用户名: 密码: 验证码:
多壁碳纳米管表面功能化对环氧树脂基复合材料制备和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导热材料广泛应用于换热工程、采暖工程、电子信息工程领域。随着工业生产和科学技术的发展,人们对导热材料提出了新的要求,希望材料具有优良的综合性能。聚合物基导热复合材料成为研究的热点。多壁碳纳米管具有大的长径比、非常高的热导率、优异的力学性能及稳定的化学性能等优点,是聚合物基复合材料十分理想的纳米导热填料。环氧树脂具有优良的粘接性、耐热性、耐化学腐蚀性和机械强度,且价格相对便宜,在热固性树脂领域中处于主导地位。然而,环氧树脂作为聚合物基体使用其缺点主要是热导率低和韧性差。本论文以多壁碳纳米管表面功能化设计与环氧树脂综合性能的改善相结合,使多壁碳纳米管均匀分散于环氧树脂基体中并同时有效改善两相界面结构,研究了表面功能化多壁碳纳米管对环氧树脂导热性和强韧性改善的效果和机理。为进一步优化环氧树脂基复合材料的综合性能,采用表面功能化多壁碳纳米管和化学修饰的纳米碳化硅颗粒所组成的混合型填料体系填充环氧树脂,制备出混合型填料/环氧树脂复合材料,并探讨了复合材料综合性能优化的机理。
     首先对多壁碳纳米管进行表面功能化处理,具体方法为:多壁碳纳米管经浓硫酸/浓硝酸(V浓硫酸:V浓硝酸=3:1)处理后,与氯化亚砜进行酰氯反应,再与三乙烯四胺进行接枝反应,可得到胺功能化的多壁碳纳米管。XPS分析证明了三乙烯四胺分子基团成功地嫁接于多壁碳纳米管的表面;WAXD量化计算了不同多壁碳纳米管的晶体含量,说明胺功能化的多壁碳纳米管保持了较好的微观结构;FESEM和UV-vis-near IR分析表明胺功能化的多壁碳纳米管更为疏松,且在无水乙醇溶剂中有较好的微观分散程度;HRTEM分析表明三乙烯四胺分子在多壁碳纳米管表面形成包覆层,经TGA分析计算得到其平均厚度约为3nm,胺功能化的多壁碳纳米管可看作是一个‘核–壳’结构。
     固化工艺的设计会影响环氧树脂基复合材料最终的使用性能。纯环氧树脂体系和多壁碳纳米管/环氧树脂体系中环氧树脂与固化剂的质量比为100:6,各体系固化反应机制均遵循自催化反应机制。多壁碳纳米管加入后,其自身的位阻延迟了环氧树脂的固化,提高了起始固化温度Ti、峰值温度Tp和固化反应活化能Eα,降低了固化反应热效应△H;与之相比,多壁碳纳米管表面功能化可促进环氧树脂的固化反应,削弱多壁碳纳米管本身带给环氧树脂固化的延迟效应,表现为Ti、Tp和Eα有所下降,△H略有提高。复合材料体系固化工艺考虑到多壁碳纳米管对环氧树脂固化有延迟效应,可根据填料含量的增加在纯环氧树脂体系固化工艺(在真空干燥炉中按照80℃预固化1h,120℃固化1.5h,再140℃下热处理1.5h)的基础上适当延长热处理的时间。
     采用溶液混合-原位聚合法制备多壁碳纳米管/环氧树脂复合材料。利用FESEM、RM、DSC分析测试手段对复合材料进行表征。结果表明:胺功能化的多壁碳纳米管在环氧树脂基体中有较好的分散性,并且与树脂基体有较强的界面结合。胺功能化的多壁碳纳米管是更为有效的导热填料。当碳纳米管体积分数为1%时,复合材料热导率可达到1.3W·m-1·K-1,是环氧树脂基体热导率的3.7倍;当碳纳米管体积分数在1%~4%范围内时,随碳纳米管体积分数的增加,复合材料热导率上升,其最大值可达到3.9W·m-1·K-1,热导率预测计算可运用混合法则;继续增加碳纳米管体积分数,复合材料热导率下降。同时,胺功能化的多壁碳纳米管也是更有效的增强增韧填料。当碳纳米管体积分数为1%时,复合材料的冲击韧性、弯曲强度和弯曲模量达到最大值,分别为22.3kJ·m-2、119.7MPa和2.9GPa,比原始多壁碳纳米管/环氧树脂复合材料相应性能指标的最大值分别提高了47%、25%和21%;继续增加填料,复合材料力学性能下降。
     为进一步优化环氧树脂基复合材料的综合性能,用胺功能化的多壁碳纳米管和硅烷偶联剂表面改性的纳米碳化硅颗粒所组成的二元填料体系填充环氧树脂,在混合型填料/环氧树脂复合材料中,保持碳纳米管体积分数为1%不变。与单一填料相比,在相同填料体积分数条件下,混合型填料可使复合材料具有更好的导热性能和更高的力学性能指标。当填料体积分数为2%时,复合材料的力学性能最好,其热导率、冲击韧性、弯曲强度和弯曲模量分别为2.6W·m-1·K-1、23.9kJ·m-2、130.5MPa和3.8GPa;当填料体积分数为5%时,复合材料的导热性能最好,其相应性能指标分别为6.1W·m-1·K-1、12.7kJ·m-2、93.9MPa和2.3GPa。
     多壁碳纳米管表面功能化可在碳纳米管外壁与环氧树脂基体之间建立共价结合,降低了界面热阻,并促进多壁碳纳米管在树脂基体中的分散,容易形成导热网络,有效改善了复合材料的导热性能;‘核–壳’结构赋予胺功能化的多壁碳纳米管独特的增强增韧机理,软壳层与多壁碳纳米管和环氧树脂基体都结合良好,这样就能够有效地在树脂基体与多壁碳纳米管之间传递载荷和吸收冲击能量,显著提高了复合材料的力学性能;纳米碳化硅颗粒的加入有效减少了填料的团聚现象,对多壁碳纳米管导热网络起到修补和改善作用,进一步优化了环氧树脂基复合材料的综合性能。
Heat conducting materials have been extensively applied in the fields of heat exchange engineering, heat collection engineering and electronic information engineering. With the development of industrial production and technology, heat conducting materials are demanded to possess good combined properties. The study on thermally conductive polymer-matrix composites(PMCs) is attractive. Multi-walled carbon nanotubes(MWCNTs) are considered to be a type of very ideal nano-sized filler for high-performance heat conducting PMCs due to their large aspect ratio, extremely high thermal conductivity, excellent mechanical properties and stable chemical behaviour. Epoxy resins are dominant in the field of thermosetting resins owing to their high adhesion, good heat resistance, superior chemical corrosion resistance, high mechanical strength and relatively low cost. However, the main shortcomings of epoxy resins are