用户名: 密码: 验证码:
新型多靶点激酶抑制剂的设计合成及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞信号转导通路的改变是导致癌症形成的重要因素之一。癌细胞中由基因突变引起高表达的蛋白激酶是导致其信号转导通路异常的主要原因之一。我们以与癌症密切相关的三种激酶——Aurora A、CDK2和FLT3激酶为靶点组合,以SB1317为先导化合物,采用计算机辅助药物设计方法研究配体与靶酶的相互作用关系,在此基础上开展多靶点激酶抑制的设计与合成,以期望得到同时对三种靶激酶具有抑制活性的新型多靶点激酶抑制剂。
     首先,我们使用MOE分子设计软件对Aurora A、CDK2及FLT3激酶进行蛋白叠合,寻找三类激酶活性口袋的共性,发现Aurora A、CDK2及FLT3三种激酶在邻近铰链区的部位存在一共同的亲水表面,分别由Lys162、Glu12及Arg849氨基酸残基构成。以此为基础进一步研究配体分子SB1317与三类激酶活性口袋的相互作用关系,精确设计出目标化合物。然后,应用现代有机合成方法与检测手段(HPLC.1H-NMR、MS及HRMS等)进行目标化合物的合成研究。最后根据文献报道方法进行体外生物活性测试研究。
     本课题开发了两条以不同的环合方法为关键步骤的制备具有大环结构目标化合物的合成路线,并依据所设计的路线合成了17个未见文献报道的全新化合物,验证了合成路线的可行性,为后续研究工作提供了重要的化学基础;目标化合物的体外抑酶活性实验结果显示,在10μM时,所合成的化合物对Aurora A、CDK2及FLT3激酶均有较强的抑制活性。这一结果为多靶点激酶抑制剂的后续研究奠定了重要基础。
Direct and indirect involvement of kinases in tumor growth, metastasis and apoptosis make them as most promising targets for anticancer drug discovery. However, clinical use of kinase inhibitors has led to the emergence of severe drug resistant tumors. Therefore, there is an emergent need to develop novel multikinase inhibitors.
     Aurora A, CDK2 and FLT3 are over expressed in many tumors, and the active sites of them were identified. In this study, we present an alignment of catalytic domainamino acid sequences of Aurora A, CDK2 and FLT3. The results has revealed that they have shared a hydrophilic surface consists of Lys162, Glu12 and Arg849 residue near the hinge. Then the binding mode of SB1317 was analyzed. On the basis of the results from molecular docking, hydrophilic groups were designed to interact with the hydrophilic surface, and aliphatic chains were designed to link these hydrophobic groups to N atom of benzyl in SB1317.
     In this study, we established two novel general procedure for the synthesis of macrocylic compounds of interesting, and 17 novel compounds were synthesized and the structure of them were confirmed by MS,'H-NMR and HRMS. Most of the compounds we synthesized showed potent Aurora A, CDK2 and FLT3 inhibitory activities, providing a useful guideline for the rational design of novle multikinase inhibitors.
引文
[1]Ahmedin J D; Freddie B, Melissa M C, et al. Global Cancer Statistics. CA Cancer J Clin 2011,61:69~90.
    [2]郑虎.药物化学.人民卫生出版社,2004.
    [3]邓程艳等.顺铂的毒副作用及其防治.中华妇产科杂志,1995,30(6):376~379.
    [4]Douglas H, Robert A W. The Hallmarks of Cancer[J]. Cell,2000,100:57~70.
    [5]Philip C. Protein kinases-the major drug targets of the twenty-first century? Nature Review.2002,1:310~315.
    [6]Maning G, Whyte D B, Matinez R, et al. The Protein Kinase Complement of the Human Genome. Science,2002,298:1912~1934.
    [7]Zhang J, Yang P L, Gray N S. Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer,2009,9:28~39.
    [8]Alexander L. Targeting signal transduction for disease therapy. Cell regulation. 1996,8:239-244.
    [9]Mazen W K, Sanna H, Daniel K T, et al. A quantitative analysis of kinase inhibitor selectivity[J]. Nature Biotechonology,2008,26 (1):127~132.
