用户名: 密码: 验证码:
氯沙坦逆转阿霉素肾病大鼠肾损伤机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过动物和细胞实验,研究肾内RAS在肾病进展中的作用及氯沙坦保护肾脏作用的机制。
     方法:(1)阿霉素肾病大鼠模型制备;(2)人肾系膜细胞(HRMC)培养;(3)组织形态学检测;(4)肾功能检测;(5)RT-PCR;(6)Western-blot;(7)ELISA;(8)MTT;(9)DCFH-DA荧光标记法;(10)流式细胞术;(11)统计学分析。结果:
    
     1.氯沙坦对阿霉素肾病大鼠肾脏功能及病理变化的影响:(1)氯沙坦可以明显降低由阿霉素肾病导致的尿蛋白增高,及血清尿素氮和肌酐水平的增高(。2)HE染色和Masson染色结果显示氯沙坦的治疗可以明显减少由阿霉素作用导致肾小球系膜细胞增生,纤维化增多。(3)免疫组化结果显示,氯沙坦可以降低由阿霉素作用引起的肾小球GRP78/Bip表达增高和NFκB入核增加。(4)ELISA结果显示:氯沙坦可以降低阿霉素引起的肾脏IL-1水平增高。(5)氯沙坦可以降低阿霉素引起肾脏SOD活性和MDA含量增加。(6)氯沙坦影响阿霉素作用下肾内RAS系统表达。
     2.氯沙坦对Ang II和/或阿霉素作用下人肾系膜细胞增殖和致纤维化的影响:(1)MTT法选择最佳药物作用浓度和作用时间。(2)Ang II单独或联合ADR可刺激HRMC细胞DNA合成、有丝分裂和细胞增殖;阿霉素可抑制上述刺激作用。(3)DCFH-DA荧光探针标记结果显示氯沙坦可抑制Ang II单独或联合ADR作用引起的细胞内ROS生成增多。(4)Western blot结果显示氯沙坦可抑制Ang II单独或联合ADR作用引起的GRP78/Bip表达上调、Akt活化、NF-κB核表达增加、AT1R表达增加。(5)RT-PCR结果显示氯沙坦可抑制Ang II单独或联合ADR作用引起的TGF-β1和CyclinD1 mRNA表达上调。
     结论:
     1.氯沙坦主要通过抑制ROS生成、GRP78/Bip表达增加、NFκB激活及促炎性细胞因子分泌增多、细胞外基质异常沉积,延缓或减轻阿霉素导致的大鼠肾损伤。此外氯沙坦还可影响肾内RAS关键成份表达发挥肾脏保护作用。
     2.氯沙坦既能抑制Ang II促HRMC细胞增殖、有丝分裂活跃、致纤维化增强的作用,也可有效抑制Ang II和ADR联合刺激作用。该抑制作用主要通过降低ROS生成、下调GRP78/Bip表达、抑制Akt活化介导。氯沙坦可通过阻断AT1R配体依赖和配体非依赖的途径,逆转阿霉素肾病大鼠肾损伤。
Renin-angiotensin system(RAS) is important for the recirculation system and other organs. RAS was included ACE、Ang I、Ang II、ACE、ATR et. According to the traditional theory that RAS was one of the endocrine system, it was mainly adjusted blood pressure and water-electrolyte balance. Now people gradually recognized that RAS was extensively expressed in many kinds of tissues and organs, so it was distinguished into circulation RAS (cRAS) and tissue RAS(tRAS). Last years, the effect of RAS in partly of renal tissue was become to a warm spot. RAS was played very important effect on adjusting body fluid equilibrium and long-term accommodation with heart-blood system. RAS was also played influential effect of nephritis pathophysiology. All of the essential component of RAS, especially Ang II and AT1/AT2 were sure to be expressed in kidney. Ang II was one of the most important biologically active peptide for RAS, it depends on binding with ATR which located in cellular membrance to educe its biological effect. RAS in kidney was not only promoted pantosomatous effect of RAS, but also played very important effects in adjusting kidney function and nephronia. RAS was activated in many kinds of disease, such as hypertension、diabetes、glomerular nephritis(GN) and so on. Ang II was increased in cardiovascular disease and diabetes. In addition, Ang II was found to increased significantly instoma of kidney in pathologic status.
     Losartan is one of competitive antagonist of AT1R, it was not only used to be treat with hypertension, but also be used to alleviated and to deteriortate diabetic nepropathy, it can help undepended-diabetic to heal renal disease、hypertension and others disease. In addition many clinical and animal researches evidence certify that long-term used high dose, even ultrahigh dose Losartan can further more postponed chronic nephritic, but the curative effect was not depended on haemodynamics. Even though Losartan had been confirmed to curative chronic kidney disease, but the exactly mechanism was not completely clear. Our research copy the model of ADR nephritis to study the mainly mechanism of Losartan deteriorate renal injury; Based on cultural human renal mesagial cell to study HRMC proliferation, fibrotic influence. To deep reseach the exactly effect of RAS and the mainly mechanism of AT1R antagon Losartan.
     Objective:
     1. Through copy the model of ADR nephritis to study the effect of RAS and Losartan in the development of nephritis; 2.Through the cell experiment, to study the effect of AngⅡand ADR for HRMC cells, further confirmed the protection mechanism of RAS in ADR nephritis.
     Method:
     1. The influence of Losartan on renal functional and pathological changes in ADR nephritis:(1)Choose animals、breeding and multiply;(2)Made ADR animal model,divided into groups and administration;(3)Convention fixed tissues with neutral-fomalin, routine paraffin imbedding and slicing, observed the changes of morphology by HE staining;(4)Used immunohistochemistry to detect the expression changes of GRP78/Bip;(5)Observe the changes of collagen deposit by Masson staining;(6)Used metabolic cage to collect 24h urine to detect urinary volume、urine protein and biochemical indicator;(7)Blood-serum biochemical indicator detection;(8)Detect the SOD and MDA levels by chemiluminescence method;(9)Detect AT1R、AT2R、AGT、ACE mRNA expression by RT-PCR;(10)Detect the expression of IL-1 in renal tissue by ELISA; (11) Datas were analysised by the SPSS 11.0 software.
     2. The influence of fibrotic on Losartan when affected on AngⅡand/or ADR;(1)Cell culture;(2)Used MTT to detect the cell multiplication;(3)Used RT-PCR to detect the expression of TGF-β1 and CyclinD1; (4)Detect the expression of EGFR and NF-κB by western-blot;(5)Detect intracellel Ros by DCFH-DA staining;(6)Detective cell cycle by flow cytometry;(7) Used ELISA to detect the expression of type 1 collogen;(8) Used SPSS software to analysis the datas.
     Results:
     1. The influence of Losartan on renal functional and pathological changes when ADR nephritis:
     (1)Losartan can significantly decreased urine protein that increase by ADR, so dose blood serum urea nitrogen.
     (2)HE staining and Masson staining show that losartan can reduce mesangial cell proliferation and fibrous degeneration in ADR nephritis.
     (3)Immunohistochemistry results show that GRP78/Bip expression was obviously decreased in ADR nephritis group.
     (4) Losartan can reduce the expression level of IL-1 in ADR nephritis groups, it was possible reduce glomerulitis, to diminish injury of glomerulum.
     (5)Losartan can reduce SOD and MDA that increased by ADR in kidney, it can protect kidney to avoid oxidation injury.
     (6)Losartan can change some mainly gene of RAS system expression in kidney to avoid the injury of ADR.
     2. The influence of fibrotic on Losartan when affected on AngⅡand/or ADR
     (1)Cell proliferation was increased when it was affected by AngⅡ, 1×10-6mol/L AngⅡwas significant promote cells proliferation; Low dose ADR(0.2μg/ml)has no cytotoxicity for cells; every density losartan had no influence on cell proliferation, and all density losartan can suppressed HRMC cell proliferation; 5×10-5mol/L losartan was one of the most efficency dose. The inhibitory action of losartan was concentration dependent; The cell proliferation of combination AngII and low dose ADR for HRMC was stronger than AngII, and this kind of proliferation can also be inhibited by losartan.
     (2)HRMC cell DNA was promoted to synthesis when it was affected by AngⅡor association with low dose ADR, cell caryocinesia activity, cell cycle changed. Losartan can utility suppressed the caryocinesia by AngⅡor association with ADR, the ratio of S+G2/M were obviously decreased, even lower than control groups.
     (3)Many ROS were induced to produce when AngⅡaffect alone or association with ADR, losartan can suppressed this kind of effect, and make it close to nomal level.
     (4) Ang II or/and associated with ADR can increase GRP78/Bip expression in HRMC cells, Losartan can suppressed this kind of effect.
     (5) NFκB can be promote to come into nuclear by Ang II or/and associated with ADR, the effect of NFκB into nuclear induced by Ang I can be obviously suppressed by losartan.
