator Zur is encoded by zur gene and typically functions as a repressor to repress the expression of zinc uptake systems when the zinc concentration inside the cell reached a threshold. However,our previouse work showed that,in Xanthomonas campestris pv.campestris(Xcc),in addition to involved in zinc homeiostasis,zur (ORF number XC1430)also play an important role in pathogenesis and EPS production of this pathogen.Furthermore,our unpublished data suggested that Xcc zur may contain two independent promoters,P1, which is located upstream of the annotated start coden ATG,and P2, which is upstream of GTG located inside the coding region ofzur(63 bp downstream of ATG).To confirm this hypothesis,in this study,we constructed the promoter(P1 and P2)-gusA transcriptional fusion reporter plasmids pL6PlgusA and pL6P2gusA,and tested their GUS activity.The result showed that both P1 and P2 displayed promoter activity,and expression of P1 and P2 is not affected by zinc concentration.In order to identify the transcriptional start site of P1 and P2,we carried out the 5'-RACE analysis and the result show that the A base located 23 bp upstream of the annotated start coden ATG is the transcriptional start site for P1,but we can't detect the transcriptional start site of P2 under the experimental conditions.
     Based on the fact that P1 and P2 are functional promoters,we speculated that the two promoters can lead to the sythesis of two different functional Zur proteins,one(designated as ZurL)was translated from the ATG and the other(designated as ZurS)was translated from GTG.To confirm this,the 2 start codens,ATG and GTG,were respectively mutated(ATG→ATA,GTG→GTA)by site-directed mutagenesis,and the function of the mutated zur were assay by complementation of the zur deletion mutant.Result showed that,the plasmid pL6zurATG which expresses ZurL can restore all of the phenotypes(sensitive to high zinc concentration、reduced virulence and EPS production)of the zur mutant, while the plasmid pL6zurGTG which expresses the ZurS can restore EPS production and virulence but not high zinc sensitivity,indicating that ZurL and ZurS have overlap and different functions:ZurL has zinc homeostasis regulation,EPS production and virulence function ZurS has EPS production and virulence function.To test if the ZurL and ZurS do exist in Xcc cell,we performed Western blotting analysis and the result show that one hybrid band was observed in the cell extractes of each one site-directed complement strain,but only one hybrid band was observed in the cell extractes of the wild type strain 8004.
     Based on the above results,we conclude that:(1)it is very likely that Xcc zur has two different promoters:except for the promoter upstream of ATG(P1),the region upstream of GTG is also a functional promoter(P2).(2)ZurL(translated from ATG)and ZurS(translated from GTG)have overlap and different function.
引文
[1]Qian W,Jia Y,Ren SX,et al.Comparative and functional genomic analyses of the pathogennicity of phytopathagen Xanthomonas campestris pv.campestris.Genome Res.2005.15:757-767.
    [2]Jansson PE,Kenne L and Lindberg B.Structure of extracellular polysaecharide from Xanthomonas campestris.Carbohydr Res.1975.45:275-82.
    [3]Sutton JC and Williams PH.Relation of xylem plugging to black rot lesion development in cabbage.Can J.Bot.1970.48:391-401.
    [4]Daniels MJ,Barber CE,Dow JM,et al.Plant and bacterial genes involved in interactions between Xanthomonas and crucifers.Mol Plant Microbe Interact.1993.2:423-433.
    [5]王金生.《分子植物病理学》.1999。中国农业出版社.
    [6]Becker A,Katzen F,Puhler A,et al.Xanthan gum biosynthesis and application:a biochemical/genetic perspective.Appl Microbiol Biotechnol.Aug.1998.50(2):145-52.
    [7]Koplin R,Arnold W,Hotte B,et al.Genetics of xanthan production in Xanthomonas campestris:the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis.J.Bacteriol.1992.174:191-199.
    [8]Kingsley MT,Gabriel DW,Marlow GC,et al.The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide.J.Bacteriol.1993.175:5839-5850.
    [9]陆光涛,唐纪良,危广宁,等.野油菜黄单胞菌野油菜致病变种8004菌株wxcA基因与EPS的产量有关.生物工程学报。2004.20:477-483.
    [10]Dunger G,Relling VM,Tondo ML,et al.Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival.Arch.Microbiol.2007.188:127-135.
    [11]Tang JL,Lui YN,Barber CE,et al.Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pv.campestris.Mol.Gen.Genet.1991.226:409-417.
    [12]Dong Q and Ebright RH.DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein.J.B acteriol.1992.174:5457-5461.
    [13]Poplawsky AR and Chun W.pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv.campestris.J.Bacteriol.1997.179:439-444.
