用户名: 密码: 验证码:
我国近海常见磷虾遗传多样性与分化的分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷虾是一类大型的海洋浮游动物,数量大,分布广,是海洋浮游动物的重要类群之一,在海洋生态系统中具有重要地位,尤其在南大洋,是维系海洋初级生产者与更高营养阶的主要环节之一;同时,磷虾又是许多经济鱼类的主要饵料,近年来,磷虾作为新兴的渔业资源正引起人们的高度重视。全世界海洋中磷虾类近90种,中国近海磷虾类迄今已记录2科7属47种,其中以太平洋磷虾、长额磷虾、宽额假磷虾和中华假磷虾为主要优势种。它们的生态特性和分布中心各有不同,可作为研究海流和水团的指示生物。
     本文采用聚丙烯酰胺凝胶电泳,通过等位酶技术分析了我国近海太平洋磷虾、宽额假磷虾和中华假磷虾种群的遗传多样性与遗传分化情况,为进一步了解磷虾的起源和系统进化提供实验证据,也为海洋浮游生物多样性保护提供基础资料。
     (一)太平洋磷虾遗传多样性与分化研究:
     1.本文分析了黄、东海2个航次,8个站位的太平洋磷虾群体,在7个酶系统中,共检测到9个酶位点,即:α淀粉酶(1个位点,3个等位基因),R淀粉酶(1个位点,2个等位基因),酯酶(3个位点,Est5、Est6和Est7,除Est7为单态外,Est5和Est6各有2个等位基因),苹果酸脱氢酶(1个位点,2个等位基因),苹果酸酶(1个位点,2个等位基因),乳酸脱氢酶(1个位点,4个等位基因),磷酸葡萄糖转氨酶(1个位点,5个等位基因)。
     2.除E1站位因样品数太少未进行遗传分析外,其余7个站位太平洋磷虾群体具有较高的遗传多样性:各站位平均每个位点等位基因有效数A_e为1.2845~1.4165,预期杂合度H_e为0.1457~0.2271,多态位点百分数P为42.86~87.50%;所有站位太平洋磷虾总的多态位点百分数P=88.89%,预期杂合度H_e=0.3140±0.2552,A_e=1.6628±0.6585。
     3.7个站位太平洋磷虾群体间遗传分化程度较高,G_(st)=0.4837,说明群体中总的遗传多样性48.37%来自各站位间的遗传变异,51.63%属于站位内的遗传变异,与F统计量F_(st)=0.5123基本一致。站位间的基因流N_m=0.2380,表明各站位间基因交流有限,反映出各站位间存在着隔离。
    
    我国近海常见磷虾遗传多样性与分化的分子生态学研究
     各站位间遗传距离为D二0.3383(0.0032一0.7641),遗传一致度I=
     0.7482(0.4658一0.9968),聚类分析表明:黄、东海太平洋磷虾可分为
     2个种群,一个由处于黄海冷水团中央的群体构成,另一个由黄海冷水
     团边缘和东海群体组成。海流、水团以及生境选择差异可能是导致黄、
     东海太平洋磷虾群体间生化遗传差异的主要原因。
    (二)宽额假磷虾遗传多样性和遗传分化研究
     1.本文对东海外海和南海2个站位宽额假磷虾群体进行了分析,在检测
     的9个酶系统中,共检测到11个酶位点:天冬氨酸转氨酶(l个位
     点,2个等位基因),碱性磷酸酶(2个位点,A加了和A加2各有2个等
     位基因),R淀粉酶(l个位点,2个等位基因),醋酶(2个位点,
     Es巧和Est7各有2个等位基因),苹果酸脱氢酶(l个位点,3个等
     位基因),苹果酸酶(l个位点,2个等位基因),乳酸脱氢酶(l个
     位点,4个等位基因),磷酸葡萄糖转氨酶(l个位点,3个等位基因);
     a淀粉酶为单态。其中东海E7站位未对ALP和AAT进行分析,Est7
     仅在E7站位有表达。
     2.2个站位宽额假磷虾群体遗传多样性水平最高:各站位平均每个位点
     等位基因有效数A。为1 .3791一1 .6534,预期杂合度He为0.224)
     0.3269,多态位点百分数P为70.00一75.00%;所有站位宽额假磷虾
     总的多态位点百分数P二90.91%,预期杂合度He=0.3336士0.1 961,
     A。=1 .6310士0.1509。
     3.2个站位宽额假磷虾群体间遗传分化程度较高,Gs,=0.2804,说明群
     体中总的遗传多样性28.04%来自各站位间的遗传变异,71.%%属于
     站位内的遗传变异,接近F统计量Fs,二0.3引O。站位间的基因流呱
     二O,4832,表明站位间存在着隔离、基因交流有限。站位间遗传距离
     为D二0.2749,遗传一致度I=0.75%,结果表明:E7站位和06A站
     位的宽额假磷虾分别代表着不同的地理种群,空间隔离是东、南海宽
     额假磷虾群体间生化遗传差异的主要原因。
    (三)中华假磷虾遗传多样性
     1.厦门港中华假磷虾在检测的9个酶系统中,共检测到10个酶位点:
    
    我国近海常见磷虾遗传多样性与分化的分子生态学研究
    天冬氨酸转氨酶、a淀粉酶、酣酶和苹果酸酶均为l个位点,具2个
    等位基因;乳酸脱氢酶和苹果酸脱氢酶(l个位点,3个等位基因),
    磷酸葡萄糖转氨酶(l个位点,4个等位基因);碱性磷酸酶(2个位点,
    月加了有2个等位基因);AIPZ和R淀粉酶为单态。
    中华假磷虾遗传多样性最小,平均每个位点等位基因有效数A。二
    1.2624士0.3363,预期杂合度He为0.1“1士0.1766,多态位点百分数
    P为80.00%
    中华假磷虾和宽额假磷虾的遗传距离为0.7870,遗传一致度了二
    0.4696,种f司界限明显。
The Order Euphausiacea consists of 86 or 87 species distributed over the ocean of the world, plays an important role in marine ecosystem, particularly in southern ocean, and is the key link of marine primarily productivity and higher trophic levels. Krill fisheries are relatively recent developments.