    [10]LoRusso P M, Eder J P. Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin. Invest. Drugs 2008,17:1013-1028.
    [11]Francis J G, Jorge C, Dan J, et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood,2007,109(2):500-502.
    [12]Petrov K G, Zhang Y M, Carter M, et al. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. Bioorg.Med. Chem. Lett.2006,16:4686~4691.
    [13]Spector N L, XiaW, Bums H, et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbBl and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol,2005,23: 2502~2518.
    [14]LoRusso, P M.; Eder, J. P. Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin. Invest. Drugs 2008,17:1013~1028.
    [15]Kerbel R S. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays.1991,13(1):31~36.
    [16]Dirk B M, Douglas L, Xiaohua X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors:determination of a pharmacokinetic/ pharmacodynamic relationship. Clin. Cancer Res.2003,9:327~337.
    [17]Scott M W, Christopher C, LiY T, et al. BAY43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004,64:7099~7109.
    [18]Alfonso Q C, Hagop K, Dan J, et al. Dasatinib (BMS-354825) is active in Philadelphia chromosome-positive chronic myelogenous leukemia after imatinib and nilotinib (AMN107) therapy failure. Blood,2007,109(2):497~499.
    [19]Morphy R. Selectively Nonselective Kinase Inhibition:Striking the Right Balance. J. Med. Chem.2010,53:1413~1437.
    [20]杨健,陈增良.血管新生与肿瘤生长的研究进展.浙江大学学报(医学版),1999,30(4):189~192.
    [21]Bellezza I, Bracarda S, Caserta C, et al. Targeting of EGFR tyrosine kinase by ZD1839 ("Gefitinib") in androgenresponsive prostate cancer in vitro [J]. Mol Genet Metab,2006,88:114~122.
    [22]Louise N J, Edward D L, Martin E M, et al. The structural basis for substrate recognition and control by protein kinases. FEBS Letters 1998,430:1~11.
    [23]Peter T, Pascal F. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacology & Therapeutics,1999,82:195~206.
    [24]Martin K, Andreas H. Recent advances in the development of multi-kinase inhibitors. Mini-Reviews in Medicinal Chemistry,2008,8,1312~1327.
    [25]Bamborough P, Drewry D, Harper G, et al. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J Med Chem.2008, 51(24):7898~7914.
    [26]John R P, Michael M. Discovery and Development of Aurora Kinase Inhibitors as Anticancer Agents. J Med Chem,2009,52(9):2630~2651.
    [27]Price, S. Putative allostericMEK1 andMEK2 inhibitors. Expert Opin. Ther. Pat. 2008,18:603~627.
    [28]Denny W A. Irreversible inhibitors of the erbB family of protein tyrosine kinases. Pharmacol. Ther.2002,93:253~261.
    [29]Susan S T, Alexandr P K. Protein kinases:evolution of dynamic regulatory proteins.Trends in Biochemical Sciences,2011,36(2):65~77.
    [30]Mar C, William C E. The Cellular Geography Of Aurora Kinases. Nature Rev. 2003,4:842~854.
    [31]Alexis R B, Fanni G Aurora-A:the maker and breaker of spindle poles. J Cell Science,2007,120(17):2987~2996.
    [32]Re'gis G, Rustem U. The Xenopus laevis Aurora-related Protein Kinase pEg2 Associates with and Phosphorylates the Kinesin-related Protein X1Eg5[J]. The Journal of Biological Chemistry,1999,274(21):15005~15013.
    [33]Takayuki I, Jing Y, Chie N, et al. A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther,2007,6:1851~1857.
    [34]Hongyi Z, Jian K, Ling Z, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genetics, 1998(20):189~193.
    [35]Farid G, Yao Y, Victor K, et al. The Aurora Kinase Inhibitor VX-680 Induces Endoreduplication and Apoptosis Preferentially in Cells with Compromised p53-Dependent Postmitotic Checkpoint Function. Cancer Res,2006,66: 7668~7677.
    [36]Mutsuko O, Nobuko F, Kaory S, et al. BRCA1 Phosphorylation by Aurora-A in the Regulation of G2 to M Transition.The Journal of Biological Chemistry,2004, 279(19):19643-19648.