    [14]Poplawsky AR,Chun W,Slater H,et al.Synthesis of extracetlular polysaccharide,extracellular enzymes,and xanthomonadin in Xanthomonas campestris:evidence for the involvement of two intercellular regulatory signals.Mol.Plant-Microbe Interact.1998.11:68-70.
    [15]Tang JL,Gough CI and Daniels MJ.Cloning of genes involved in negative regulation of production of extracellular enzymes and polysacchadde of Xanthomonas campestris pathovar campestris.Mol.Gen.Genet.1990.222:157-160.
    [16]Kanda T.Iso-and anteiso-fatty acid in bacterial:biosynthesis,function,and taxonomic signifiance.Microbiot.1990.56:572-574.
    [17]Vorholter FJ.Lipopolysaccharide biosynthesis in Xanthomonas campestris pv.campestris:a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core.Mol.Genet.Genomics.2001.266:79-95.
    [18]Dow JM,Osboum AE,Wilson TJG,et al.A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis.Mol.Plant-Microbe Interact.1995.8:768-777.
    [19]Krplin R and Wang G.A 3.9-kb DNA region ofXanthomonas campestris pv.campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose.J.Bacterial.1993.175:7786-7792.
    [20]Steinmann D,Krplin R,Puhler A,et al.Xanthomonas campestris pv.campestris lpsI and lpsJ genes encoding putative proteins with sequence similarity to.the alpha- and beta-subunits of 3-oxoacid CoA-transferases are involved in LPS biosynthesis.Arch.Microbiol.1997.168:441-447.
    [21]Lindgren PB.The role of hrp genes during plant-bacterial interactions.Annu.Rev.Phytopathol.1997.35:129-152.
    [22]Arlat M,Gough CL,Barber CE,et al.Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum.Mol.Plant-Microbe Interact.1991.4:593-601.
    [23]James WY,Chan PH and Goodwin.The molecular genetics of virulence of Xanthomonas campestris.Biotechnology Advances.1999.17:489-508.
    [24]Vallee BL and Auld DS.Zinc coordination,function,and structure of zinc enzymes and other proteins.Biochemistry(Moscow).1990.29:5647-5659.
    [25]Coleman JE.Zinc enzymes.Curr.Opin.Chem.Biol.1998.2:222-234.
    [26]Falchuk KH.Zinc in developmental biology:the role of metal dependent transcription regulation.Prog.Clin.Biol.Res.1993.380:91-111.
    [27]Bray TM and Bettger WJ.The physiological role of zinc as an antioxidant.Free Radic.Biol.Med.1990.8:281-291.
    [28]Aagaard A and Brzezinski P.Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen.FEBS Lett.2001.494:157-160.
    [29]Mills DA,Schmidt B,Hiser C,et al.Membrane potential-controlled inhibition of cytochrome c oxidase by zinc.J.Biol.Chem.2002.277:14894-14901.
    [30]Kasahara M and Anraku Y.Inhibition of the respiratory chain of Escherichia coli by zinc ions.J.Biochem(Tokyo).1972.72(3):777-81.
    [31]Hantke K.Bacterial zinc transporters and regulators.Biometals.2001.14:239-249.
    [32]Saier MH.A functional-phylogenetic classification system for transmembrane solute transporters.Microbio Mol Biol Rev.2000.64:354-411.
    [33]Hantke K.Bacterial zinc uptake and regulators.Curt.Opin.Microbiol.2005.8:196-202.
    [34]Escolar L,Perez-Martin J and de Lorenzo V.Opening the iron box:transcriptional metalloregulation by the Fur protein.J.Bacteriol.1999.181:6223--6229.
    [35]Oram DM,Avdalovic A and Holmes RK.Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and Saprophytic corynebacterial species.Infect.Immun.2004.72:1885-1895.
    [36]Brown NL,Stoyanov JV,Kidd SP,et al.The MerR family of transcriptional regulators.FEMS Microbiol.Rev.2003.27:145-163.
    [37]Busenlehner LS,Pennella MA and Giedroc DP The SmtB/ArsR family of metalloregulatory transcriptional repressors:Structural insights into prokaryotic metal resistance.FEMS Microbiol.Rev.2003.27:131-143.
    [38]De Pina K,Desjardin V,Mandrand-Berthelot MA,et al.Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli.J.Bacteriol.1999.181:670-674.
    [39]Moore CM and Helmann JD.Metal ion homeostasis in Bacillus subtilis.Curr.Opin.Microbiol.2005.8:188-195.