    47 species belonging to seven genera of two families in krill were recorded in China seas. Among them, Euphausia pacifica, Pseudeuphausia latifrons and P. sinica are dominant species that play a key role in the China sea. By means of the vertical slab polyacrylamide gel electrophoresis, genetic heterogeneity of three krill was investigated, in order to elucidate the genetic diversity and differentiation among them. 1. Genetic diversity and differentiation of E. pacifica
    E. pacifica were collected at eight stations in the Yellow Sea and East China Sea between 2000-2001 as part of 973 Chinese Globec. Seven enzyme systems were assayed as follow, a-l,4-glucan-4-glucaflhydrolase (E.C. 3.2.1.1, a-AMY), a-l,6-glucano-hydrolase (E.C. 3.2.1.9, R-AMY), esterase (E.C. 3.1.1.1, EST), malate dehydrogenase (E.C. 1.1.1.37, MDH), malic enzyme (E.C. 1.1.1.40, ME), lactate dehydrogenase (E.C. 1.1.1.27, LDH), and glucose phosphate isomerase (E.C. 5.3.1.9, PGI).
    The proportion of polymorphic loci per station ranged from 42.86 to 87.50%, the mean value over all stations was 88.89%. Ivfean expected heterozygosity per locus (He) calculated over the 9 loci analyzed ranged from 0.1457 to 0.2271, the average over all stations was 0.3140+0.2552. The effective number of alleles per locus varied between 1.2845 and 1.4165, the mean value over all stations was 1.6628?.6585.
    Genetic differentiation was high among the stations, the mean FST for all loci was 0.5123. The gene flow Nm was 0.2380<1, indicated that gene drift would promote the
    
    
    genetic differentiation. The Nei's genetic distance(D) between the stations was 0.3383 (0.0032-0.7641), and the genetic identity was 0.7482 (0.4658-0.9968). The arrangement of the various stations on an UPGMA dendrogram on the basis of D produced two main clusters, one formed by the stations E2 and 1 -4, and the other by the remaining stations. The genetic subdivision was due to the inche variation and circulation vicariance. The stations E2 and 1-4 were located at the cold water mass area of the central Yellow Sea, which characterized by low temperature, high salinity and stable theromocline would generate a retention mechanism that promoted the formation of separate, self-supporting stocks of krill.
    2 Genetic diversity and differentiation of P. latifrons
    Specimens of P. latifrons were collected from the East China Sea and the South China Sea. The zymogram phenotypes of aspartate aminotransferase (E. C. 2.6.1.1, AAT), alkaline phosphatase (E. C. 3.1.3.1, ALP), a-amylase (a-AMY), R-amylase (R-AMY), esterase (EST), lactate dehydrogenase (LDH), raalate dehydrogenase (MDH), malic enzyme (ME), and phosphoglweoisomerase (PGI) were scored.
    The proportion of polymorphic loci per station ranged from 70.00 to 75.00%, the mean value over two stations was 90.91%. Mean expected heterozygosity per locus (He) calculated over the 11 loci analyzed ranged from 0.2240 to 0.3269, the average over two stations was 0.3336?.1961. The effective number of alleles per locus varied between 1.3791 and 1.6534, the mean value over two stations was 1.6310+0.1509.