     (6) AngII and ADR can up-regulate the expression of TGF-β1、CyclinD1 mRNA in HRMC cell, collogen type I expression up regulation , AT1R protein expression increased, and losartan can inhibit these kinds of effects.
     Conclusion:
     1. ADR nephronia rats kidney show functional and structure lesion. Losartan can reduced and/or delayed the injury of kidney that cause of ADR. ADR induced ROS increased, activated NFκB and promoted phlegmasia cytokine to secrete increased, and to lead extracellular matrix to abnormality deposition, all of these kinds of effects can be inhibited by losartan. Endocytoplasmic reticulum stress was happened in ADR nephronia rats, GRP78/Bip expressed increase, the important component of kidney were changed. Through affected the endocytoplasmic reticulum stress and the level of Ang to delay the kidney injury.
     2. Used Ang II alone or associated with lower dose ADR can stimulate DNA synthesis of HRMC cell. TGF-β1 expressed increased, cllogen secreted increased, ADR can enhance the promotion of proliferation by Ang II in HRMC cell. All of these kind of effects mainly caused by ROS product increase, to up regulate GRP78/Bip expression, Akt activation and activated some downstream signals, include Akt-mTOR pathway, TGF-β1 pathway, NF-κB pathway, all of these kind of pathway can affect cell proliferation, differentiated, inflammatory reaction and ECM synthesis. Losartan not only can inhibit the effect of cell proliferation by AngII, but also can utility inhibit the effect of association of AngII and ADR. This inhibition was mainly through decrease ROS production and down-regulate CRP78/Bip and inhibit Akt activation. Losartan can also retroconversion the renal injury by intercept the AT1R ligand dependent pathway and undependent pathway.
引文
[1]RAM CV. Angiotensin receptor blockers: current status and future prospects[J]. Am J Med 2008, 121:656-63.
    [2]BILLET S, AGUILAR F, BAUDRY C,CLAUSER E. Role of angiotensin II AT1 receptor activation in cardiovascular diseases[J]. Kidney Int 2008, 74:1379-84.
    [3]HACKENTHAL E, PAUL M, GANTEN D,TAUGNER R. Morphology, physiology, and molecular biology of renin secretion[J]. Physiol Rev 1990, 70:1067-116.
    [4]SCHNERMANN JB, TRAYNOR T, YANG T, HUANG YG, OLIVERIO MI, COFFMAN T,BRIGGS JP. Absence of tubuloglomerular feedback responses in AT1A receptor-deficient mice[J]. Am J Physiol 1997, 273:F315-20.
    [5]SEALEY JE, GLORIOSO N, ITSKOVITZ J,LARAGH JH. Prorenin as a reproductive hormone. New form of the renin system[J]. Am J Med 1986, 81:1041-6.
    [6]BRASIER AR,LI J. Mechanisms for inducible control of angiotensinogen gene transcription[J]. Hypertension 1996, 27:465-75.
    [7]BAYLIS C, ENGELS K, HYMEL A,NAVAR LG. Plasma renin activity and metabolic clearance rate of angiotensin II in the unstressed aging rat[J]. Mech Ageing Dev 1997, 97:163-72.
    [8]BADER M,GANTEN D. Update on tissue renin-angiotensin systems[J]. J Mol Med 2008, 86:615-21.
    [9]NAVAR LG,NISHIYAMA A. Intrarenal formation of angiotensin II[J]. Contrib Nephrol 2001, 1-15.
    [10]NAVAR LG, MITCHELL KD, HARRISON-BERNARD LM, KOBORI H,NISHIYAMA A. Intrarenal angiotensin II levels in normal and hypertensive states[J]. J Renin Angiotensin Aldosterone Syst 2001, 2:S176-S184.
    [11]ICHIHARA A, KOBORI H, NISHIYAMA A,NAVAR LG. Renal renin-angiotensin system[J]. Contrib Nephrol 2004, 143:117-30.
    [12]PAUL M, POYAN MEHR A,KREUTZ R. Physiology of local renin-angiotensin systems[J]. Physiol Rev 2006, 86:747-803.
    [13]SCHWEDA F,KURTZ A. Cellular mechanism of renin release[J]. Acta Physiol Scand 2004, 181:383-90.
    [14]DESCHEPPER CF. Angiotensinogen: hormonal regulation and relative importance in the generation of angiotensin II[J]. Kidney Int 1994, 46:1561-3.
    [15]HARRISON-BERNARD LM, NAVAR LG, HO MM, VINSON GP,EL-DAHR SS.Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody[J]. Am J Physiol 1997, 273:F170-7.
    [16]ERDOS EG. Some old and some new ideas on kinin metabolism[J]. J Cardiovasc Pharmacol 1990, 15 Suppl 6:S20-4.
    [17]EDEKI T, JOHNSTON A, LI KAM WA E,TURNER P. Enalapril pharmacokinetics and ACE inhibition, following single and chronic oral dosing[J]. Int J Clin Pharmacol Ther 1994, 32:142-6.
    [18]TIMMERMANS PB, WONG PC, CHIU AT, HERBLIN WF, BENFIELD P, CARINI DJ, LEE RJ, WEXLER RR, SAYE JA,SMITH RD. Angiotensin II receptors and angiotensin II receptor antagonists[J]. Pharmacol Rev 1993, 45:205-51.
    [19]REUDELHUBER TL. The renin-angiotensin system: peptides and enzymes beyond angiotensin II[J]. Curr Opin Nephrol Hypertens 2005, 14:155-9.
    [20]HAULICA I, BILD W,SERBAN DN. Angiotensin peptides and their pleiotropic actions[J]. J Renin Angiotensin Aldosterone Syst 2005, 6:121-31.
    [21]PENDERGRASS KD, AVERILL DB, FERRARIO CM, DIZ DI,CHAPPELL MC. Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2. Lewis rat[J]. Am J Physiol Renal Physiol 2006, 290:F1497-506.
    [22]KOBORI H, NANGAKU M, NAVAR LG,NISHIYAMA A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease[J]. Pharmacol Rev 2007, 59:251-87.
    [23]NAVAR LG, HARRISON-BERNARD LM, IMIG JD, CERVENKA L,MITCHELL KD. Renal responses to AT1 receptor blockade[J]. Am J Hypertens 2000, 13:45S-54S.
    [24]NAVAR LG. The kidney in blood pressure regulation and development of hypertension[J]. Med Clin North Am 1997, 81:1165-98.
    [25]NAVAR LG. The role of the kidneys in hypertension[J]. J Clin Hypertens (Greenwich) 2005, 7:542-9.
    [26]CHOBANIAN AV, BAKRIS GL, BLACK HR, CUSHMAN WC, GREEN LA, IZZO JL, JR., JONES DW, MATERSON BJ, OPARIL S, WRIGHT JT, JR.,ROCCELLA EJ. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure[J]. Hypertension 2003, 42:1206-52.
    [27]CIFKOVA R, ERDINE S, FAGARD R, FARSANG C, HEAGERTY AM, KIOWSKI W, KJELDSEN S, LUSCHER T, MALLION JM, MANCIA G, POULTER N, RAHN KH, RODICIO JL, RUILOPE LM, VAN ZWIETEN P, WAEBER B, WILLIAMSB,ZANCHETTI A. Practice guidelines for primary care physicians: 2003 ESH/ESC hypertension guidelines[J]. J Hypertens 2003, 21:1779-86.
    [28]IKEDA N, HASEGAWA T, SAITO I,SARUTA T. Awareness of the Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2000) and compliance to its recommendations: surveys in 2000 and 2004[J]. J Hum Hypertens 2006, 20:263-6.
    [29]NAVAR LG,NISHIYAMA A. Why are angiotensin concentrations so high in the kidney?[J]. Curr Opin Nephrol Hypertens 2004, 13:107-15.
    [30]ICHIHARA A, SUZUKI F, NAKAGAWA T, KANESHIRO Y, TAKEMITSU T, SAKODA M, NABI AH, NISHIYAMA A, SUGAYA T, HAYASHI M,INAGAMI T. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice[J]. J Am Soc Nephrol 2006, 17:1950-61.
    [31]NAVAR LG, KOBORI H,PRIETO-CARRASQUERO M. Intrarenal angiotensin II and hypertension[J]. Curr Hypertens Rep 2003, 5:135-43.
    [32]NAVARRO JF, MORA C, MUROS M,GARCIA J. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial[J]. J Am Soc Nephrol 2005, 16:2119-26.
    [33]YAMAMOTO T, HAYASHI K, MATSUDA H, KUBOTA E, TANAKA H, OGASAWARA Y, NAKAMOTO H, SUZUKI H, SARUTA T,KAJIYA F. In vivo visualization of angiotensin II- and tubuloglomerular feedback-mediated renal vasoconstriction[J]. Kidney Int 2001, 60:364-9.