    [40]Nies DH.The cobalt,zinc,and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli.J.Bacteriol.1995.177:2707-2712.
    [41]Rensing C,Pribyl T and Nies DH.New functions for the three subunits of the CzcCBA cation-proton antiporter.J.Bacteriol.1997.179:6871-6879.
    [42]Legatzki A,Grass G,Anton A,et al.Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans.J.Bacteriol.2003.185:4354-4361.
    [43]Munkelt D,Grass G and Nies DH.The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity.J.Bacteriol.2004.186:8036-8043.
    [44]Hassan MT,van der Lelie D.,Springael D,et al.Identification of a gene cluster,.czr,involved in cadmium and zinc resistance in Pseudomonas aeruginosa.Gene.1999.238:417-425.
    [45]Van der Lelie D,Schwuchow T,Schwidetzky U,et al.Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus.Mol.Microbiol.1997.23:493-503.
    [46]Grosse C,Grass G,Anton A,et al.Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus.J,Bacteriol.1999.181:2385-2393.
    [47]Perron K,Caille O,Rossier C,et al.CzcR-CzcS,a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa.J.Biol.Chem.2004.279:8761-8768.
    [48]Nies DH.Efflux-mediated heavy metal resistance in prokaryotes.FEMS Microbiol Rev.2003.27:313-339.
    [49]Fagan MJ and Saier MHJr.P-type ATPases of eukaryotes and bacteria:sequence comparisons and construction of phylogenetic trees.J.Mol Evol.1994.38:57-99.
    [50]Rensing C,Mitra B and Rosen BP.A Zn(Ⅱ)-translocating P-type ATPase from Proteus mirabilis.Biochem Cell Biol.1998.76:787-790.
    [51]Herrmann L,Schwan D,Garner R,et al.Helicobacter pylori cadA encodes an essential Cd(Ⅱ)-Zn(Ⅱ)-Co(Ⅱ)resistance factor influencing urease activity.Mol.Microbiol.1999.33:524-536.
    [52]Alonso A,Sanchez P and Martinez JL.Stenotrophomonas maltophila D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance.Antimicrob Agents Chemother.2000.44:1778-1782.
    [53]Lebrun M,Audurier A and Cossart P.Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to carla and.cadC of Staphylococcus aureus and are induced by cadmium.J.Bacteriol.1994.176,3040-3048.
    [54]Gaballa A and Helmann JD.Bacillus subtilis CPx-type ATPases:characterization of Cd,Zn,Co and Cu effiux systems.Biometals.2003.16:497-505.
    [55]Yoon KP and Silver S.A second gene in the Staphylococcus aureus cadA cadmium resisitance determinant of plasmid pi258.J.Bacterial.1991.173:7636-7642.
    [56]Brocklehurst KR,Hobman JL,Lawley B,et al.ZntR is a Zn(Ⅱ)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli.Mol.Microbiol.1999.31:893-902.
    [57]Cook WJ,Kar SR,Taylor KB,et al.Crystal structure of the cyanobacterial metallothionein repressor SmtB:a model for metalloregulatory proteins.J.Mol.Biol.1998.275:337-346.
    [58]Guffanti AA,Wei Y,Rood SV,et al.An antiport mechanism for a member of the cation diffusion facilitator family:divalent cations efflux in exchange for K+ and H+.Mol.Microbiol.2002.45:145-153.
    [59]Lee SM,Grass G,Haney CJ,et al.Functional analysis of the Escherichia coli zinc transporter ZitB.FEMS Microbiol Lett.2002.215:273-278
    [60].Grass G,Fan B,Rosen BP,et al.ZitB(YbgR),a member of the cation diffusion facilitator family,is an additional zinc transporter in Escherichia coli.J.Bacteriol.2001.183:4664-4667.
    [61]Grass G,Otto M,Fricke B,et al.FieF(YiiP)from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress.Arch.Microbiol.2005.183:9-18.
    [62]Xiong A and Jayaswal RK.Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus.J.Bacteriol.1998.180:4024-4029
    [63]Singh VK,Xiong A,Usgaard TR,et al.ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus.Mol.Microbiol.1999.33:200-207.
    [64]Blencowe DK and Morby AP.Zn(Ⅱ)metabolism in prokaryotes.FEMS Microbiol Rev.2003.27:291-311.
    [65]Gaballa A and Helmann JD.Identification of a zinc-specific metalloregulatory protein,Zur,controlling zinc transport operons in Bacillus subtilis.J.Bacteriol.1998.180:5815-5821.
    [66]Dalet K,Gouin E,Cenatiempo Y,et al.Characterisation of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocyto genes.FEMS Microbiol Lett.1999.174:111-116.