    The standardized variation in allele frequencies of P. latifrons populations between two stations was 0.3410, and the gene flow was 0.4832, suggesting that the magnitude of genetic differentiation between two populations was relatively high. The Nei's genetic distance between two stations was 0.2749, and the genetic identity was 0.7596. The genetic subdivision was due to the geographic barrier.
    3 Genetic diversity of P. sinica
    The genetic structure of P. sinica in Xiamen harbour was examined by analyzing the zymogram phenotypes of aspartate aminotransferase (AAT), alkaline phosphatase
    
    (ALP), a-amylase (o-AMY), R-amylase (R-AMY), esterase (EST), lactate deh
引文
Anderson R C, 1982. Isozyme variation in euphausiids. Ph. D. Thesis, University of East Anglia, Great Britain
    Angers A, Pothier F, Sévigny J et al., 1994. Tissue specificity and ontogeny of lactate dehydrogenase in snow crab, Chionoecetes opilio (Brachyura, Majidae), Comp. Biochem. Physiol., 108B(3): 385-395
    Ayala F J, Valentine J W, 1978. Genetic variation and resource stability in marine invertebrates, in Marine Organisms: Genetics, Ecology, and Evolution, Battaglia B & Bearmore J A eds., 23-51
    Ayala F J, Valentine J W, 1979. Genetic variability in the pelagic environment: a paradox? Ecology, 60(1): 24-29
    Ayala F J, Valentine J W, Zumwalt G S, 1975. An electrophoretic study of the antarctic zooplankton Euphausia superba, Limnol. Oceanogr., 20: 635-640
    Baker A de C, Boden B P, Brinton E, 1990. A Practical guide to the Euphausiids of the world, London: Natural history museum, 96p
    Bernadette C, 1996. Crustacea Euphausiacea: Euphausiids from the south-west tropical Pacific Ocean (New Caledonia Wallis and Futuna Island, Indonesia), functional morphology and biogeography, Memoires du Museum National d'Histoire Naturelle, 168:167-195 (English abstract)
    Boden B P, Johnson M W, Brition E, 1955. The Euphausiacea of the North Pacific, Bull. Scripps. Inst. Oceanogr., 6(8): 287-400
    Braga E, Zardoya R, Meyer A et al., 1999. Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Mar. Biol., 133: 79-90
    Brinton E, 1975. Euphausiids of southeast asian waters, Naga Rep. Scripps Inst. Oceangr., 4(5): 287p
    Bucklin A, 1986. The genetic structure of zooplankton populations, in Unesco technical papers in marine science, 49: 35-41
    Bucklin A, 1989. Genetic tracers of zooplankton: transport in coastal filaments off Northern California, J. Geophys. Res., 94(C6): 8277-8288
    Bucklin A, 1991. Population genetic responses of the planktonic copepod Metridia pacifica to a coastal eddy in the California current, J. Geophys. Res., 96(C8): 14799-14808
    Bucklin A, 1995. Molecular markers of zooplankton dispersal in the ocean, Rev. Geophys., Suppl: 1165-1175
    Bucklin A, Bentley A M, Franzen S P, 1995. Distribution and relative abundance of Pseudocalanus moultoni and P. newmani (Copepoda: Calanoida) on Georges Bank using molecular identification of sibling species, Mar. Biol., 132: 97-106
    Bucklin A, Frost B W and Kocher T D, 1995. Molecular systematics of six Calanus and three Metridia species (Catanoida: Copepoda), Mar. Biol., 121: 655-646
    Bucklin A, Guarnieri M, Hill R S et al., 1999. Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive species-specific PCR, Hydrobiologia, 401: 239-254
    Bucklin A, Guarnieri M, McGillicuddy D J et al., 2001. Spring evolution of Pseudocalanus
    
    spp. Abundance on Georges Bank based on molecular discrimination of P moultoni and P. newmani, Deep-Sea Res. Ⅱ, 48: 589-608
    Bucklin A, Lajeunesse T C, Curry E et al., 1996. Molecular genetic diversity of the copepod, Nannocalanus minor: genetic evidence of species and population structure in the N. Atlantic Ocean, J. Mar. Res., 54: 285-310
    Bucklin A, Marcus N H, 1985. Genetic differentiation of populations of the planktonic copepod Labidocera aestiva, Mar. Biol., 84: 219-224
    Bucklin A, Smolenack S B, Bentley A M et al., 1997. Gene flow patterns of the euphausiid, Meganyctiphanes norvegica, in the NW Atlantic based on mtDNA sequences for cytochrome b and cytochrome oxidase I, J Plankton Res., 19(11): 1763-1781