    [34]SCHOR N,BRENNER BM. Mechanism of intermittent glomerular perfusion in the rat[J]. Trans Assoc Am Physicians 1980, 93:212-7.
    [35]HELLER J,HORACEK V. Angiotensin II: preferential efferent constriction?[J]. Ren Physiol 1986, 9:357-65.
    [36]ALBEROLA AM, SALAZAR FJ, NAKAMURA T,GRANGER JP. Interaction between angiotensin II and nitric oxide in control of renal hemodynamics in conscious dogs[J]. Am J Physiol 1994, 267:R1472-8.
    [37]NAVAR LG,ROSIVALL L. Contribution of the renin-angiotensin system to the control of intrarenal hemodynamics[J]. Kidney Int 1984, 25:857-68.
    [38]ROSIVALL L, CARMINES PK,NAVAR LG. Effects of renal arterial angiotensin I infusion on glomerular dynamics in sodium replete dogs[J]. Kidney Int 1984, 26:263-8.
    [39]CARMINES PK, PERRY MD, HAZELRIG JB,NAVAR LG. Effects of preglomerular and postglomerular vascular resistance alterations on filtration fraction[J]. Kidney Int Suppl1987, 20:S229-32.
    [40]RUILOPE LM. Angiotensin receptor blockers: RAAS blockade and renoprotection[J]. Curr Med Res Opin 2008, 24:1285-93.
    [41]WOLF G. Novel aspects of the renin-angiotensin-aldosterone-system[J]. Front Biosci 2008, 13:4993-5005.
    [42]CAREY RM,PADIA SH. Angiotensin AT2 receptors: control of renal sodium excretion and blood pressure[J]. Trends Endocrinol Metab 2008, 19:84-7.
    [43]MACCONI D,REMUZZI G. Candesartan and renal protection: more than blocking angiotensin type 1 receptor?[J]. Kidney Int 2008, 74:1112-4.
    [44]SCOTT LJ,MCCORMACK PL. Olmesartan medoxomil: a review of its use in the management of hypertension[J]. Drugs 2008, 68:1239-72.
    [45]TIMMERMANS PB, CARINI DJ, CHIU AT, DUNCIA JV, PRICE WA, JR., WELLS GJ, WONG PC, WEXLER RR,JOHNSON AL. Angiotensin II receptor antagonists. From discovery to antihypertensive drugs[J]. Hypertension 1991, 18:III136-42.
    [46]XU F, MAO C, LIU Y, WU L, XU Z,ZHANG L. Losartan chemistry and its effects via AT1 mechanisms in the kidney[J]. Curr Med Chem 2009, 16:3701-15.
    [47]SMITH RD, CHIU AT, WONG PC, HERBLIN WF,TIMMERMANS PB. Pharmacology of nonpeptide angiotensin II receptor antagonists[J]. Annu Rev Pharmacol Toxicol 1992, 32:135-65.
    [48]STEARNS RA, MILLER RR, DOSS GA, CHAKRAVARTY PK, ROSEGAY A, GATTO GJ,CHIU SH. The metabolism of DuP 753, a nonpeptide angiotensin II receptor antagonist, by rat, monkey, and human liver slices[J]. Drug Metab Dispos 1992, 20:281-7.
    [49]CHRIST DD. Human plasma protein binding of the angiotensin II receptor antagonist losartan potassium (DuP 753/MK 954) and its pharmacologically active metabolite EXP3174[J]. J Clin Pharmacol 1995, 35:515-20.
    [50]WONG PC, PRICE WA, JR., CHIU AT, DUNCIA JV, CARINI DJ, WEXLER RR, JOHNSON AL,TIMMERMANS PB. In vivo pharmacology of DuP 753[J]. Am J Hypertens 1991, 4:288S-298S.
    [51]FIERENS FL, VANDERHEYDEN PM, GABORIK Z, MINH TL, BACKER JP, HUNYADY L, IJZERMAN A,VAUQUELIN G. Lys(199) mutation of the human angiotensin type 1 receptor differentially affects the binding of surmountable and insurmountable non-peptide antagonists[J]. J Renin Angiotensin Aldosterone Syst 2000, 1:283-8.
    [52]FENG YH, ZHOU L, QIU R,ZENG R. Single mutations at Asn295 and Leu305 in the cytoplasmic half of transmembrane alpha-helix domain 7 of the AT1 receptor induce promiscuous agonist specificity for angiotensin II fragments: a pseudo-constitutive activity[J]. Mol Pharmacol 2005, 68:347-55.
    [53]GALLE J. Reduction of proteinuria with angiotensin receptor blockers[J]. Nat Clin Pract Cardiovasc Med 2008, 5 Suppl 1:S36-43.
    [54]FUJIHARA CK, VELHO M, MALHEIROS DM,ZATZ R. An extremely high dose of losartan affords superior renoprotection in the remnant model[J]. Kidney Int 2005, 67:1913-24.
    [55]YU C, GONG R, RIFAI A, TOLBERT EM,DWORKIN LD. Long-term, high-dosage candesartan suppresses inflammation and injury in chronic kidney disease: nonhemodynamic renal protection[J]. J Am Soc Nephrol 2007, 18:750-9.
    [56]BURGESS E, MUIRHEAD N, RENE DE COTRET P, CHIU A, PICHETTE V,TOBE S. Supramaximal dose of candesartan in proteinuric renal disease[J]. J Am Soc Nephrol 2009, 20:893-900.
    [57]INGERT C, GRIMA M, COQUARD C, BARTHELMEBS M,IMBS JL. Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats[J]. Am J Physiol Renal Physiol 2002, 283:F1003-10.
    [58]DARBY IA,SERNIA C. In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys[J]. Cell Tissue Res 1995, 281:197-206.
    [59]ROHRWASSER A, MORGAN T, DILLON HF, ZHAO L, CALLAWAY CW, HILLAS E, ZHANG S, CHENG T, INAGAMI T, WARD K, TERREROS DA,LALOUEL JM. Elements of a paracrine tubular renin-angiotensin system along the entire nephron[J]. Hypertension 1999, 34:1265-74.
    [60]ROHRWASSER A, ISHIGAMI T, GOCIMAN B, LANTELME P, MORGAN T, CHENG T, HILLAS E, ZHANG S, WARD K, BLOCH-FAURE M, MENETON P,LALOUEL JM. Renin and kallikrein in connecting tubule of mouse[J]. Kidney Int 2003, 64:2155-62.
    [61]GOMEZ RA, LYNCH KR, CHEVALIER RL, EVERETT AD, JOHNS DW, WILFONG N, PEACH MJ,CAREY RM. Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition[J]. Am J Physiol 1988, 254:F900-6.
    [62]ALHENC-GELAS F, BAUSSANT T, HUBERT C, SOUBRIER F,CORVOL P. The angiotensin converting enzyme in the kidney[J]. J Hypertens Suppl 1989, 7:S9-13;discussion S14.
    [63]IKEMOTO F, SONG GB, TOMINAGA M, KANAYAMA Y,YAMAMOTO K. Regional distribution of angiotensin converting enzyme in the rat kidney[J]. Adv Exp Med Biol 1989, 247A:169-74.
    [64]SCHULZ WW, HAGLER HK, BUJA LM,ERDOS EG. Ultrastructural localization of angiotensin I-converting enzyme (EC 3.4.15.1) and neutral metalloendopeptidase (EC 3.4.24.11) in the proximal tubule of the human kidney[J]. Lab Invest 1988, 59:789-97.
    [65]ZHANG H, WADA J, HIDA K, TSUCHIYAMA Y, HIRAGUSHI K, SHIKATA K, WANG H, LIN S, KANWAR YS,MAKINO H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys[J]. J Biol Chem 2001, 276:17132-9.
    [66]CASARINI DE, BOIM MA, STELLA RC, KRIEGER-AZZOLINI MH, KRIEGER JE,SCHOR N. Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron[J]. Am J Physiol 1997, 272:F405-9.
    [67]NAVAR LG, IMIG JD, ZOU L,WANG CT. Intrarenal production of angiotensin II[J]. Semin Nephrol 1997, 17:412-22.
    [68]SIRAGY HM, HOWELL NL, RAGSDALE NV,CAREY RM. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition[J]. Hypertension 1995, 25:1021-4.
    [69]NISHIYAMA A, SETH DM,NAVAR LG. Renal interstitial fluid angiotensin I and angiotensin II concentrations during local angiotensin-converting enzyme inhibition[J]. J Am Soc Nephrol 2002, 13:2207-12.
    [70]CERVENKA L, WANG CT, MITCHELL KD,NAVAR LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats[J]. Hypertension 1999, 33:102-7.