low thermal conductivity and poor toughness for the application of thermally conductive PMCs. In the present work, an idea that the design of MWCNT surface functionalization is combined with the improvement of allround properties of epoxy composites is presented. The aim is to obtain uniform dispersion of MWCNTs in epoxy matrix and effectively improve MWCNT-epoxy interfacial interaction. The effects of functionalized MWCNTs on the thermal conduction improvement, reinforcing and toughening of epoxy composites are investigated. In order to further optimize the combined properties of epoxy composites, hybrid filler system consisting of functionalized MWCNTs and modified nano-sized silicon carbide particles(SiCnp) is utilized. Epoxy composites filled with hybrid filler system are prepared and the mechanism for combined property optimization of the composites is further elucidated.
     Surface functionalization of MWCNTs was firstly performed. The synthetic procedure is shown as follows: MWCNTs were first treated by a 3:1(v/v) mixture of concentrated H2SO4/HNO3, and then reacted with SOCl2, finally triethylenetetramine(TETA) grafting was carried out. The final product was TETA-functionalized MWCNTs, namely defined as T-MWCNTs. X-ray photoelectron spectroscopy analysis proves that TETA has been successfully grafted onto the MWCNT surface. The quantitative analysis of the crystalline content of different MWCNTs was performed by wide-angle X-ray diffraction and the results indicate that T-MWCNTs maintain good microstructure. Field emission scanning electron microscope(FESEM) and UV-vis-near IR analyses denote that T-MWCNTs are looser and possess better dispersion state in absolute ethyl alcohol than as-received MWCNTs. High-resolution transmission electron microscope analysis provides the direct evidence that TETA is effectively grafted onto the MWCNT wall to form a thin layer of thickness 3nm calculated by thermogravimetric analysis. T-MWCNTs can be regarded as the‘core-shell’structure.
     The curing process is closely related to the quality of final products. The weight ratio of epoxy/curing agent is 100:6 in neat epoxy system and MWCNT/epoxy systems. The curing kinetics of all systems follows the autocatalytic kinetic mechanism. MWCNTs delay the cure reaction of epoxy due to their steric hindrance. Therefore, the onset cure temperature Ti, the peak temperature Tp and the activation energy Eαincrease and the heat of cure△H decreases. After surface functionalization, TETA functional groups on the MWCNT surface can play the role of curing agents and facilitate the primary amine-epoxide reaction, which means that they weaken the retardation effect caused by MWCNTs on the cure reaction of epoxy. Consequently, Ti, Tp and Eαfall and△H rises a little. According to the fact that MWCNTs have the retarding effect on the cure reaction of epoxy, with the adding of fillers, the curing process of MWCNT/epoxy systems can be based upon that of neat epoxy system(precured at 80℃for 1h, cured at 120℃for 1.5h and postcured at 140℃for 1.5h in a vacuum oven) and simultaneously the postcure time should be extended.