    Bucklin A, Wiebe P H, 1986. Genetic heterogeneity in euphausiid population: Euphausia krohnii and Nematoscelis megalops in North Atlantic Slope Water, Limnol. Oceanogr., 31(6): 1346-1352
    Bucklin A, Wiebe P H, Smolenack S B et al., 2002. Integrated biochemical, molecular genetic, and bioacoustical analysis of mesoscale variability of the euphausiid Nematoscelis difficilis in the California Current, Deep-sea Res. Ⅰ, 49: 437-462
    Buclin A, Frost B W, Bradford-Grieve J et al., 2003. Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Ciausocalanidae, Mar. Biol., 142: 333-343
    Burton R S, 1983. Protein polymorphisms and genetic differentiation of marine invertebrate populations, Mar. Biol. Letters, 4: 193-206
    Burton R S, Feldman M W, Curtsinger J W, 1979. Population genetics of Tigriopus californicus (Copepoda: Harpacticoida) I Population structure along the central California coast, Mar. Ecol. Progr. Ser., 1: 29-39
    Committee on Molecular Marine Biology Ocean Studies Board National Research Council, 1994. Molecular biology in marine science: Science questions, Technological approaches, and Practical implications, National Academy Press: Washington D C, 76p
    DeSalle R, Schierwater B, 1998. Molecular approaches to ecology and evolution, Basel: Birkhuser Publishing Ltd.[罗勃·德塞尔,本内德·谢尔沃特(何田华等译),2001.生态与进化研究中的分子方法,北京:科学出版社,259p]
    Eichner R D, Kaplan T O, 1977a. Physical and chemical properties of lactate dehydrogenase in Homarus americanus, Arch. Biochem. Biophys., 181: 490-500
    Eichner R D, Kaptan T O, 1977b. Catalytic properties of lactate dehydrogenase in Homarus americanus, Arch. Biochem. Biophys., 181: 501-507
    Falkowski P G, LaRoche J, 1991. Molecular biology in studies of ocean processes, International Rev. Cytology, 28: 261-301
    Fevolden S E, 1982. Feeding habits and enzyme polymorphism in Thysanoessa raschi and Meganyctiphanes norvegica (Crustacea; Euphausiacea), Sarsia, 67(1): 1-10
    Fevolden S E, 1984. Biotic and physical environmental impact on genetic variation of krill, J. Crustacean Biol., 4(1): 206-223
    Fevolden S E, 1986. Genetic variation of Euphausia superba Dana in the antarctic peninsula waters, Sarsia, 71: 169-175
    Fevolden S E, 1988. Biochemical genetics and population structure of Euphausia superba, Comp. Biochem. Physiol., 90B(3): 507-513
    
    
    Fevolden S E, Ayala F J, 1981. Enzyme polymorphism in antarctic krill (Euphausiacea); genetic variation between populations and species, Sarsia, 66(3): 167-182
    Fevolden S E, Schneppenheim R, 1988. Genetic population structure of Euphausia superba Dana in the Atlantic Sector of the Southern Ocean as demonstrated by different electrophoretic techniques, Polar Biol., 9: 1-8
    Fevolden S E, Schneppenheim R, 1989. Genetic homogeneity of krill (Euphausia superba Dana) in the southern ocean, Polar Biol., 9: 533-539
    Gillespie J H, Langley C H, 1974. A general model to account for enzyme variation in natural populations, Genetics, 76: 837-848
    Gonzalez R R, Quiones R A, 2002. Ldh activity in Euphausia mucronata and Calanus chilensis: implications for vertical migration behabiour, J. Plankton Res. 24(12): 1349-1356
    Gooch J L, Hetrick S W, 1979. The relation of genetic structure to environmental structure: Gammarus minus in a karst area. Evolution, 33: 192-206
    Head E, 1997. Proceedings of the workshop on ecosystem considerations for krill and other forage fisheries, Can. Stock Assessment Proceedings Series, 97/5, 62p
    Hebert P D N, Moran C, 1980. Enzyme variability in natural populations of Daphnia carinata King, Heredity, 45: 313-321
    Hedgecock D, 1986. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. Mar. Sci., 39(2): 550-564
    Hedgecock D, 1994. Population genetics of marine organisms, U.S. GLOBEC News 6: 1-3
    Hedgecock D, Nelson N, Shleser R A et al., 1975. Biochemical genetics of lobsters (Homarus) Ⅱ Inheritance of allozyme in H. americanus, J, Herd., 66: 114-118
    Hedgecock D, Nelson N, Sikons J et al., 1977. Genetic similarity of American and European species of the lobster Homarus. Biol. Bull., 152: 41-50
    Hedgecock D, Tracey M L, Nelson K, 1982. Genetics in The Biology of Crustacea Vol.