    [71]ZOU LX, IMIG JD, HYMEL A,NAVAR LG. Renal uptake of circulating angiotensin II in Val5-angiotensin II infused rats is mediated by AT1 receptor[J]. Am J Hypertens 1998, 11:570-8.
    [72]IMIG JD, NAVAR GL, ZOU LX, O'REILLY KC, ALLEN PL, KAYSEN JH, HAMMOND TG,NAVAR LG. Renal endosomes contain angiotensin peptides, converting enzyme, and AT(1A) receptors[J]. Am J Physiol 1999, 277:F303-11.
    [73]ZHUO JL, IMIG JD, HAMMOND TG, ORENGO S, BENES E,NAVAR LG. Ang II accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT(1) receptor[J]. Hypertension 2002, 39:116-21.
    [74]INGELFINGER JR. Angiotensin-converting enzyme 2: implications for blood pressure and kidney disease[J]. Curr Opin Nephrol Hypertens 2009, 18:79-84.
    [75]TUFRO-MCREDDIE A, HARRISON JK, EVERETT AD,GOMEZ RA. Ontogeny of type 1 angiotensin II receptor gene expression in the rat[J]. J Clin Invest 1993, 91:530-7.
    [76]BOUBY N, HUS-CITHAREL A, MARCHETTI J, BANKIR L, CORVOL P,LLORENS-CORTES C. Expression of type 1 angiotensin II receptor subtypes and angiotensin II-induced calcium mobilization along the rat nephron[J]. J Am Soc Nephrol 1997, 8:1658-67.
    [77]PAXTON WG, RUNGE M, HORAIST C, COHEN C, ALEXANDER RW,BERNSTEIN KE. Immunohistochemical localization of rat angiotensin II AT1 receptor[J]. Am J Physiol 1993, 264:F989-95.
    [78]MIYATA N, PARK F, LI XF,COWLEY AW, JR. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney[J]. Am J Physiol 1999, 277:F437-46.
    [79]CIUFFO GM, VISWANATHAN M, SELTZER AM, TSUTSUMI K,SAAVEDRA JM. Glomerular angiotensin II receptor subtypes during development of rat kidney[J]. Am J Physiol 1993, 265:F264-71.
    [80]SADJADI J, PUTTAPARTHI K, WELBORN MB, 3RD, ROGERS TE, MOE O, CLAGETT GP, TURNAGE RH, LEVI M,MODRALL JG. Upregulation of autocrine-paracrine renin-angiotensin systems in chronic renovascular hypertension[J]. J Vasc Surg 2002, 36:386-92.
    [81]KENNEFICK TM, OYAMA TT, THOMPSON MM, VORA JP,ANDERSON S. Enhanced renal sensitivity to angiotensin actions in diabetes mellitus in the rat[J]. Am J Physiol 1996, 271:F595-602.
    [82]RUIZ-ORTEGA M, GONZALEZ S, SERON D, CONDOM E, BUSTOS C, LARGO R, GONZALEZ E, ORTIZ A,EGIDO J. ACE inhibition reduces proteinuria, glomerular lesions and extracellular matrix production in a normotensive rat model of immune complex nephritis[J]. Kidney Int 1995, 48:1778-91.
    [83]MII A, SHIMIZU A, MASUDA Y, ISHIZAKI M, KAWACHI H, IINO Y, KATAYAMA Y,FUKUDA Y. Angiotensin II receptor blockade inhibits acute glomerular injuries with the alteration of receptor expression[J]. Lab Invest 2009, 89:164-77.
    [84]SCHUNKERT H, INGELFINGER JR, HIRSCH AT, TANG SS, LITWIN SE, TALSNESS CE,DZAU VJ. Evidence for tissue-specific activation of renal angiotensinogen mRNA expression in chronic stable experimental heart failure[J]. J Clin Invest 1992, 90:1523-9.
    [85]KOBORI H, HARRISON-BERNARD LM,NAVAR LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension[J]. J Am Soc Nephrol 2001, 12:431-9.
    [86]WANG TT, CHEN M, LACHANCE S, DELALANDRE A, CARRIERE S,CHAN JS. Isoproterenol and 8-bromo-cyclic adenosine monophosphate stimulate the expression of the angiotensinogen gene in opossum kidney cells[J]. Kidney Int 1994, 46:703-10.
    [87]WANG TT, LACHANCE S, DELALANDRE A, CARRIERE S,CHAN JS. Alpha-adrenoceptors and angiotensinogen gene expression in opossum kidney cells[J]. Kidney Int 1995, 48:139-45.
    [88]BADER M,GANTEN D. Regulation of renin: new evidence from cultured cells and genetically modified mice[J]. J Mol Med 2000, 78:130-9.
    [89]PRIETO-CARRASQUERO MC, HARRISON-BERNARD LM, KOBORI H, OZAWA Y, HERING-SMITH KS, HAMM LL,NAVAR LG. Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats[J]. Hypertension 2004, 44:223-9.
    [90]PRIETO-CARRASQUERO MC, KOBORI H, OZAWA Y, GUTIERREZ A, SETH D,NAVAR LG. AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats[J]. Am J Physiol Renal Physiol 2005, 289:F632-7.
    [91]KATO I, TAKADA Y, NISHIMURA K, HIWADA K,KOKUBU T. Increased urinary excretion of angiotensin converting enzyme in patients with renal diseases[J]. J Clin Chem Clin Biochem 1982, 20:473-6.
    [92]PEDRAZA-CHAVERRI J, MORENO-MUNIZ SI, CRUZ C, HERNANDEZ-PANDO R, LARRIVA-SAHD J,TAPIA E. Urinary angiotensin I-converting enzyme activity is increased in experimental acute renal failure[J]. Clin Invest Med 1995, 18:424-34.
    [93]METZGER R, BOHLE RM, PAULS K, EICHNER G, ALHENC-GELAS F, DANILOV SM,FRANKE FE. Angiotensin-converting enzyme in non-neoplastic kidney diseases[J]. Kidney Int 1999, 56:1442-54.
    [94]LARGO R, GOMEZ-GARRE D, SOTO K, MARRON B, BLANCO J, GAZAPO RM, PLAZA JJ,EGIDO J. Angiotensin-converting enzyme is upregulated in the proximal tubules of rats with intense proteinuria[J]. Hypertension 1999, 33:732-9.
    [95]MEZZANO SA, AROS CA, DROGUETT A, BURGOS ME, ARDILES LG, FLORES CA, CARPIO D, VIO CP, RUIZ-ORTEGA M,EGIDO J. Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy[J]. Kidney Int Suppl 2003, S39-45.
    [96]MEZZANO S, DROGUETT A, BURGOS ME, ARDILES LG, FLORES CA, AROS CA, CAORSI I, VIO CP, RUIZ-ORTEGA M,EGIDO J. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy[J]. Kidney Int Suppl 2003, S64-70.
    [97]VIO CP,JEANNERET VA. Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases[J]. Kidney Int Suppl 2003, S57-63.
    [98]KOBORI H, OZAWA Y, SUZAKI Y,NISHIYAMA A. Enhanced intrarenal angiotensinogen contributes to early renal injury in spontaneously hypertensive rats[J]. J Am Soc Nephrol 2005, 16:2073-80.
    [99]NISHIYAMA A, SETH DM,NAVAR LG. Angiotensin II type 1 receptor-mediated augmentation of renal interstitial fluid angiotensin II in angiotensin II-induced hypertension[J]. J Hypertens 2003, 21:1897-903.
    [100]INGERT C, GRIMA M, COQUARD C, BARTHELMEBS M,IMBS JL. Effects of dietary salt changes on renal renin-angiotensin system in rats[J]. Am J Physiol Renal Physiol 2002, 283:F995-1002.
    [101]INKYO-HAYASAKA K, SAKAI T, KOBAYASHI N, SHIRATO I,TOMINO Y. Three-dimensional analysis of the whole mesangium in the rat[J]. Kidney Int 1996, 50:672-83.
    [102]BIDANI AK,GRIFFIN KA. Long-term renal consequences of hypertension for normal and diseased kidneys[J]. Curr Opin Nephrol Hypertens 2002, 11:73-80.
    [103]TAMAKI T, NISHIYAMA A, YOSHIDA H, HE H, FUKUI T, YAMAMOTO A, AKI Y, KIMURA S, IWAO H, MIYATAKE A,ET AL. Effects of EXP3174, a non-peptide angiotensin II receptor antagonist, on renal hemodynamics and renal function in dogs[J]. Eur J Pharmacol 1993, 236:15-21.
    [104]OMORO SA, MAJID DS, EL DAHR SS,NAVAR LG. Roles of ANG II and bradykinin in the renal regional blood flow responses to ACE inhibition in sodium-depleted dogs[J]. Am J Physiol Renal Physiol 2000, 279:F289-93.