    [37]Patrick A E, Eleanor E, Lin G C, et al. A Novel Mechanism for Activation of the Protein Kinase Aurora A. Current Biology,2003,13:691-697.
    [38]Mark G M, Jeffrey A E, Kristan A M, et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. PNAS,2007,104(10): 4106~4111.
    [39]Emma L. Cyclin dependent kinase regulation. Current Opinion in Cell Biology 1995,7:773~780.
    [40]Torsten K, Mark J, Jonathon P, et al. Cyclin/Cdk-Dependent Initiation of DNA Replication in a Human Cell-Free System. Cell,1997,88:109~119.
    [41]Ante S L, Robert A. W. Functional Inactivation of the Retinoblastoma Protein Requires Sequential Modification by at Least Two Distinct Cyclin-cdk Complexes. Molecular And Cellular Biology,1998,18(2):753~761.
    [42]Jiyong Z, Brian D, Takashi I, et al. Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry[J]. Genes Dev.1998,12:456~461.
    [43]Xuequn H H, Hong Y, John N. A Role for Cdk2 Kinase in Negatively Regulating DNA Replication during S Phase of the Cell Cycle. The Journal of Cell Biology, 1997,137:183~192.
    [44]Yutaka M, Ken H, Eisuke N. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Current Biology,1999,9:429~432.
    [45]Christian K, Torsten K. Requirement of Cyclin/Cdk2 and Protein Phosphatase 1 Activity for Chromatin Assembly Factor 1-dependent Chromatin Assembly during DNA Synthesis. The Journal of Biological Chemistry,2000,275(45): 35512~35521.
    [46]Claus S S, Claudia L, Edgar R K, et al. A Conserved Cyclin-Binding Domain Determines Functional Interplay between Anaphase-Promoting Complex-Cdhl and Cyclin A-Cdk2 during Cell Cycle Progression. Molecular and Cellular Biology,2001,21(11):3692~3703.
    [47]Hideo T, Tony H. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21.1994,78(1):67~74.
    [48]Marcos M, Mariano B. Cell cycle, CDKs and cancer:a changing paradigm. Nature Rev.2009,9:153~166.
    [49]Per H, Fuad B, Yingtao S, et al. Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. PNAS,2010,107(1): 58~63.
    [50]Cathy C Z, Susan K, Indrawan M, et al. AG-024322 is a potent and selective multi-targeted CDK inhibitor with broad spectrum anti-proliferative activity. Proc Amer Assoc Cancer Res,2005,46, Abstract.
    [51]Matthew S S, Ruth E F, Nicola G W, et al. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor celllines. Mol Cancer Ther 2009,8:324~332.
    [52]Wanda D, Xin-Jie C, Xuefeng Y, et al. In vitro and in vivo activity of R547:a potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol Cancer Ther,2006,5:2644~2658.
    [53]Florence P, Guy F, Ce'dric S, et al. Pyrazolo[1,5-a]-1,3,5-triazine as a Purine Bioisostere:Access to Potent Cyclin-Dependent Kinase Inhibitor (R)-Roscovitine Analogue[J]. J. Med. Chem,2009,52:655~663.
    [54]Raj N M, Hai-yun X, Kyoung S K, et al. N-(Cycloalkylamino)acyl-2 aminothiazole Inhibitors of Cyclin-Dependent Kinase 2. N-[5-[[5-(1,1- Dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide (BMS-387032), a Highly Efficacious and SelectiveAntitumor Agent[J]. J. Med. Chem.2004,47:1719-1728.
    [55]Sedlacek H H. Mechanisms of action of flavopiridol. Hematology,2001,38: 139~170.
    [56]David P, Timothy G, Frances S, et al. Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent Kinase Inhibitor. Abstract.
    [57]Siemeistera G, Lueckinga U, Wagner C, et al. Molecular and pharmacodynamic characteristics of the novel multi-target tumor growth inhibitor ZK 304709. Biomedicine & Pharmacotherapy,2006,60:269~272.
    [58]沈权.FLT3在造血和白血病中的作用.国外输血及血液学分册,2004,27(4):345~348.