    [67]Chen CY and Morse SA.Identification and characterization of a high-affinity zinc uptake system in Neisseria gonorrhoeae.FEMS Microbiol Lett.2001.7:67-71.
    [68]Campoy S,Jara M,Busquets N,et al.Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence.Infect.Immun.2002.70:4721-4725.
    [69]Garrido ME,Bosch M,Medina R,et al.The high-affinity zinc-uptake system znuACB is under control of the iron-uptake regulator(fur)gene in the animal pathogen Pasteurella multocida.FEMS Microbiol Lett.2003.221:31-37.
    [70]Anna M,Elisa DG,Marcela R,et al.Global Analysis of the Mycobacterium Tuberculosis Zur (FurB)Regulon.J.Bacteriol.2007.189:730-740
    [71]Shin JH,Oh SY,Kim SJ,et al.The Zinc-Responsive Regulator zur Controls a Zinc Uptake System and Some Ribosomal Proteins in Streptomyces coelicolor A3(2).J.Bacteriol.2007.189:4070-4077
    [72]Silke I,Patzer and Klaus Hantke.The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli.Molecular Microbiology.1998.28:1199-1210.
    [73]Dinthilhac A,Alloing G,Granadel C,et al.Competence and virulence of Streptococcus pneumoniae:AdeA and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases.Mol.Microbiol.1997.25:727-739.
    [74]Posey JE,Hardham JM and Norris SJ.Characterization of a manganese-dependent regulatory protein,TroR,from Treponema pallidum.Proc Natl Acad Sci USA.1999.96:10887-10892.
    [75]Beard S J,Hashim R,Wu G,et al.Evidence for the transport of zinc(Ⅱ)ions via the pit inorganic phosphate transport system in Escherichia coli.FEMS Microbiol Lett.2000.184:231-235.
    [76]Grass G,Wong MD,Rosen BP,et al.ZupT is a Zn(Ⅱ)uptake system in Escherichia coli.J Bacteriol.2002.184:864-866.
    [77]Gaballa A,Wang T,Ye RW,et al.Functional analysis of the Bacillus subtilis Zur regulon.J.Bacteriol.2002.184:6508-6514.
    [78]Krom BP,Wamer JB,Konings WN,et al.Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis.J.Bacteriol.2000.182:6374-6381.
    [79]Franza T,Sauvage C and Expert D.Iron regulation and pathogenicity in Erwinia chrysanthemi strain 3937:role of the Fur repressor protein.Mol.Plant-Microbe Interact.1999.12:119-128.
    [80]Lindsay JA and Foster SJ.zur:a Zn.(2+).- responsive regulatory element of Staphylococcus aureus.Microbiology.2001.147:1259-1266.
    [81]Camilli A and Mekalanos JJ.Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection.Mol Microbiol.1995.18:671-83.
    [82]Wang J,Lory S,Ramphal R,et al.Isolation and characterization of Pseudomonas aeruginosa.genes inducible by respiratory mucus derived from cystic fibrosis patients.Mol.Microbiol.1996.22:1005-1012.
    [83]Tang DJ,Li XJ,He YQ,et al.The Zinc Uptake Regulator Zur Is Essential for the Full Virulence of Xanthomonas campestris pv.campestris.Mol.Plant-Microbe Interact.2005.18:652-658.
    [84]Yang W,Liu Y,Chen L,et al.Zinc uptake regulator(zur)gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv.oryzae in rice.Curr.Microbiol.2007.54:307-314.
    [85]Akanuma G,Nanamiya H,Natori YN,et al.Liberation of zinc-containing L31(RpmE)from ribosomes by its paralogous gene product,YtiA,in Bacillus subtilis.J.Bacteriol.2006:188:2715-2720.
    [86]Panina EM,Mironov AA and Gelfand MS.Comparative genomics of bacterial zinc regulons:enhanced ion transport,pathogenesis,and rearrangement of ribosomal proteins.Proc.Natl.Acad.Sci.USA.2003.100:9912-9917.
    [87]Patzer SI and Hantke.K.The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake operon in Escherichia coli.J.Biol.Chem.2000.275:24321-24332
    [88]Caryn EO,Thomas V and OOHalloran.Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis.Science.2001.292:2488-2492
    [89]Owen GA,Pascoe B,Kallifidas D,et al.Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigrnaR.J.Bacteriol.2007.189:4078-4086.
    [90]Makarova KS,Ponomarev VA and Koonin EV.Two C or not two C:recurrent disruption of Zn-ribbons,gene duplication,lineage-specific gene loss,and.horizontal gene transfer in evolution of bacterial ribosomal proteins.Genome Biol.2001.2:0033.1-0033.14.