    [105]HALL JE, GUYTON AC, SMITH MJ, JR.,COLEMAN TG. Chronic blockade of angiotensin II formation during sodium deprivation[J]. Am J Physiol 1979, 237:F424-32.
    [106]NAVAR LG. Renal autoregulation: perspectives from whole kidney and single nephron studies[J]. Am J Physiol 1978, 234:F357-70.
    [107]PERSSON P, EHMKE H,KIRCHHEIM H. Influence of the renin-angiotensin system onthe autoregulation of renal blood flow and glomerular filtration rate in conscious dogs[J]. Acta Physiol Scand 1988, 134:1-7.
    [108]INSCHO EW, IMIG JD, DEICHMANN PC,COOK AK. Candesartan cilexetil protects against loss of autoregulatory efficiency in angiotensin II-infused rats[J]. J Am Soc Nephrol 1999, 10 Suppl 11:S178-83.
    [109]NAVAR LG, INSCHO EW, MAJID SA, IMIG JD, HARRISON-BERNARD LM,MITCHELL KD. Paracrine regulation of the renal microcirculation[J]. Physiol Rev 1996, 76:425-536.
    [110]NISHIYAMA A, RAHMAN M,INSCHO EW. Role of interstitial ATP and adenosine in the regulation of renal hemodynamics and microvascular function[J]. Hypertens Res 2004, 27:791-804.
    [111]LOUTZENHISER R, GRIFFIN K, WILLIAMSON G,BIDANI A. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms[J]. Am J Physiol Regul Integr Comp Physiol 2006, 290:R1153-67.
    [112]TRAYNOR T, YANG T, HUANG YG, KREGE JH, BRIGGS JP, SMITHIES O,SCHNERMANN J. Tubuloglomerular feedback in ACE-deficient mice[J]. Am J Physiol 1999, 276:F751-7.
    [113]KHAVANDI K, GREENSTEIN AS, SONOYAMA K, WITHERS S, PRICE A, MALIK RA,HEAGERTY AM. Myogenic tone and small artery remodelling: insight into diabetic nephropathy[J]. Nephrol Dial Transplant 2009, 24:361-9.
    [114]PETI-PETERDI J,BELL PD. Regulation of macula densa Na:H exchange by angiotensin II[J]. Kidney Int 1998, 54:2021-8.
    [115]KOVACS G, PETI-PETERDI J, ROSIVALL L,BELL PD. Angiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT(1) receptors[J]. Am J Physiol Renal Physiol 2002, 282:F301-6.
    [116]BRAAM B, NAVAR LG,MITCHELL KD. Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension[J]. Hypertension 1995, 25:1232-7.
    [117]ICHIHARA A, INSCHO EW, IMIG JD, MICHEL RE,NAVAR LG. Role of renal nerves in afferent arteriolar reactivity in angiotensin-induced hypertension[J]. Hypertension 1997, 29:442-9.
    [118]JUST A. Mechanisms of renal blood flow autoregulation: dynamics and contributions[J]. Am J Physiol Regul Integr Comp Physiol 2007, 292:R1-17.
    [119]CARDILLO G, GENTILUCCI L,TOLOMELLI A. Unusual amino acids: synthesis andintroduction into naturally occurring peptides and biologically active analogues[J]. Mini Rev Med Chem 2006, 6:293-304.
    [120]STAAHLTOFT D, NIELSEN S, JANJUA NR, CHRISTENSEN S, SKOTT O, MARCUSSEN N,JONASSEN TE. Losartan treatment normalizes renal sodium and water handling in rats with mild congestive heart failure[J]. Am J Physiol Renal Physiol 2002, 282:F307-15.
    [121]HASHIMOTO S, ADAMS JW, BERNSTEIN KE,SCHNERMANN J. Micropuncture determination of nephron function in mice without tissue angiotensin-converting enzyme[J]. Am J Physiol Renal Physiol 2005, 288:F445-52.
    [122]SACCOMANI G, MITCHELL KD,NAVAR LG. Angiotensin II stimulation of Na(+)-H+ exchange in proximal tubule cells[J]. Am J Physiol 1990, 258:F1188-95.
    [123]LIU FY,COGAN MG. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics[J]. J Clin Invest 1988, 82:601-7.
    [124]GARVIN JL. Angiotensin stimulates bicarbonate transport and Na+/K+ ATPase in rat proximal straight tubules[J]. J Am Soc Nephrol 1991, 1:1146-52.
    [125]EIAM-ONG S, HILDEN SA, JOHNS CA,MADIAS NE. Stimulation of basolateral Na(+)-HCO3- cotransporter by angiotensin II in rabbit renal cortex[J]. Am J Physiol 1993, 265:F195-203.
    [126]MITCHELL KD, BRAAM B,NAVAR LG. Hypertensinogenic mechanisms mediated by renal actions of renin-angiotensin system[J]. Hypertension 1992, 19:I18-27.
    [127]GLUCK SL, LEE BS, WANG SP, UNDERHILL D, NEMOTO J,HOLLIDAY LS. Plasma membrane V-ATPases in proton-transporting cells of the mammalian kidney and osteoclast[J]. Acta Physiol Scand Suppl 1998, 643:203-12.
    [128]KWON TH, NIELSEN J, KIM YH, KNEPPER MA, FROKIAER J,NIELSEN S. Regulation of sodium transporters in the thick ascending limb of rat kidney: response to angiotensin II[J]. Am J Physiol Renal Physiol 2003, 285:F152-65.
    [129]LEONG PK, DEVILLEZ A, SANDBERG MB, YANG LE, YIP DK, KLEIN JB,MCDONOUGH AA. Effects of ACE inhibition on proximal tubule sodium transport[J]. Am J Physiol Renal Physiol 2006, 290:F854-63.
    [130]QUAN A,BAUM M. Endogenous production of angiotensin II modulates rat proximal tubule transport[J]. J Clin Invest 1996, 97:2878-82.
    [131]SOLEIMANI M, GRASSI SM,ARONSON PS. Stoichiometry of Na+-HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex[J]. J Clin Invest 1987,79:1276-80.
    [132]BORON WF. Acid-base transport by the renal proximal tubule[J]. J Am Soc Nephrol 2006, 17:2368-82.
    [133]POLLOCK CA,PORONNIK P. Albumin transport and processing by the proximal tubule: physiology and pathophysiology[J]. Curr Opin Nephrol Hypertens 2007, 16:359-64.
    [134]GOOD DW. The thick ascending limb as a site of renal bicarbonate reabsorption[J]. Semin Nephrol 1993, 13:225-35.
    [135]GOOD DW, GEORGE T,WANG DH. Angiotensin II inhibits HCO-3 absorption via a cytochrome P-450-dependent pathway in MTAL[J]. Am J Physiol 1999, 276:F726-36.
    [136]LEROLLE N, BOURGEOIS S, LEVIEL F, LEBRUN G, PAILLARD M,HOUILLIER P. Angiotensin II inhibits NaCl absorption in the rat medullary thick ascending limb[J]. Am J Physiol Renal Physiol 2004, 287:F404-10.
    [137]AMEMIYA M, LOFFING J, LOTSCHER M, KAISSLING B, ALPERN RJ,MOE OW. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb[J]. Kidney Int 1995, 48:1206-15.
    [138]LU M, ZHU Y, BALAZY M, REDDY KM, FALCK JR,WANG W. Effect of angiotensin II on the apical K+ channel in the thick ascending limb of the rat kidney[J]. J Gen Physiol 1996, 108:537-47.
    [139]ECELBARGER CA, TERRIS J, HOYER JR, NIELSEN S, WADE JB,KNEPPER MA. Localization and regulation of the rat renal Na(+)-K(+)-2Cl- cotransporter, BSC-1[J]. Am J Physiol 1996, 271:F619-28.
    [140]FENTON RA,KNEPPER MA. Mouse models and the urinary concentrating mechanism in the new millennium[J]. Physiol Rev 2007, 87:1083-112.
    [141]WANG T,GIEBISCH G. Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney[J]. Am J Physiol 1996, 271:F143-9.
    [142]BARRETO-CHAVES ML,MELLO-AIRES M. Effect of luminal angiotensin II and ANP on early and late cortical distal tubule HCO3- reabsorption[J]. Am J Physiol 1996, 271:F977-84.
    [143]LEVINE DZ, IACOVITTI M, LUCK B, HINCKE MT, BURNS KD,FRYER JN. Surviving rat distal tubule bicarbonate reabsorption: effects of chronic AT(1) blockade[J]. Am J Physiol Renal Physiol 2000, 278:F476-83.
    [144]SANDBERG MB, RIQUIER AD, PIHAKASKI-MAUNSBACH K, MCDONOUGH AA,MAUNSBACH AB. ANG II provokes acute trafficking of distal tubule Na+-Cl(-) cotransporter to apical membrane[J]. Am J Physiol Renal Physiol 2007, 293:F662-9.