    2 Embryology, Morphology, and Genetics, Abele L G eds, 283-403
    Hill R S, Allen L D, Bucklin A, 2001. Multiplexed species-specific PCR protocol to discriminate four N. Atlantic Calanus species, with an mtCOI gene tree for ten Calanus species, Mar. Biol., 139: 279-287
    Hoffmann R J, 1983. Temperature modulation of the kinetics of phosphoglucose isomerase genetic variants from the sea anemone Metridium senile, J. Exp. Zool., 227: 361-370
    Iguchi N, Ikeda T, 1995. Growth, metabolism and growth efficiency of a euphausiid crustacean Euphausia pacifica in the southern Japan Sea, as influenced by temperature, J. Plankton Res., 17(9): 1757-1769
    Jarman S N, 2001. The evolutionary history of krill inferred from nuclear large subunit rRNA sequence analysis, J. Linnean Soc., 73(2): 199-212
    Jarman S N, Elliot N G, Nicol S et al., 2002. Genetic differentiation in the Antarctic coastal krill Euphausia crystallorophias, Heredity, 83: 280-287
    Jarman S N, Elliott N G, Nicol S et al., 2000a. Molecular phylogenetics of circumglobal Euphausia species (Euphausiacea: Crustacea), Can. J. Fish. Aquat. Sci., 57(Suppl. 3): 51-58
    Jarman S N, Nicol S, Elliott N G et al., 2000b. 28S rRNA evolution in the Eumalacostraca and the phylogenetic position of krill, Molecular Phylogenetics and Evolution, 17(1): 26-36
    Kiesling T L, Wilkinson E, Rabalais J et al., 2002. Rapid identification of adult and naupliar stages of copepods using DNA hybridization methodology, Mar. Bioteehnol., 4:30-39
    
    
    Koehn R, 1978. Biochemical aspects of genetic variation at the Lap-locus in Mytilus edulis. in Marine Organisms: Genetics, Ecology, and Evolution, Battaglia B & Bearmore J A eds., 211-215
    Levins R, 1968. Evolution in changing environments, Princeton: Princeton Univ. Press, 120p
    Lindeque P K, Harris R P, Jone M B et al., 1999. Simple molecular method to distinguish the identity of Calanus species (Copepoda: Calanoida) at any developmental stage, Mar. Biol., 133: 91-96
    Manwell C, Baker C M A, Aston P A et al., 1967. Biochemical differences between Calanus finmarchicus and C. helgelandicus, JMBA, 47: 145-167
    Marvin K T, Benton R C, Lansford L N et al., 1977. Polymorphism in phosphohexose isomerase in white shrimp, Penaues seriferus Linnaeus, and pink shrimp, P duorarum duorarum. Comp. Biochem. Physiol., 57B: 95-97
    Massaro E J, 1970. Horseshoe crab Lactate dehydrogenase: tissue distribution and molecular weight, Science, 167:994-996
    Mauchline J, 1980. The biology of Mysids and Euphausiids, Adv. Mar. Biol., 18: 677p
    Mauchline J, Fisher L R, 1969. The biology of Euphausiids, Adv. Mar. Biol., 7: 454p
    Miller K J, Bradford-Grieve J M, Jillett J B. 1999. Genetic relationship between winter deep-dwelling and spring surface-dwelling female Neocalanus tonsusin the Southern Ocean, Mar. Biol., 134: 99-106