    [91]Canneva F,Branzoni MG,Riccardi R,et al.Rv2358 and FurB:two transcriptional regulators from Mycobacterium tuberculosis which respond to zinc.J.Bacteriol.2005.187:5837-5840.
    [92]Milano A,Branzoni M,Canneva F,et al.The Mycobacterium tuberculosis Rv2358-furB operon is induced by zinc.Res.Microbiol.2004.155:192-200.
    [93]He YW,Ng AY,Xu M,et al.Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical sign.ailing network.Mol.Microbiol.2007.64:281-292.
    [94]Isabel D,Raffaele I,Cristina A,et al.The Iron-Responsive Regulator Fur Is Transcriptionally Autoregulated and Not Essential in Neisseria Meningitides.J.Bacteriol.2003.185(20):6032-6041.
    [95]Alice B,Anne FC,Annie C,et al.Multistress Regulation in Escherichia coli:Expression of osmB Involves Two Independent Promoters Responding either to σS or to the RcsCDB His-Asp Phosphorelay.J.Bacteriol.2005.187(9):3282-3286.
    [96]Chun JY and Gary SA.Bradyrhizobium Japonicum Gene Essential for Nodulation Competitiveness Is Differentially Regulation from Two Promoters.Mol.Plant-Microbe Interact.1994.7(2):248-255..
    [97]Nakagawa A,Oshima T and Mori H.Identification and characterization of a second inducible promoter of relA in Escherichia coli.Genes Genet Syst.2006.81(5):299-310.
    [98]Horowitz NH.The one gene-one enzyme hypothesis.Genetics.1948.33:612-613.
    [99]Holmes D J,Caso JL and Thompson CJ.Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans.EMBO J.1993.12:3183-3191.
    [100]Morel-Deville F,Vachon G,Sacerdot C,et al.Characterization of the translational start site of IF2β,a short form of Escherichia coli initiation factor IF2.Eur.J.Biochem.1990.188:605-614.
    [101]Park SK,Kim KI,Woo KM,et al.Site directed mutagenesis of the dual translational initiation sites of clpB gene of Escherichia coli and characterization of its gene products.J.Biol Chem.1993.268:20170-20174.
    [102]Seol JH,Yoo S J,Kim KI,et al.The 65-kDa protein from the internal translational initiation site of the clpA gene inhibits the ATP-dependent protease Ti in Escherichia coll.J.Biol Chem.1994.269:29468-29473.
    [103]Thony-Meyer L,James P and Hennecke H.From one gene to two proteins:the biogenesis of cytochromes b and cl in Bradyrhizobium japonicum.Proc Natl Acad Sci USA 1991.88:5001-5005.
    [104]Misra N,Habib S,Ranjan A,et al.Expression and functional characterisation of the clpC gene of Mycobacterium leprae:ClpC protein elicits human antibody response.Gene.1996.172(1):99-104.
    [105]John Loh,Minviluz GS,Michael JS,et al.The Bradyrhizobiurn japonicum nolA Gene Encodes Three Functionally Distinct Proteins.J.Bacteriol.1999.181(5):1544-1554.
    [106]Attwood GT,Herrera F,Weissenstein LA,et al.An endo-β-1,4-glucanase gene(celA)from the rumen anaerobe Ruminococcus albus 8:cloning,sequencing,and transcriptional analysis.Can.J.Microbiol.1996.42:267-278.
    [107]Murphy JP,Duggleby CJ,Atkinson MA,et al.The functional units of a peptostreptococcal protein L.Mol.Microbiol.1994.12:911-920.
    [108]Yanisch-Perron C,Vieira J,Messing J.Improved M13 phage cloning vectors and host strains:nucleotide sequences of the M13mp18 and pUC19 vectors.Gene.1985,33:103-119
    [109]Daniels MJ,Barber CE,Turner PC,et al.,Cloning of genes involved in pathogenicity of Xanthomonas campestris pv.campestris using the broad host range cosmid pLAFR1.EMBO J.1984.3:3323-3328.
    [110]Huynh TV,Dahlbeck D,Staskawicz BJ,Bacterial blight of soybean:regulation of a pathogen gene determining host cultivar specificity.Science.1989.245:1374-1377.
    [111]Ong SA,Ditta GS,Helinski DR,Heme biosynthesis in Rhizobium.Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti.J.Biol.Chem.1982,257:8724-8730.
    [112]李祥江 野油菜黄单胞菌锌吸收调控蛋白的鉴定2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700