    [145]PETI-PETERDI J, WARNOCK DG,BELL PD. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors[J]. J Am Soc Nephrol 2002, 13:1131-5.
    [146]BROOKS HL, ALLRED AJ, BEUTLER KT, COFFMAN TM,KNEPPER MA. Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice[J]. Hypertension 2002, 39:470-3.
    [147]WEI Y,WANG W. Angiotensin II stimulates basolateral K channels in rat cortical collecting ducts[J]. Am J Physiol Renal Physiol 2003, 284:F175-81.
    [148]PECH V, KIM YH, WEINSTEIN AM, EVERETT LA, PHAM TD,WALL SM. Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism[J]. Am J Physiol Renal Physiol 2007, 292:F914-20.
    [149]PECH V, ZHENG W, PHAM TD, VERLANDER JW,WALL SM. Angiotensin II activates H+-ATPase in type A intercalated cells[J]. J Am Soc Nephrol 2008, 19:84-91.
    [150]OLIVERIO MI, DELNOMDEDIEU M, BEST CF, LI P, MORRIS M, CALLAHAN MF, JOHNSON GA, SMITHIES O,COFFMAN TM. Abnormal water metabolism in mice lacking the type 1A receptor for ANG II[J]. Am J Physiol Renal Physiol 2000, 278:F75-82.
    [151]KATO A, KLEIN JD, ZHANG C,SANDS JM. Angiotensin II increases vasopressin-stimulated facilitated urea permeability in rat terminal IMCDs[J]. Am J Physiol Renal Physiol 2000, 279:F835-40.
    [152]SANDS JM. Molecular mechanisms of urea transport[J]. J Membr Biol 2003, 191:149-63.
    [153]LEE YJ, SONG IK, JANG KJ, NIELSEN J, FROKIAER J, NIELSEN S,KWON TH. Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor[J]. Am J Physiol Renal Physiol 2007, 292:F340-50.
    [154]BLOUNT MA, SANDS JM, KENT KJ, SMITH TD, PRICE SR,KLEIN JD. Candesartan augments compensatory changes in medullary transport proteins in the diabetic rat kidney[J]. Am J Physiol Renal Physiol 2008, 294:F1448-52.
    [155]WALL SM, FISCHER MP, GLAPION DM,DE LA CALZADA M. ANG II reduces net acid secretion in rat outer medullary collecting duct[J]. Am J Physiol Renal Physiol 2003, 285:F930-7.
    [156]VALLES P, WYSOCKI J, SALABAT MR, COKIC I, YE M, LAPOINTE MS,BATLLE D. Angiotensin II increases H+-ATPase B1 subunit expression in medullary collectingducts[J]. Hypertension 2005, 45:818-23.
    [157]WONG NL,TSUI JK. Angiotensin II upregulates the expression of vasopressin V2 mRNA in the inner medullary collecting duct of the rat[J]. Metabolism 2003, 52:290-5.
    [158]KANWAR YS, LIU ZZ, KASHIHARA N,WALLNER EI. Current status of the structural and functional basis of glomerular filtration and proteinuria[J]. Semin Nephrol 1991, 11:390-413.
    [159]HARALDSSON B,SORENSSON J. Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier[J]. News Physiol Sci 2004, 19:7-10.
    [160]PARVING HH, BRENNER BM, COOPER ME, DE ZEEUW D, KEANE WF, MITCH WE, REMUZZI G, SNAPINN SM, ZHANG Z,SHAHINFAR S. [Effect of losartan on renal and cardiovascular complications of patients with type 2 diabetes and nephropathy][J]. Ugeskr Laeger 2001, 163:5514-9.
    [161]KHOSLA N,BAKRIS G. Lessons learned from recent hypertension trials about kidney disease[J]. Clin J Am Soc Nephrol 2006, 1:229-35.
    [162]ISOGAI S, MOGAMI K, SHIINA N,YOSHINO G. Initial ultrastructural changes in pore size and anionic sites of the glomerular basement membrane in streptozotocin-induced diabetic rats and their prevention by insulin treatment[J]. Nephron 1999, 83:53-8.
    [163]JARAD G, CUNNINGHAM J, SHAW AS,MINER JH. Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier[J]. J Clin Invest 2006, 116:2272-9.
    [164]YAVUZ DG, ERSOZ O, KUCUKKAYA B, BUDAK Y, AHISKALI R, EKICIOGLU G, EMERK K,AKALIN S. The effect of losartan and captopril on glomerular basement membrane anionic charge in a diabetic rat model[J]. J Hypertens 1999, 17:1217-23.
    [165]DEYNELI O, YAVUZ D, VELIOGLU A, CACINA H, AKSOY N, HAKLAR G, TAGA Y,AKALIN S. Effects of ACE inhibition and angiotensin II receptor blockade on glomerular basement membrane protein excretion and charge selectivity in type 2 diabetic patients[J]. J Renin Angiotensin Aldosterone Syst 2006, 7:98-103.
    [166]RAATS CJ, VAN DEN BORN J,BERDEN JH. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria[J]. Kidney Int 2000, 57:385-400.
    [167]BRINKKOETTER PT, HOLTGREFE S, VAN DER WOUDE FJ,YARD BA. Angiotensin II type 1-receptor mediated changes in heparan sulfate proteoglycans in human SV40 transformed podocytes[J]. J Am Soc Nephrol 2004, 15:33-40.
    [168]VAN DET NF, TAMSMA JT, VAN DEN BORN J, VERHAGEN NA, VAN DEN HEUVEL LP, LOWIK CW, BERDEN JH, BRUIJN JA, DAHA MR,VAN DERWOUDE FJ. Differential effects of angiotensin II and transforming growth factor beta on the production of heparan sulfate proteoglycan by mesangial cells in vitro[J]. J Am Soc Nephrol 1996, 7:1015-23.
    [169]PARISH CR, FREEMAN C,HULETT MD. Heparanase: a key enzyme involved in cell invasion[J]. Biochim Biophys Acta 2001, 1471:M99-108.
    [170]KRAMER A, VAN DEN HOVEN M, ROPS A, WIJNHOVEN T, VAN DEN HEUVEL L, LENSEN J, VAN KUPPEVELT T, VAN GOOR H, VAN DER VLAG J, NAVIS G,BERDEN JH. Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system[J]. J Am Soc Nephrol 2006, 17:2513-20.
    [171]RAATS CJ, BAKKER MA, VAN DEN BORN J,BERDEN JH. Hydroxyl radicals depolymerize glomerular heparan sulfate in vitro and in experimental nephrotic syndrome[J]. J Biol Chem 1997, 272:26734-41.
    [172]WOLF G, HABERSTROH U,NEILSON EG. Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells[J]. Am J Pathol 1992, 140:95-107.
    [173]CHEN S, LEE JS, IGLESIAS-DE LA CRUZ MC, WANG A, IZQUIERDO-LAHUERTA A, GANDHI NK, DANESH FR, WOLF G,ZIYADEH FN. Angiotensin II stimulates alpha3(IV) collagen production in mouse podocytes via TGF-beta and VEGF signalling: implications for diabetic glomerulopathy[J]. Nephrol Dial Transplant 2005, 20:1320-8.
    [174]RIZKALLA B, FORBES JM, COOPER ME,CAO Z. Increased renal vascular endothelial growth factor and angiopoietins by angiotensin II infusion is mediated by both AT1 and AT2 receptors[J]. J Am Soc Nephrol 2003, 14:3061-71.
    [175]DANIEL C. Blocking of angiotensin II is more than blocking of transforming growth factor-beta[J]. Kidney Int 2008, 74:551-3.
    [176]LI Y, KANG YS, DAI C, KISS LP, WEN X,LIU Y. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria[J]. Am J Pathol 2008, 172:299-308.
    [177]LENZ O, ELLIOT SJ,STETLER-STEVENSON WG. Matrix metalloproteinases in renal development and disease[J]. J Am Soc Nephrol 2000, 11:574-81.
    [178]KESTILA M, LENKKERI U, MANNIKKO M, LAMERDIN J, MCCREADY P, PUTAALA H, RUOTSALAINEN V, MORITA T, NISSINEN M, HERVA R, KASHTAN CE, PELTONEN L, HOLMBERG C, OLSEN A,TRYGGVASON K. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated incongenital nephrotic syndrome[J]. Mol Cell 1998, 1:575-82.
    [179]PAVENSTADT H, KRIZ W,KRETZLER M. Cell biology of the glomerular podocyte[J]. Physiol Rev 2003, 83:253-307.
    [180]MIFSUD SA, ALLEN TJ, BERTRAM JF, HULTHEN UL, KELLY DJ, COOPER ME, WILKINSON-BERKA JL,GILBERT RE. Podocyte foot process broadening in experimental diabetic nephropathy: amelioration with renin-angiotensin blockade[J]. Diabetologia 2001, 44:878-82.