    [59]Derek L S, Jerald P R. The Role Of Flt3 Inhaematopoietic Malignancies. Nature Rev.2003,3:650~665.
    [60]Mercedes D, Shulin W, Ihor R L. Mitogenic Signalling and Substrate Specificity of the Flk2/Flt3 Receptor Tyrosine Kinase in Fibroblasts and Interleukin 3-Dependent Hematopoietic Cells. Molecular and Cellular Biology,1993,13(10): 6572~6585.
    [61]Panagiotis D K, Rosemary E G, Marion E F, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy:analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood,2001,98:1752~1759.
    [62]Yukiya Y, Hitoshi K, Yasuyuki N, Ritsuro S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies.2001,97: 2434~2439.
    [63]Abu-Duhier, F M, Goodeve A C, Wilson G A, et al. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. British Journal of Haematology,2001,113:983~988.
    [64]KiyoilH, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia,1998,12:1333~1337.
    [65]Masao M, Regina F, Hartmut H, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood,2000,96:3907~3914.
    [66]Hitoshi K, Ryuzo O, Ryuzo U, et al. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene, 2002,21:2555-2563.
    [67]Kevin WH Y, Anne M O, Beverly D S, et al. SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase.2002,100: 2941~2949.
    [68]Daniel J G, Craig A D, Jitesh J, et al. Sustained in Vivo Regression of Dunning H Rat ProstateCancers Treated with Combinations of Androgen Ablation andTrk Tyrosine Kinase Inhibitors, CEP-751 (KT-6587) or CEP-701(KT-5555). Cancer Res,1999,59:2395~2401.
    [69]Louise M K, Jin-Chen Y, Christina L B, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell, 2002,1:421~432.
    [1]Edward M D, Stephen P H, Jinbo L, et al. The exploration of macrocycles for drug discovery:an underexploited structural class[J]. Nature,2008,7:608-624.
    [2]Eleuterio H S.Olefin metathesis:chance favors those minds that are best prepared[J]. J Mol Catal,1991,65:55-61.
    [3]Calderon N, Chen H Y, Scott, K W. Olefin Metathesiss-A Novel Reaction for Skeletal Transformations of Unsaturated Hydrocarbons[J]. Tetrahedron Lett, 1967,34:3327-3329.
    [4]The Nobel Prize in Chemistry 2005, The Royal Swedish Academy of Sciences, www.kva.se.
    [5]Tsuji J, Hashiguchi S. Application of olefin metathesis to organic synthesis. Syntheses of civetone and macrolides.[J]. Tetrahedron Lett,1980,21: 2955-2958.
    [6]Schrock R R, Murdzek J S, Bazan G C, et al. Synthesis of Molybdenum Imido Alkylidene Complexes and Some Reactions Involving Acyclic Olefins[J]. J Am Chem Soc,1990,112:3875-3886.
    [7]Mohindra S, Yousef A. Studies directed toward the synthesis of carba-D-arabinofuranose[J]. Tetrahedron Lett,2000,41:7801-7803.
    [8]Vanya B K, Carlos A M. Synthesis of Cyclopentitols by Ring-Closing Approaches[J]. Chem Rev,2009,109:6809-6857.
    [9]Nguyen S T, Johnson L K, Grubbs R H. Ring-opening metathesis polymerization (ROMP) of norbornene by a Group VIII carbene complex in protic media[J]. J Am Chem Soc,1992,114:3974-3975.
    [10]Gary E K, Robert L G, Victor J C, et al. Total Synthesis of Epothilones B and D: Stannane Equivalents for-Keto Ester Dianions[J]. J Org Chem,2008,73: 9675-9691.
    [11]Kirkland T A, Grubbs R H. Effects of Olefin Substitution on the Ring-Closing Metathesis of Dienes[J]. J Org Chem,1997,62:7310-7318.
    [12]Matthias S, Tinka T M, Morgan J P, et al. Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands[J]. Tetrahedron Letters,1999,40:2247-2250.
    [13]Huan W, Hayao M, Brian D D, et al. Large-scale synthesis of SB-462795, a cathepsin K inhibitor:the RCM-based approaches[J]. Tetrahedron,2009,65: 6291-6303.