    Mulkiewicz E, Zietara M S, Stromberg J O et al., 2001. Lactate dehydrogenase from the northern krill Meganyctiphanes norvegica: Comparision with LDH from the antarctic krill Euphausia superba, Comp. Biochem. Physiol., 128B(2): 233-245
    Nei M, 1975. Molecular population genetics and evolution, New York: Elsevier, 288p[根井正利著,王家玉译,1983.分子群体遗传学与进化论,北京:农业出版社,278p]
    Nei M, 1987. Molecular evolutionary genetics. Columbia Univ. Press: New York
    Nelson K, Hedgecock D, 1980. Enzyme polymorphism and adaptive strategy in the decapod Crustacea, Am. Nat., 116: 238-280
    Nicol S, Endo Y, 1997. Krill fisheries of the world, FAO Fisheries Technical Paper, 367, 100p
    Patarnello T, Bargelloni L, Varotto V et al., 1996, Krill evolution and the antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data, Mar. Biol., 126: 603-608
    Poly W J, 1997. Nongenetic variation, genetic-environmental interactions and altered gene expression Ⅰ Temperature, photoperiod, diet, pH and sex-related effects, Comp. Biochem. Physiol., 117A(1): 11-66
    Richardson B J, Baverstock P R, Adams M, 1956. Allozyme electrophoresis, a hand book for animal systematics and population studies. Academic Press: Sydney, 410p
    Saborowski R, Buchholz F, 2002. Metabolic properties of northern krill, Meganyctiphanes norvegica, from different climatic zones Ⅱ Enzyme characteristics and actibities, Mar. Biol., 140: 557-565
    Schierwater B, Streit B, Wagner G P et al., 1994. Molecular ecology and evolution: approaches and applications, Basel: Birkhuser Publishing Ltd
    Shaklee J B, Chrisfiansen J A, Sidell B D et al., 1977. Motecular aspects of temperature acclimation in fish: contributions of changed in enzyme activities and isozyme patterns to
    
    metabolic reorganization in the green sunfish, J. Exp. Zool. 201: 1-20
    Sub H L, Sob H Y, Hong S Y, 1993. Larval development of the euphausiid Euphausia pacifica in the Yellow Sea, Mar. Biol. 115: 625-633
    Sundt R C, Fevoiden S E, 1996. Homogeneous genetic structure of Meganyctiphanes norvegica (Euphausiacea) in the North-east Atlantic Ocean, as interpretsd from allozymic variation, Sarsia, 81(2): 155-159
    Thebault M T, Bernicard A, Lennon J F, 1981. Lactate dehydrogenase from the caudal muscle of the shrimp Palaemon serratus: purification and characterization, Comp. Biochem. Physiol., 68B: 65-70
    Thorpe J P, Sole-Cava A M, Watts P C, 2000. Exploited marine invertebrates: genetics and fisheries, Hydrobiology, 420: 165-184
    Tracey N L, Nelson N, Hedgecock D et al., 1975. Biochemical genetics of lobsters: genetics variation and the structure of American lobster (Homarus americanus) populations. J. Fish. Res. Bd. Can., 32: 2091-2101
    Valentine J W, Ayala F J, 1978. Adaptive strategies in the sea, in Marine Organisms: Genetics, Ecology, and Evolution, Battaglia B & Bearmore J A eds.: 323-345