     The preparation of MWCNT/epoxy composites was carried out by solution blending-in situ polymerization method. FESEM, Raman microscope and differential scanning calorimetry analyses indicate the homogeneous dispersion of T-MWCNTs and the improvement of interfacial interaction between T-MWCNTs and epoxy matrix. T-MWCNTs are more effective heat conducting fillers than as-received MWCNTs. When nanotube volume fraction is 1%, the thermal conductivity of T-MWCNT/epoxy composite is 1.3W·m-1·K-1, 3.7times that of epoxy matrix; when nanotube volume fraction is in the range of 1%~4%, with the increase of fillers, thermal conductivity of T-MWCNT/epoxy composites is enhanced and it reaches the maximum value of 3.9W·m-1·K-1, furthermore, thermal conductivity calculation can be performed by the rule of mixture; when nanotube volume fraction is continuously increased, thermal conductivity of T-MWCNT/epoxy composites shows a descending tendency. Likewise, T-MWCNTs are more efficient reinforcing and toughening fillers. When nanotube volume fraction is 1%, the impact toughness, bending strength and bending modulus of T-MWCNT/epoxy composite reach the maximum values of 22.3kJ·m-2, 119.7MPa and 2.9GPa, respectively. Compared with the maxima of corresponding performance indices of as-received MWCNT/epoxy composite, the three performance indices of the composite increase by 47%, 25% and 21%, respectively. With the continuous adding of fillers, mechanical properties of the composites reveal a falling tendency.
     In order to further optimize the combined properties of epoxy composites, hybrid filler system consisting of T-MWCNTs and silane-modified SiCnp was applied. In hybrid filler/epoxy composites, nanotube volume fraction maintains 1%. Epoxy composites filled with hybrid filler system possess better heat-conducting property and greater mechanical performance indices, compared with those filled with single filler system. When filler volume fraction is 2%, the mechanical properties of hybrid filler/epoxy composite are the best and its thermal conductivity, impact toughness, bending strength and bending modulus are 2.6W·m-1·K-1, 23.9kJ·m-2, 130.5MPa and 3.8GPa, respectively; when filler volume fraction is 5%, the heat-conducting property of the corresponding composite is the best and its performance indices are 6.1W·m-1·K-1, 12.7kJ·m-2, 93.9MPa and 2.3GPa, respectively。
     MWCNT surface functionalization could establish the covalent bonding between nanotube wall and epoxy matrix, which decreases interfacial thermal resistance and facilitates the dispersion of MWCNTs in epoxy matrix and the formation of heat-conducting network. Therefore, effective thermal conductivity improvement of epoxy composites is shown. The‘core-shell’structure endows T-MWCNTs with the special mechanism of reinforcing and toughening. This soft layer establishes good connection of MWCNT wall to epoxy matrix, so it can efficiently transfer loading between the reinforcer and the matrix and absorb impact energy. Thereby, mechanical properties of the composites are greatly enhanced. The filling of SiCnp further improves MWCNT-to-MWCNT network and effectively inhibits the agglomeration of fillers, which is beneficial to the optimization of combined properties of epoxy composites.
引文
1唐伟,王旭,蔡晓良.聚合物基导热复合材料研究进展.化工新型材料,2006,34(10):19~21
    2李侃社,王琪.导热高分子材料研究进展.功能材料,2002,33(2):136~141
    3马传国,容敏智,章明秋.导热高分子复合材料的研究与应用.材料工程,2002,(7):40~45
    4肖琰,魏伯荣,杨海涛等.导热高分子材料的研究开发现状.中国塑料,2005,19(4):12~16
    5石彤非,李树忠,张万喜等.填充型导热塑料.高分子材料科学与工程,1994,(3):8~13
    6王亮亮,陶国良.导热高分子复合材料的研究进展.工程塑料应用,2003,9(31):70~73
    7王亮亮,陶国良.聚丙烯/铝粉复合材料导热性能研究.塑料工业,2003,31(12):47~54
    8唐明明,容敏智,马传国等.Al2O3的表面处理及粒子尺寸对SBR导热橡胶性能的影响.合成橡胶工业,2003,26(2):104~107
    9康学勤,孙智.陶瓷纤维填充聚烯烃复合材料的导热性能研究.塑料工业,2004,32(3):52~53
    10陶国良,涂善东.石墨/碳纤维/聚丙烯高强导热材料的研究.中国塑料,2004,18(11):32~35
    11郭亚林,梁国正,丘哲明等.碳纤维/有机硅改性环氧树脂复合材料性能研究.材料工程,2004,(9):42~44
    12汪倩,高伟,谢择民.高导热室温硫化硅橡胶和硅脂.有机硅材料,2000,14(1):5~7