    [181]MARSHALL SM. The podocyte: a potential therapeutic target in diabetic nephropathy?[J]. Curr Pharm Des 2007, 13:2713-20.
    [182]DAVIS BJ, CAO Z, DE GASPARO M, KAWACHI H, COOPER ME,ALLEN TJ. Disparate effects of angiotensin II antagonists and calcium channel blockers on albuminuria in experimental diabetes and hypertension: potential role of nephrin[J]. J Hypertens 2003, 21:209-16.
    [183]HARALDSSON B, NYSTROM J,DEEN WM. Properties of the glomerular barrier and mechanisms of proteinuria[J]. Physiol Rev 2008, 88:451-87.
    [184]SUZUKI K, HAN GD, MIYAUCHI N, HASHIMOTO T, NAKATSUE T, FUJIOKA Y, KOIKE H, SHIMIZU F,KAWACHI H. Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall[J]. Am J Pathol 2007, 170:1841-53.
    [185]JIA J, DING G, ZHU J, CHEN C, LIANG W, FRANKI N,SINGHAL PC. Angiotensin II infusion induces nephrin expression changes and podocyte apoptosis[J]. Am J Nephrol 2008, 28:500-7.
    [186]WOLF G,NEILSON EG. Angiotensin II as a renal growth factor[J]. J Am Soc Nephrol 1993, 3:1531-40.
    [187]EGIDO J. Vasoactive hormones and renal sclerosis[J]. Kidney Int 1996, 49:578-97.
    [188]RUIZ-ORTEGA M,EGIDO J. Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts[J]. Kidney Int 1997, 52:1497-510.
    [189]KLAHR S, SCHREINER G,ICHIKAWA I. The progression of renal disease[J]. N Engl J Med 1988, 318:1657-66.
    [190]MIHAILOVIC-STANOJEVIC N, JOVOVIC D, MILORADOVIC Z, GRUJIC-MILANOVIC J, JERKIC M,MARKOVIC-LIPKOVSKI J. Reduced progression of adriamycin nephropathy in spontaneously hypertensive rats treated by losartan[J]. Nephrol Dial Transplant 2009, 24:1142-50.
    [191]PIECHA G, KOLEGANOVA N, GROSS ML, GELDYYEV A, ADAMCZAK M,RITZ E. Regression of glomerulosclerosis in subtotally nephrectomized rats: effects of monotherapy with losartan, spironolactone, and their combination[J]. Am J Physiol Renal Physiol 2008, 295:F137-44.
    [192]TELES F, MACHADO FG, VENTURA BH, MALHEIROS DM, FUJIHARA CK, SILVA LF,ZATZ R. Regression of glomerular injury by losartan in experimental diabetic nephropathy[J]. Kidney Int 2009, 75:72-9.
    [193]MATSUBARA H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases[J]. Circ Res 1998, 83:1182-91.
    [194]GOMEZ-GARRE D, RUIZ-ORTEGA M, ORTEGO M, LARGO R, LOPEZ-ARMADA MJ, PLAZA JJ, GONZALEZ E,EGIDO J. Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth[J]. Hypertension 1996, 27:885-92.
    [195]WOLF G,ZIYADEH FN. The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms[J]. Am J Kidney Dis 1997, 29:153-63.
    [196]PETERS H,NOBLE NA. Angiotensin II and L-arginine in tissue fibrosis: more than blood pressure[J]. Kidney Int 1997, 51:1481-6.
    [197]KAGAMI S, BORDER WA, MILLER DE,NOBLE NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells[J]. J Clin Invest 1994, 93:2431-7.
    [198]SHIHAB FS, BENNETT WM, TANNER AM,ANDOH TF. Angiotensin II blockade decreases TGF-beta1 and matrix proteins in cyclosporine nephropathy[J]. Kidney Int 1997, 52:660-73.
    [199]ABRAHAMSEN CT, PULLEN MA, SCHNACKENBERG CG, GRYGIELKO ET, EDWARDS RM, LAPING NJ,BROOKS DP. Effects of angiotensins II and IV on blood pressure, renal function, and PAI-1 expression in the heart and kidney of the rat[J]. Pharmacology 2002, 66:26-30.
    [200]KAGAMI S, KUHARA T, OKADA K, KURODA Y, BORDER WA,NOBLE NA. Dual effects of angiotensin II on the plasminogen/plasmin system in rat mesangial cells[J]. Kidney Int 1997, 51:664-71.
    [201]BORDER WA,NOBLE NA. Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis[J]. Hypertension 1998, 31:181-8.
    [202]RODRIGUEZ-VITA J, SANCHEZ-LOPEZ E, ESTEBAN V, RUPEREZ M, EGIDOJ,RUIZ-ORTEGA M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism[J]. Circulation 2005, 111:2509-17.
    [203]KRIZ W, GRETZ N,LEMLEY KV. Progression of glomerular diseases: is the podocyte the culprit?[J]. Kidney Int 1998, 54:687-97.
    [204]D'AGATI VD. The spectrum of focal segmental glomerulosclerosis: new insights[J]. Curr Opin Nephrol Hypertens 2008, 17:271-81.
    [205]JONES N, BLASUTIG IM, EREMINA V, RUSTON JM, BLADT F, LI H, HUANG H, LAROSE L, LI SS, TAKANO T, QUAGGIN SE,PAWSON T. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes[J]. Nature 2006, 440:818-23.
    [206]SKOBERNE A, KONIECZNY A,SCHIFFER M. Glomerular epithelial cells in the urine: what has to be done to make them worthwhile?[J]. Am J Physiol Renal Physiol 2009, 296:F230-41.
    [207]KRIZ W, HACKENTHAL E, NOBILING R, SAKAI T, ELGER M,HAHNEL B. A role for podocytes to counteract capillary wall distension[J]. Kidney Int 1994, 45:369-76.
    [208]SCHWARTZ MM, EVANS J, BAIN R,KORBET SM. Focal segmental glomerulosclerosis: prognostic implications of the cellular lesion[J]. J Am Soc Nephrol 1999, 10:1900-7.
    [209]KRIZ W, HOSSER H, HAHNEL B, GRETZ N,PROVOOST AP. From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: a histopathological study in rat models and human glomerulopathies[J]. Nephrol Dial Transplant 1998, 13:2781-98.
    [210]KRIZ W, HARTMANN I, HOSSER H, HAHNEL B, KRANZLIN B, PROVOOST A,GRETZ N. Tracer studies in the rat demonstrate misdirected filtration and peritubular filtrate spreading in nephrons with segmental glomerulosclerosis[J]. J Am Soc Nephrol 2001, 12:496-506.
    [211]KRETZLER M. Role of podocytes in focal sclerosis: defining the point of no return[J]. J Am Soc Nephrol 2005, 16:2830-2.
    [212]DING G, REDDY K, KAPASI AA, FRANKI N, GIBBONS N, KASINATH BS,SINGHAL PC. Angiotensin II induces apoptosis in rat glomerular epithelial cells[J]. Am J Physiol Renal Physiol 2002, 283:F173-80.
    [213]DOUILLETTE A, BIBEAU-POIRIER A, GRAVEL SP, CLEMENT JF, CHENARD V, MOREAU P,SERVANT MJ. The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IkappaB kinase complex[J]. J Biol Chem2006, 281:13275-84.
    [214]JOHNSON RJ, ALPERS CE, YOSHIMURA A, LOMBARDI D, PRITZL P, FLOEGE J,SCHWARTZ SM. Renal injury from angiotensin II-mediated hypertension[J]. Hypertension 1992, 19:464-74.
    [215]WOLF G. Link between angiotensin II and TGF-beta in the kidney[J]. Miner Electrolyte Metab 1998, 24:174-80.
    [216]DESMOULIERE A, GEINOZ A, GABBIANI F,GABBIANI G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts[J]. J Cell Biol 1993, 122:103-11.
    [217]MEZZANO SA, DROGUETT MA, BURGOS ME, ARDILES LG, AROS CA, CAORSI I,EGIDO J. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy[J]. Kidney Int 2000, 57:147-58.
    [218]KALLURI R,NEILSON EG. Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest 2003, 112:1776-84.
    [219]MATSUMOTO K, MORISHITA R, TOMITA N, MORIGUCHI A, KOMAI N, AOKI M, NAKAMURA T, HIGAKI J,OGIHARA T. Improvement of endothelial dysfunction by angiotensin II blockade accompanied by induction of vascular hepatocyte growth factor system in diabetic spontaneously hypertensive rats[J]. Heart Vessels 2003, 18:18-25.
    [220]CATTELL V. Macrophages in acute glomerular inflammation[J]. Kidney Int 1994, 45:945-52.