    [14]Jason SK, Joseph P A, Peter J B, et al. A Recyclable Ru-Based Metathesis Catalyst[J]. J Am Chem Soc,1999,121:791-799.
    [15]James H N, Huilin L, Ben C, et al. The Binding Mode of Epothilone A on a, β-Tubulin by Electron Crystallography[J]. Science,2004,305(5685):866-869.
    [16]Nicolaou K C, He Y, Vourloumis D, et al. The Olefin Metathesis Approach to Epothilone A and Its Analogues[J]. J Am Chem Soc,1997,119:7960-7973.
    [17]Singh S, McCoy J G, Zhang C, et al. Structure and Mechanism of the Rebeccamycin Sugar4-O-Methyltransferase RebM[J]. J Biol Chem.283: 22628-22636.
    [18]Stephen C P, Christopher J P, Willem A L, et al. Metathesis Reactions for the Synthesis of Ring-Fused Carbazoles[J]. J Org Chem,2005,70:10474-10481.
    [19]Leimgruber W, Stefanovie V, Schenker F, et al. Isolation and Characterization of Anthramycin, a New Antitumor Antibiotic[J]. J Am Chem Soc,1965: 5791-5793.
    [20]Tsuyoshi K, Yoshihiro S, Miwako M. Synthetic study of (C)-anthramycin using ring-closing enyne metathesis and cross-metathesis[J]. Tetrahedron,2004,60: 9649-9657.
    [21]Ryuichi S, Tatsuo H. Manzamine A, a Novel Antitumor Alkaloid from a Sponge[J]. J Am Chem Soc,1986,108:6404-6405.
    [22]John M H, Yusheng L, Amjad A, et al. Enantioselective Total Syntheses of Manzamine A and Related Alkaloids[J]. J Am Chem Soc,2002,124: 8584-8592.
    [23]Zhi-Fu T, Le W, Kent D S, et al. Structure-Based Design, Synthesis, and Biological Evaluation of Potent and Selective Macrocyclic Checkpoint Kinase 1 Inhibitors[J]. J Med Chem,2007,50:1514-1527.
    [24]Vinod R H, Mahesh G P, Vincent P G, et al. Macrolactams:A New Class of Antifungal Agents[J]. J Am Chem Soc,1990,112:6403-6405.
    [25]Enric L, Felix U, Jaume V, et al. Efficient Approach to Fluvirucins B2-B5, Sch 38518, and Sch 39185. First Synthesis of their Aglycon, via CM and RCM Reactions[J]. Org Lett,2009,11(15):3198-3201.
    [26]Chao Lin, Kai L, Yu-Ping L, et al. In Vitro Resistance Studies of Hepatitis C Virus Serine Protease Inhibitors, VX-950 and BILN 2061 [J]. J Bio Chem,2004, 279(17):17508-17514.
    [27]Thomas N, Michael B, Kai D, et al. First Scale-Up to Production Scale of a Ring Closing Metathesis Reaction Forming a 15-Membered Macrocycle as a Precursor of an Active Pharmaceutical Ingredient[J]. Org Process Res Dev,2005,9: 513-515.
    [28]Michael T C, Bryan W K. An Efficient Asymmetric Approach to Carbocyclic Nucleosides:Asymmetric Synthesis of 1592U89, a Potent Inhibitor of HIV Reverse Transcriptase[J]. J Org Chem,1996,61:4192-4193.
    [29]Kumar S, Dare L, Vasko-Moser J A, et al. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys[J]. Bone,2007,40:122-131.
    [30]Huan W, Steven N G, Qunying D, et al. Development of a Robust Ring-Closing Metathesis Reaction in the Synthesis of SB-462795, a Cathepsin K Inhibitor[J]. Org Process Res Dev,2008,12:226-234.
    [31]Ana P C, Pawel M, Michael R. Hamblin. Photodynamic therapy and anti-tumour immunity[J]. Nature Rev,2006,6:535-545.
    [32]Lijuan J, Erhong H, Frank R F, et al. Benzoporphyrins via an olefin ring-closure metathesis methodology[J]. Chem Commun,2006:3900-3902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700