    13李侃社,王琪.聚合物复合材料导热性能的研究.高分子材料科学与工程,2002,18(4):10~15
    14陈树川,陈凌冰.材料物理性能.上海:上海交通大学出版社,1999
    15 Bagchi A,Nomura S.On the effective thermal conductivity of carbon nanotube reinforced polymer composites.Compos Sci Technol,2006,66(11-12):1703~1712
    16 Kroto HW,Heath JR,O’Brien SC,et al.C60:Buckyminister-fullerene.Nature,1985,
    318(6042):162~163
    17 Iijima S.Helical microtubules of graphitic carbon.Nature,1991,354(6348):56~58
    18 Lau K-T,Hui D.The revolutionary creation of new advanced materials-carbon nanotube composites.Compos Part B,2002,33(4):263~277
    19 Iijima S,Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter.Nature,1993,363(6430):603~605
    20 Bethune DS,Kiang CH,De Vries MS,et al.Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls.Nature,1993,363(6430):605~607
    21 Thostenson ET,Ren Z,Chou T-W.Advances in the science and technology of carbon nanotubes and their composites:a review.Compos Sci Technol,2001,61(13):1899~1912
    22 Liu M,Cowley JM.Structure of carbon nanotubes studied by HRTEM.Ultramicroscopy,1994,53(4):333~342
    23 Lijima S,Ichihashi T,Ando Y.Pentagons,heptagons and negative curvature in graphite microtubule growth.Nature,1992,356(6372):776~778
    24韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社,2006
    25 Nardelli MB,Yakobson BI,Bernholc J.Brittle and ductile behavior in carbon nanotubes.Phys Rev Lett,1998,81(21):4656~4659
    26 Stone AJ,Wales DJ.Theoretical studies of icosahedral C6 0 and some related species.Chem Phys Lett,1986,128(5-6):501~503
    27 Lee SM,Lee YH,Hwang YG,et al.Defect-induced oxidation of graphite.Phys Rev Lett,1999,82(1):217~220
    28 Maiti A,Hoekstra J,Andzelm J,et al.Electronic transport through carbon nanotubes-effect of contacts,dopants and chemisorbed impurities.NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech 2005 Technical Proceedings,2005,pp. 236~239
    29 Ebbesen TW,Takada T.Topological and sp defect structures in nanotubes.Carbon,1995,33(7):3973~978
    30王利光,郭良,王畅等.锯齿型单壁碳纳米管吸收光谱与介电常数研究.黑龙江大学自然科学学报,2008,25(6):790~793
    31 Collins PG,Zettl A,Bando H,et al.Nanotube nanodevice.Science,1997,278(5335):100~103
    32 Odom TW,Huang JL,Kim P,et al.Atomic structure and electronic properties of single-walled carbon nanotubes.Nature,1998,391(6662):62~64
    33 Baughman RH ,Zakhidov AA ,De Heer WA .Carbon nanotubes-The route toward applications.Science,2002,297(5582):787~792
    34 Journet C,Maser WK,Bernier P,et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique.Nature,1997,388(6644):756~758
    35 Rinzler AG,Liu J,Dai H,et al.Large-scale purification of single-wall carbon nanotubes: process,product,and characterization.Appl Phys A,1998,67(1):29~37
    36 Nikolaev P,Bronikowski MJ,Bradley RK,et al.Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.Chem Phys Lett,1999,313(1-2):91~97
    37 Dai H,Rinzler AG,Nikolaev P,et al.Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide.Chem Phys Lett,1996,260(3-4):471~475
    38 Ren ZF,Huang ZP,Wang DZ,et al.Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot.Appl Phys Lett,1999,75(8):1086~1088
    39 Ren ZF,Huang ZP.Synthesis of large arrays of well-aligned carbon nanotubes on glass.Science,1998,282(5391):1105~1107
    40 Huang ZP,Xu JW,Ren ZF,et al.Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition.Appl Phys Lett,1998,73(26):3845~3847
    41 Moniruzzaman M , Winey KI . Polymer nanocomposites containing carbon nanotubes.Macromolecules,2006,39(16):5194~5205
    42 Hafner JH,Bronikowski MJ,Azamian BR,et al.Catalytic growth of single-wall carbon nanotubes from metal particles.Chem Phys Lett,1998,296(1-2):195~202
    43 Cassell AM,Raymakers JA,Kong J,et al.Large scale CVD synthesis of single-walled carbon nanotubes.J Phys Chem B,1999,103(31):6484~6492
    44 Wang Y,Wei F,Luo GH,et al.The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor.Chem Phys Lett,2002,364(5-6):568~572