    Wang W J, Kong J, Bao Z M, 2001. Isozyme variation in four populations of Penaeus chinensis shrimp, 生物多样性, 9(3): 241-246
    Yeh F C, Yang R C, Boyle T, 1999. Popgene version 1.31 quick user guide, 1-28 (from http://www.ualberta.ca/~fyeh/)
    Yoon W D, Cho S H, Lira D et al., 2000. Spatial distribution of Euphausia pacifica(Euphausiacea: Crustacea) in the Yellow Sea, J Plankton Res., 22(5): 939-949
    Yu J K, Wang H Y, Lee S C, 1999. Genetic structure of a scleractinian coral, Mycedium elephantotus, in Taiwan, Mar. Biol., 133: 21-28
    Zane L, Ostellari L, Maccatrozzo L et al., 1998. Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba Dana) population, Proc. R. Soc. Lond., B 265: 2387-2391
    Zane L, Ostellari L, Maccatrozzo L et al., 2000. Genetic differentiation in a pelagic crustacean (Meganyctiphanes noryegica: Euphausiacea) from the North East Atlantic and the Mediterranean Sea, Mar. Biol., 136: 191-199
    Zane L, Patamello T, 2000. Krill: a possible model for investigating the effects of ocean currents on the genetic structure of a pelagic invertebrate, Can. J. Fish. Aquat. Sci., 57(Suppl. 3): 16-23
    白雪娥,1965.黄海太平洋磷虾生态的初步研究,中国动物学会三十周年学术讨论会论文摘要汇编,北京:科学出版社,129
    鲍传和,潘玲,1997.利用醑酶同工酶比较研究法鉴别尼罗罗非鱼的原种与变异种群,水利渔业,(2):16-17
    蔡秉及,1978.南黄海和东海磷虾类分类的初步研究,海洋科技,8:15-38
    蔡秉及,1986.黄海和东海磷虾类(Euphausiacea)的分布,甲壳动物学论文集,北京:科学出版社,140-146
    蔡秉及,1989.台湾海峡两部海域磷虾类的分布,海洋学报,11(6):763-768
    蔡秉及,连光山,林茂等,1994.厦门港及邻近海域浮游动物的生态研究,海洋学报,16(4):137-142
    曹文清,杨明,谭树华等,2002.中华哲水蚤不同地理种群苹果酸脱氢酶(MDH)的比较,海洋科学,26(8):18-20
    
    
    曹永长,王祖熊,1991.鱼类低温适应机制的研究(1)驯化温度对草鱼和鮻鱼几种同工酶活性及酶谱的影响,华南农业大学学报,12(3):69-74
    查尔斯 E 金,赵玉琪,刘新等,1988.运用聚丙烯酰胺凝胶电泳分析方法对中国卤虫(Artemia)同工酶变异的研究,山东海洋学院学报,18(1):64-69
    陈清潮,陈亚瞿,胡雅竹,1980.南黄海和东海浮游生物群落的初步探讨,海洋学报,2(2):149-157
    陈清潮,张谷贤,1983.南海北部和中部的磷虾类,南海海洋生物研究论文集(一):139-172
    陈瑞祥,林景宏,林茂等,1998,厦门西港浮游动物生态研究,台湾海峡,17(3):294-298
    陈亚瞿,郑国兴,朱启琴,1985.长江口区浮游动物初步研究,东海海洋,3(3):53-61
    丁毅,宋运淳,余先觉,1995.大麦酯酶同工酶酶谱的聚类分析与遗传研究,武汉大学学报(自然科学版),41(6):729-734
    董树刚,付成秋,程继军等,2000.卤虫等位酶的遗传控制,青岛海洋大学学报,30(2):285-291
    堵南山,1993.甲壳动物学(下册),北京:科学出版社,1003p
    方旅平,2003.厦门海域中华哲水蚤线粒体DNA COI序列及其遗传多样性的研究.硕士学位论文,厦门:厦门大学
    福建海洋研究所,1988.台湾海峡中、北部海洋综合调查研究,北京:科学出版社,423p
    高明君,葛兰,蔡亚能,1994.中国孤雌生殖和两性生殖卤虫关系的同工酶研究,海洋学报,16(5):92-98
    韩舞鹰,1998.南海海洋化学,北京:科学出版社,289p
    何效忠,张树政,1999.电泳(第二版),北京:科学出版社,361p
    侯林,蔡含筠,邹向刚等,1997,中国两性生殖卤虫同工酶基因的表达及分类地位,动物学报,43(2):184-191
    侯林,堵南山,赖伟等,1998.中国卤虫种群α-淀粉酶同工酶的基因表达特征,东海海洋,16(4):1-7
    侯林,王熠,邹向阳,2000,中国两性生殖卤虫各品系碱性磷酸酶、酸性磷酸酶同工酶基因的表达特征,东海海洋,18(4):22-28
    黄加祺,1983.九龙江口大中型浮游动物的种类组成和分布,厦门大学学报(自然科学版),22(1):88-95
    黄加祺,1987.九龙江口浮游软甲动物的分布,厦门大学学报(自然科学版),26(2):249-253
    黄加祺,许建东,李少菁,1997.台湾海峡南部浮游动物夏冬两季分布的比较,中国海洋学文集,7:182-188
    黄加祺,朱长寿,陈栩,1991.闽南-台湾浅滩渔场大型浮游甲壳动物,见:闽南-台湾浅滩渔场上升流生态系研究,洪华生,丘书院,阮五崎等,北京:科学出版社,487-495
    黄加祺,朱长寿,陈栩,1991.闽南-台湾浅滩渔场上升流区浮游动物的种类组成和数量分布,见:闽南-台湾浅滩渔场上升流生态系研究,洪华生,丘书院,阮五崎等,北京:科学出版社,432-439
    黄世玫,1986.长江口及济州岛邻近海域综合调查研究报告 第五章 第三节浮游动物生态,山东海洋学院学报,16(2):55-87