    [221]MORRISSEY JJ,KLAHR S. Differential effects of ACE and AT1 receptor inhibition on chemoattractant and adhesion molecule synthesis[J]. Am J Physiol 1998, 274:F580-6.
    [222]RUIZ-ORTEGA M, ESTEBAN V, RUPEREZ M, SANCHEZ-LOPEZ E, RODRIGUEZ-VITA J, CARVAJAL G,EGIDO J. Renal and vascular hypertension-induced inflammation: role of angiotensin II[J]. Curr Opin Nephrol Hypertens 2006, 15:159-66.
    [223]RUIZ-ORTEGA M, LORENZO O, RUPEREZ M, BLANCO J,EGIDO J. Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT(1) and AT(2) receptors[J]. Am J Pathol 2001, 158:1743-56.
    [224]RUIZ-ORTEGA M, LORENZO O, RUPEREZ M, ESTEBAN V, SUZUKI Y, MEZZANO S, PLAZA JJ,EGIDO J. Role of the renin-angiotensin system in vascular diseases: expanding the field[J]. Hypertension 2001, 38:1382-7.
    [225]WOLF G, ZIYADEH FN, THAISS F, TOMASZEWSKI J, CARON RJ, WENZEL U,ZAHNER G, HELMCHEN U,STAHL RA. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor[J]. J Clin Invest 1997, 100:1047-58.
    [226]WOLF G, BOHLENDER J, BONDEVA T, ROGER T, THAISS F,WENZEL UO. Angiotensin II upregulates toll-like receptor 4 on mesangial cells[J]. J Am Soc Nephrol 2006, 17:1585-93.
    [227]MEZZANO SA, RUIZ-ORTEGA M,EGIDO J. Angiotensin II and renal fibrosis[J]. Hypertension 2001, 38:635-8.
    [228]LEE GS. Mesangial cell culture: its role in the understanding of the pathogenesis of glomerular disease[J]. Ann Acad Med Singapore 1995, 24:851-5.
    [229]LIANOS EA,ZANGLIS A. Effects of complement activation on platelet-activating factor and eicosanoid synthesis in rat mesangial cells[J]. J Lab Clin Med 1992, 120:459-64.
    [230]PERLMAN A, LAWSIN LM, KOLACHANA P, SAJI M, MOORE J, JR.,RINGEL MD. Angiotensin II regulation of TGF-beta in murine mesangial cells involves both PI3 kinase and MAP kinase[J]. Ann Clin Lab Sci 2004, 34:277-86.
    [231]SUZUKI A, IWATANI H, ITO T, IMAI E, OKABE M, NAKAMURA H, ISAKA Y, YAMATO M,HORI M. Platelet-derived growth factor plays a critical role to convert bone marrow cells into glomerular mesangial-like cells[J]. Kidney Int 2004, 65:15-24.
    [232]FLOEGE J, EITNER F,ALPERS CE. A new look at platelet-derived growth factor in renal disease[J]. J Am Soc Nephrol 2008, 19:12-23.
    [233]LI X,ERIKSSON U. Novel PDGF family members: PDGF-C and PDGF-D[J]. Cytokine Growth Factor Rev 2003, 14:91-8.
    [234]CHOUDHURY GG, KARAMITSOS C, HERNANDEZ J, GENTILINI A, BARDGETTE J,ABBOUD HE. PI-3-kinase and MAPK regulate mesangial cell proliferation and migration in response to PDGF[J]. Am J Physiol 1997, 273:F931-8.
    [235]TOKER A,NEWTON AC. Cellular signaling: pivoting around PDK-1[J]. Cell 2000, 103:185-8.
    [236]LANGHAM RG, KELLY DJ, MAGUIRE J, DOWLING JP, GILBERT RE,THOMSON NM. Over-expression of platelet-derived growth factor in human diabetic nephropathy[J]. Nephrol Dial Transplant 2003, 18:1392-6.
    [237]EITNER F, OSTENDORF T, VAN ROEYEN C, KITAHARA M, LI X, AASE K, GRONE HJ, ERIKSSON U,FLOEGE J. Expression of a novel PDGF isoform, PDGF-C, in normal and diseased rat kidney[J]. J Am Soc Nephrol 2002, 13:910-7.
    [238]FLOEGE J, VAN ROEYEN C, BOOR P,OSTENDORF T. The role of PDGF-D inmesangioproliferative glomerulonephritis[J]. Contrib Nephrol 2007, 157:153-8.
    [239]KUROGI Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease[J]. Med Res Rev 2003, 23:15-31.
    [240]YU L, BORDER WA, HUANG Y,NOBLE NA. TGF-beta isoforms in renal fibrogenesis[J]. Kidney Int 2003, 64:844-56.
    [241]BOTTINGER EP,BITZER M. TGF-beta signaling in renal disease[J]. J Am Soc Nephrol 2002, 13:2600-10.
    [242]TERADA Y, HANADA S, NAKAO A, KUWAHARA M, SASAKI S,MARUMO F. Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney[J]. Kidney Int 2002, 61:S94-8.
    [243]RODRIGUEZ-BARBERO A, DORADO F, VELASCO S, PANDIELLA A, BANAS B,LOPEZ-NOVOA JM. TGF-beta1 induces COX-2 expression and PGE2 synthesis through MAPK and PI3K pathways in human mesangial cells[J]. Kidney Int 2006, 70:901-9.
    [244]DAHLY AJ, HOAGLAND KM, FLASCH AK, JHA S, LEDBETTER SR,ROMAN RJ. Antihypertensive effects of chronic anti-TGF-beta antibody therapy in Dahl S rats[J]. Am J Physiol Regul Integr Comp Physiol 2002, 283:R757-67.
    [245]ZIYADEH FN. Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator[J]. J Am Soc Nephrol 2004, 15 Suppl 1:S55-7.
    [246]LIU Y. Hepatocyte growth factor and the kidney[J]. Curr Opin Nephrol Hypertens 2002, 11:23-30.
    [247]ESPOSITO C, PARRILLA B, DE MAURI A, CORNACCHIA F, FASOLI G, FOSCHI A, MAZZULLO T, PLATI A, SCUDELLARO R,DAL CANTON A. Hepatocyte growth factor (HGF) modulates matrix turnover in human glomeruli[J]. Kidney Int 2005, 67:2143-50.
    [248]KOBAYASHI E, SASAMURA H, MIFUNE M, SHIMIZU-HIROTA R, KURODA M, HAYASHI M,SARUTA T. Hepatocyte growth factor regulates proteoglycan synthesis in interstitial fibroblasts[J]. Kidney Int 2003, 64:1179-88.
    [249]DAI C,LIU Y. Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF[J]. J Am Soc Nephrol 2004, 15:1402-12.
    [250]BESSHO K, MIZUNO S, MATSUMOTO K,NAKAMURA T. Counteractive effects of HGF on PDGF-induced mesangial cell proliferation in a rat model of glomerulonephritis[J]. Am J Physiol Renal Physiol 2003, 284:F1171-80.
    [251]GIANNOPOULOU M, DAI C, TAN X, WEN X, MICHALOPOULOS GK,LIU Y. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling[J]. Am J Pathol 2008, 173:30-41.
    [252]BRUNS FJ, STACHURA I, ADLER S,SEGEL DP. Effect of early plasmapheresis and immunosuppressive therapy on natural history of anti-glomerular basement membrane glomerulonephritis: report of a 22-month follow-up[J]. Arch Intern Med 1979, 139:372-4.
    [253]GWATHMEY TM, SHALTOUT HA, PENDERGRASS KD, PIRRO NT, FIGUEROA JP, ROSE JC, DIZ DI,CHAPPELL MC. Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production[J]. Am J Physiol Renal Physiol 2009, 296:F1484-93.
    [254]LI XC,ZHUO JL. Intracellular ANG II directly induces in vitro transcription of TGF-beta1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors[J]. Am J Physiol Cell Physiol 2008, 294:C1034-45.
    [255]GARRIDO AM,GRIENDLING KK. NADPH oxidases and angiotensin II receptor signaling[J]. Mol Cell Endocrinol 2009, 302:148-58.
    [256]STEPHENS LR, JACKSON TR,HAWKINS PT. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system?[J]. Biochim Biophys Acta 1993, 1179:27-75.
    [257]SEGRELLES C, MORAL M, LARA MF, RUIZ S, SANTOS M, LEIS H, GARCIA-ESCUDERO R, MARTINEZ-CRUZ AB, MARTINEZ-PALACIO J, HERNANDEZ P, BALLESTIN C,PARAMIO JM. Molecular determinants of Akt-induced keratinocyte transformation[J]. Oncogene 2006, 25:1174-85.
    [258]MIRZA AM, KOHN AD, ROTH RA,MCMAHON M. Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB[J]. Cell Growth Differ 2000, 11:279-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700