    45 Tanemura M,Iwata K,Takahashi K,et al.Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition:optimization of growth parameters.J Appl Phys,2001,90(3):1529~1533
    46 Lee CJ,Lyu SC,Cho YR,et al.Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition.Chem Phys Lett,2001,341(3-4):245~249
    47 Lu JP.Elastic properties of carbon nanotubes and nanoropes.Phys Rev Lett,1997,79(7):1297~1300
    48 Pan ZW,Xie SS,Lu L,et al.Tensile tests of ropes of very long aligned multiwall carbon nanotubes.Appl Phys Lett,1999,74(21):3152~3154
    49 Li C,Chou T-W.Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces.Compos Sci Technol,2003,63(11):1517~1524
    50 Sinnott SB,Shenderova OA,White CT,et al.Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations.Carbon,1998,36(1-2):1~9
    51 Hernández E,Goze C,Bernier P,et al.Elastic properties of C and B C N composite nanotubes.Phys Rev Lett,1998,80(20):x y z4502~4505
    52 Zhu HW,Xu CL,Wu DH.Direct synthesis of long single-walled carbon nanotube strands.Science,2002,296(5569):884~886
    53 Treacy MMJ,Ebbesen TW,Gibson JM.Exceptionally high Young's modulus observed for individual carbon nanotubes.Nature,1996,381(6584):678~680
    54 Krishnan A , Dujardin E , Ebbesen TW , et al . Young's modulus of single-walled nanotubes.Phys Rev B,1998,58(20):14013~14019
    55 Salvetat J-P,Briggs GAD,Bonard J-M,et al.Elastic and shear moduli of single-walled carbon nanotube ropes.Phys Rev Lett,1999,82(5):944~947
    56 Yu M-F,Files BS,Arepalli S,et al.Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties.Phys Rev Lett,2000,84(24):5552~5555
    57 Yu M-F,Lourie O,Dyer MJ,et al.Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.Science,2000,287(5453):637~640
    58辜萍,王宇,李广海.碳纳米管的力学性能及碳纳米管复合材料研究.力学进展,2002,32(4):566~572
    59 Yi W,Lu L,Dian-lin Z,et al.Linear specific heat of carbon nanotubes.Phys Rev B,1999,59(14):R9015~R9018
    60 Berber S , Kwon Y-K , Tománek D . Unusually high thermal conductivity of carbon nanotubes.Phys Rev Lett,2000,84(20):4613~4616
    61 Che J , ?a?in T , Goddard III WA . Thermal conductivity of carbon nanotubes.Nanotechnology,2000,11(2):65~69
    62 Che J,?a?in T,Deng W,et al.Thermal conductivity of diamond and related materials from molecular dynamics simulations.J Chem Phys,2000,113(16):6888~6900
    63 Kim P,Shi L,Majumdar A,et al.Thermal transport measurements of individual multiwalled nanotubes.Phys Rev Lett,2001,87(21):2155021~2155024
    64 Choi SUS,Zhang ZG,Yu W,et al.Anomalous thermal conductivity enhancement in nanotube suspensions.Appl Phys Lett,2001,79(14):2252~2254
    65 White CT,Todorov TN.Carbon nanotubes as long ballistic conductors.Nature,1998,393(6682):240~241
    66 Frank S,Poncharal P,Wang ZL,et al.Carbon nanotube quantum resistors.Science,1998,280(5370):1744~1746
    67 Hone J,Whitney M,Zettl A.Thermal conductivity of single-walled carbon nanotubes.Synth Met,1999,103(1-3):2498~2499
    68 Ohara T,Suzuki D.Intermolecular energy transfer at a solid-liquid interface.Microscale Thermophys Eng,2000,4(3):189~196
    69 Yu C-J,Richter AG,Datta A,et al.Observation of molecular layering in thin liquid films using X-ray reflectivity.Phys Rev Lett,1999,82(2-11):2326~2329
    70沈广霞,庄燕燕,林昌健.碳纳米管-聚合物复合材料的研究进展.化学进展,2004,16(1):21~25
    71张娟玲.碳纳米管/聚合物复合材料.化学进展,2006,18(10):1313~1321
    72 Hu H,Zhao B,Itkis ME,et al.Nitric acid purification of single-walled carbon nanotubes.J Phys Chem B,2003,107(50):13838~13842
    73 Kim YJ,Shin TS,Choi HD,et al.Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites.Carbon,2005,43(1):23~30
    74 Yu A,Itkis ME,Bekyarova E,et al.Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites.Appl Phys Lett,2006,89(13):133102-1~133102-3
    75 Peigney A,Laurent C,Flahaut E,et al.Specific surface area of carbon nanotubes and bundles of carbon nanotubes.Carbon,2001,39(4):507~514
    76 Lee G-W,Lee JI,Lee S-S,et al.Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites.J Mater Sci,2005,40(5):1259~1263