    黄原,1998,分子系统学:原理、方法及应用,北京:中国农业出版社,372p
    黄宗国,1994.中国海洋生物种类与分布.北京:海洋出版社,543-544
    
    
    康元德,1966.黄海中部太平洋磷虾(Euphausia pacifica Hansen)食料的初步研究,太平洋西部渔业研究委员会第九次全体会议论文集,北京:科学出版社,68-75
    李立,2002.南海中尺度海洋现象研究概述,台湾海峡,21(2):265-274
    李少菁,陈峰,王桂忠,1994.中华假磷虾生长率的实验研究,厦门大学学报(自然科学版),33(增刊):129-134
    李思发,1999.长江、珠江、黑龙江鲢、鳙、草鱼种质资源研究,上海:上海科学技术出版社
    李文权,黄贤芒,陈清花等,1999.厦门海沧沿岸水域初级生产力及其与环境的关系,热带海洋,18(3):37-57
    廖启煜,郭柄火,刘赞沛,2001.夏季长江冲淡水转向机制分析,黄渤海海洋,19(3):19-25
    刘长泰,1987.厦门港海洋环境综合调查报告 第一章 绪言,台湾海峡,6(4):321-326
    刘会莲,孙松,2002.南黄海及东海北部太平洋磷虾产卵、孵化及早期幼体发育的初步研究,海洋与湖沼(浮游动物研究专辑),51-60
    刘萍,孔杰,石拓等,2000.中国对虾黄、渤海沿岸地理群的RAPD分析,海洋学报,22(5):88-94
    潘玉球,黄大吉,李锋,2000.东、黄海的水团消长和锋区变异特性,见:中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.唐启升,苏纪兰等著,北京:科学出版社,150-157
    邱高峰,常林瑞,徐巧婷等,2000.中国对虾16S rRNA基因序列多态性的研究,动物学研究,21(1):35-40
    石拓,孔杰,刘萍等,1999.中国对虾遗传多样性的RAPD分析——朝鲜半岛两海岸群体的DNA多态性,海洋与湖沼,30(6):609-615
    苏纪兰,2001.中国近海的环流动力机制研究,海洋学报,23(3):1-16
    谭树华,林元烧,曹文清等,2003.黄、东海中华哲水蚤种群遗传的初步研究Ⅰ:等位酶分析,厦门大学学报(自然科学版),42(1):87-91
    汤毓祥,Heung-Jae Lie,1997.夏季对马暖流水来源的探讨,海洋学报,19(5):1-11
    汤毓祥,邹娥梅,李兴宰等,2000.南黄海环流的若干特征,海洋学报,22(1):1-16
    汪桂玲,蒋葵,黄原,1998.5种瓢虫酯酶同工酶种间及种内变异的比较研究,陕西师范大学学报(自然科学版),26(3):91-94
    王桂忠,李少菁,1992,厦门港海区真刺唇角水蚤不同季节种群的同工酶分析.海洋与湖沼,23(6):657-662
    王克,王荣,高尚武,2001.东海浮游动物昼夜造垂直移动的初步研究,海洋与湖沼,32(5):534-540
    王克,王荣,左涛,2002.南黄海鲢鱼产卵场浮游动物昼夜垂直移动研究,海洋与湖沼(浮游动物研究专辑),129-136
    王梅芳,叶富良,余祥勇,2000.3种江珧同工酶遗传标记,湛江海洋大学学报,20(2):1-5
    王荣,1965.中华假磷虾的幼体形态,海洋与湖沼,7(1):35-58
    王荣,陈宽智,1963.假磷虾—新种—中华假磷虾(Pseudeuphausia Sinica, sp. nov.)的描述,海洋与湖沼,5(4):353-359
    王永.蛋白质多态性研究中的质量控制.西南民族学院学报(自然科学版)24(1):78-80
    王中仁,1994a.植物遗传多样性和系统学研究中的等位酶分析,生物多样性,2(1):
    
    38-43
    王中仁,1994b.植物遗传多样性和系统学研究中的等位酶分析(续),生物多样性,2(2):91-95
    王中仁,1994c.等位酶分析的遗传学基础,生物多样性,2(3):149-156
    王中仁,1994d.等位酶分析的遗传学基础(续),生物多样性,2(4):213-219
    王中仁,1996.植物等位酶分析,北京:科学出版社,196p
    吴鹤龄,林锦湖,1984.遗传学实验方法和技术,北京:高等教育出版社,307p
    夏滨,吕瑞华,孙丕喜,2001.2000年秋季黄、东海典型海区叶绿素a的时空分布及其粒径组成特征,黄渤海海洋,19(4):37-42
    向近敏,向连滨,林雨霖等,1996.分子生态学,武汉:湖北科学技术出版社
    肖贻昌,1979.黄海浮游动物的基本生态特点,海洋湖沼通报,2:51-65
    许建平,苏纪兰,1997.黑潮入侵南海的水文分析Ⅱ 1994年8~9月航次调查结果,热带海洋,16(2):1-23
    薛钦昭,Stiles S,张福绥等,1999.海湾扇贝不同种群在磷酸葡萄糖变位酶基因位点的遗传结构与性状,海洋与湖沼,30(4):381-390
    杨海军,刘秦玉,1998.南海海洋环流研究综述,地球科学进展,13(4):364-368
    张金标,1988.厦门港海洋环境综合调查报告 第四章 第二节 浮游动物,台湾海峡,7(1):11-16
    张学兵,谭声江,陈建等,2002a.空间分子生态学——分子生态学与空间生态学相结合的新领域,生态学报,22(5):752-769
    张学兵,王正军,谭声江等,2002b.分子生态学重要概念——遗传距离及其测度的理论研究概况,生态学报,22(6):943-949
    赵金良,李思发,1999.中国大陆沿海六水系绒鳌蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:生化遗传差异分析,水产学报,23(4):331-336
    郑执中,1965,东海西北部浮游动物指示种的研究.中国动物学会三十周年学术研讨会论文摘要汇编,北京:科学出版社,23
    郑重,李少菁,许振祖,1984.海洋浮游生物学,北京:海洋出版社,653p
    中华人民共和国科学技术委员会海洋组综合调查办公室编,1977,全国海洋调查报告第八册1959.1-1960.6中国近海浮游生物的研究
    祖元刚,颜延芬,于景华,1999.分子生态学的形成与进展,见:分子生态学理论、方法和应用.祖元刚,孙梅,康乐,北京:高等教育出版社,1-16
    左涛,王荣,王克等,2002.南黄海鳀鱼产卵场浮游动物群落结构分析,海洋与湖沼(浮游动物研究专辑),120-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700