    77 Bai JB,Allaoui A.Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation.Compos Part A,2003,34(8):689~694
    78 Song YS,Youn JR.Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites.Carbon,2005,43(7):1378~1385
    79 Liu CH,Fan SS.Effects of chemical modifications on the thermal conductivity of carbon nanotube composites.Appl Phys Lett,2005,86(12):123106-1~123106-3
    80 Velasco-Santos C,Mart?nez-Hernández AL,Fisher FT,et al.Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization.Chem Mater,2003,15(23):4470~4475
    81 Sen R,Zhao B,Perea D,et al.Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning.Nano Lett,2004,4(3):459~464
    82 Huxtable ST,Cahill DG,Shenogin S,et al.Interfacial heat flow in carbon nanotube suspensions.Nat Mater,2003,2(11):731~734
    83 Cahill DG,Ford WK,Goodson KE,et al.Nanoscale thermal transport.J Appl Phys,2003,93(2):793~818
    84周亮,刘吉平,李晓合.碳纳米管的纯化.化学通报,2004,(2):96~103
    85 Smith Jr. MR,Hedges SW,LaCount R,et al.Selective oxidation of single-walled carbon nanotubes using carbon dioxide.Carbon,2003,41(6):1221~1230
    86 Shelimov KB,Esenaliev RO,Rinzler AG,et al.Purification of single-wall carbon nanotubes by ultrasonically assisted filtration.Chem Phys Lett,1998,282(5-6):429~434
    87唐文华,邹洪涛,张艾飞等.碳纳米管纯化技术评价与研究进展.炭素,2005,(3):30~35
    88 Hou PX,Bai S,Yang QH,et al.Multi-step purification of carbon nanotubes.Carbon,2002,40(1):81~85
    89 Chen G-X,Shimizu H.Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(L-lactide) matrix.Polymer,2008,49(4):943~951
    90 BiróLP,Khanh NQ,Vértesy Z,et al.Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD.Mat Sci Eng C,2002,19(1-2):9~13
    91黎沙泥,许向彬,李忠明等.碳纳米管的表面修饰及其在聚合物中的应用.工程塑料应用,2004,32(10):70~72
    92 Zhu J,Peng H,Rodriguez-Macias F,et al.Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes.Adv Funct Mater,2004,14(7):643~648
    93 Yoon KR,Kim W-J,Choi IS.Functionalization of shortened single-walled carbon nanotubes with poly(p-dioxanone) by“grafting-from”approach.Macromol Chem Phys,2004,205(9):1218~1221
    94 Sun L,Warren GL,O’Reilly JY,et al.Mechanical properties of surface-functionalized SWCNT/epoxy composites.Carbon,2008,46(2):320~328
    95肖军华,曹有名,周彦豪.碳纳米管/聚合物复合材料的研究进展.塑料,2007,36(4):78~84
    96 Tsang SC,Chen YK,Harris PJF,et al.A simple chemical method of opening and filling carbon nanotubes.Nature,1994,372(6502):159~162
    97 Liu J,Rinzler AG,Dai H,et al.Fullerene pipes.Science,1998,280(5367):1253~1256
    98 Hamon MA,Hui H,Bhowmik P,et al.Ester-functionalized soluble single-walled carbon nanotubes.Appl Phys A,2002,74(3):333~338
    99 Hamon MA,Chen J,Hu H,et al.Dissolution of single-walled carbon nanotubes.Adv Mater,1999,11(10):834~840
    100 Pompeo F,Resasco DE.Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine.Nano Lett,2002,2(4):369~338
    101 Eitan A,Jiang K,Dukes D,et al.Surface modification of multiwalled carbon nanotubes:toward the tailoring of the interface in polymer composites.Chem Mater,2003,15(16):3198~3201
    102 Zou H,Yang Y,Li Q,et al.Electron beam-induced structure transformation of single-walled carbon nanotubes.Carbon,2002,40(12):2282~2284
    103 Namilae S,Chandra N,Shet C.Mechanical behavior of functionalized nanotubes.Chem Phys Lett,2004,387(4-6):247~252
    104刘演新,杜中杰,励杭泉.多壁碳纳米管的表面乙烯基功能化.材料科学与工程学报,2005, 23(4):495~498
    105 Chen RJ,Zhang Y,Wang D.Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.J Am Chem Soc,2001,123(16):3838~3839
    106 Steuerman DW,Star A,Narizzano R,et al.Interactions between conjugated polymers and single-walled carbon nanotubes.J Phys Chem B,2002,106(12):3124~3130
    107 Xia H,Wang Q,Qiu G.Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization.Chem Mater,2003,15(20):3879~3886
    108 Nan CW,Li X-P,Birringer R.Inverse problem for composites with imperfect interface:determination of interfacial thermal resistance,thermal conductivity of constituents,and microstructural parameters.J Am Ceram Soc,2000,83(4):848~854
    109 Nan CW,Birringer R.Determining the Kapitza resistance and the thermal conductivity of polycrystals:a simple model.Phys Rev B,1998,57(14):8264~8268
    110 Shenogin S,Xue L,Ozisik R,et al.Role of thermal boundary resistance on the heat flow in carbon-nanotube composites.J Appl Phys,2004,95(12):8136~8144
    111 Nan C-W,Liu G,Lin Y,et al.Interface effect on thermal conductivity of carbon nanotube composites.Appl Phys Lett,2004,85(16):3549~3551
    112 Gojny FH,Wichmann MHG,Fiedler B,et al.Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites.Polymer,2006,47(6):2036~2045
    113龙御云.环氧树脂最近的发展动向.热固性树脂,1998,(1):45~48
    114陈平,刘胜平.环氧树脂.北京:化学工业出版社,1999
    115 Moniruzzaman M,Young RN,Fairclough JPA.Synthesis and characterisation of symmetric 4-armed star copolymers of PS capped with butadiene and PI:Importance of the location of the interface.Polymer,2004,45(12):4121~4131
    116 Chen W,Lu H,Nutt SR.The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites.Compos Sci Technol,2008,68(12):2535~2542
    117 Zhu Y-F,Ma C,Zhang W,et al.Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field.J Appl Phys,2009,105(5):054319-1~054319-6
    118 Agari Y,Ueda A,Nagai S.Thermal conductivities of composites in several types of dispersion systems.J Appl Polym Sci,1991,42(6):1665~1669
    119 Ajayan PM,Schadler LS,Giannaris C,et al.Single-walled carbon nanotube-polymer composites:Strength and weakness.Adv Mater,2000,12(10):750~753
    120 Penumadu D,Dutta A,Pharr GM,et al.Mechanical properties of blended single-wall carbon nanotube composites.J Mater Res,2003,18(8):1849~1853
    121 Wagner HD,Lourie O,Feldman Y,et al.Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix.Appl Phys Lett,1998,72(2):188~190
    122 Shenogin S,Bodapati A,Xue L,et al.Effect of chemical functionalization on thermal transport of carbon nanotube composites.Appl Phys Lett,2004,85(12):2229~2231
    123 Bryning MB,Milkie DE,Islam MF,et al.Thermal conductivity and interfacial resistance insingle-wall carbon nanotube epoxy composites.Appl Phys Lett,2005,87(16):161909-1~161909-3
    124 Duong HM,Papavassiliou DV,Mullen KJ,et al.Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites.Nanotechnology,2008,19(6):065702-1~065702-8
    1 Huang S,Dai L,Mau AWH.Patterned growth and contact transfer of well-aligned carbon nanotube films.J Phys Chem B,1999,103(21):4223~4227
    2 Kim YJ,Shin TS,Choi HD,et al.Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites.Carbon,2005,43(1):23~30
    3 Chen G-X,Shimizu H.Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(L-lactide) matrix.Polymer,2008,49(4):943~951
    4 Zhao Y,Qiu Z,Yang W.Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide).J Phys Chem B,2008,112(51):16461~16468
    5 Kim JY,Kim DK,Kim SH.Effect of modified carbon nanotube on physical properties ofthermotropic liquid crystal polyester nanocomposites.Eur Polym J,2009,45(2):316~324
    6 Yang Y,Wang X,Liu L,et al.Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains.J Phys Chem C,2007,111(30):11231~11239
    7 Xie L,Xu F,Qiu F,et al.Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites.Macromolecules,2007,40(9):3296~3305
    8 Martínez MT,Callejas MA,Benito AM,et al.Modifications of single-wall carbon nanotubes upon oxidative purification treatments.Nanotechnology,2003,14(7):691~695
    9 Huang H,Kajiura H,Yamada A,et al.Purification and alignment of arc-synthesis single-walled carbon nanotube bundles.Chem Phys Lett,2002,356(5-6):567~572
    10 Liu CH,Fan SS.Effects of chemical modifications on the thermal conductivity of carbon nanotube composites.Appl Phys Lett,2005,86(12):123106-1~123106-3
    11 Goh HW,Goh SH,Xu GQ,et al.Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/phenoxy resin composite.Chem Phys Lett,2003,373(3-4):277~283
    12 Hernadi K,Ljubovi? E,Seo JW,et al.Synthesis of MWNT-based composite materials with inorganic coating.Acta Mater,2003,51(5):1447~1452
    13 Liu Z,Shen Z,Zhu T,et al.Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique.Langmuir,2000,16(8):3569~3573
    14 Fan J,Wan M,Zhu D,et al.Synthesis and properties of carbon nanotube-polypyrrole composites.Synthetic Met,1999,102(1-3):1266~1267
    15 Jin R,Zhou ZX,Mandrus D,et al.The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes.Physica B,2007,388(1-2):326~330
    16 Stojanovi? Z,Ka?arevi?-Popovi? Z,Galovi? S,et al.Crystallinity changes and melting behavior of the uniaxially oriented iPP exposed to high doses of gamma radiation.Polym Degrad Stabil,2005,87(2):279~286
    17 Filho GR,de Assun??o RMN,Vieira JG,et al.Characterization of methylcellulose produced from sugar cane bagasse cellulose:crystallinity and thermal properties.Polym Degrad Stabil,2007,92(2):205~210
    18 Hone J,Whitney M,Piskoti C,et al.Thermal conductivity of single-walled carbon nanotubes.Phys Rev B,1999,59(4):R2514~R2516
    19 Gong Q-M,Li Z,Wang Y,et al.The effect of high-temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes.Mater Res Bull,2007,42(3):474~481
    20 Papagelis K,Kalyva M,Tasis D,et al.Covalently functionalized carbon nanotubes as macroinitiators for radical polymerization.Phys Stat Sol,2007,244(11):4046~4050
    21 Zhang G,Sun S,Yang D,et al.The surface analytical characterization of carbon fibers functionalized by H 2S O4 / HNO 3 treatment.Carbon,2008,46(2):196~205
    22 Xia W,Wang Y,Bergstr??er R,et al.Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption.Appl Surf Sci,2007,254(1):247~250
    23 Cerqueira DA,Rodrigues-Filho G,Assun??o RMN.A new value for the heat of fusion of a perfect crystal of cellulose acetate.Polym Bull,2006,56(4-5):475~484
    24 Mo ZS,Zhang HF,Meng QB,et al.Crystal structure of nylon-1010.J Am Chem Soc,1990,31(2):153~154
    25 Mo ZS,Huang XY,Zhang HF,et al.Degree of crystallinity of nylon-1010 by WAXD.Chinese J Polym Sci,1994,12(3):278~283
    26 Mo ZS,Meng QB,Teng JH,et al.Crystal structure and thermodynamic parameters of nylon-1010.Polym Int,1993,32(1):53~60
    27袁艳红,李锋.层间耦合对多壁碳纳米管电子结构的影响.吉林大学学报,2005,43(5):635~637
    28袁艳红,苗润才,白晋涛等.多壁碳纳米管的频率上转换效应研究.光子学报,2005,34(11):1651~1653
    29 Chatterjee T,Yurekli K,Hadjiev VG,et al.Single-walled carbon nanotube dispersions in poly(ethylene oxide).Adv Funct Mater,2005,15(11):1832~1838
    30 Thostenson ET , Chou T-W . On the elastic properties of carbon nanotube-based composites:modelling and characterization.J Phys D:Appl Phys,2003,36(5):573~582
    31 Gojny FH,Wichmann MHG,Fiedler B,et al.Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites.Polymer,2006,47(6):2036~2045
    1王德中.环氧树脂生产与应用.北京:化学工业出版社,2001
    2毕春华,甘常林,赵世琦.咪唑盐的合成、固化反应及性能研究.热固性树脂,1997,(1):12~15
    3 Jagadeesh KS,Rao JG,Shashikiran K,et al.Cure kinetics of multifunctional epoxies with 2,2′-dichloro-4,4′-diaminodiphenylmethane as hardener.J Appl Polym Sci,2000,77(10):2097~2103
    4 Ro?u D,Musta F,Ca?caval CN.Investigation of the curing reactions of some multifunctional epoxy resins using differential scanning calorimetry.Thermochim Acta,2001,370(1-2):105~110
    5 Zhao H,Gao J,Li Y,et al.Curing kinetics and thermal property characterization of bisphenol-F epoxy resin and MeTHPA system.J Therm Anal Calorim,2003,74(1):227~236
    6 Han SO,Drzal LT.Curing characteristics of carboxyl functionalized glucose resin and epoxy resin.Eur Polym J,2003,39(7):1377~1384
    7 Zhou T,Gu M,Jin Y,et al.Studying on the curing kinetics of a DGEBA/EMI-2,4/nano-sized carborundum system with two curing kinetic methods.Polymer,2005,46(16):6174~6181
    8 Li Q , Simon SL . Curing of bisphenol M dicyanate ester under nanoscale constraint.Macromolecules,2008,41(4):1310~1317
    9 Ghaemy M , Barghamadi M . Nonisothermal cure kinetics of DGEBA with
    2,7-diaminofluorene.J Appl Polym Sci,2009,112(3):1311~1318
    10 Junyan L,Ping C,Zemin M,et al.Reaction kinetics and thermal properties of cyanate ester-cured epoxy resin with phenolphthalein poly(ether ketone).J Appl Polym Sci,2009,111(5):2590~2596
    11 Zhou T,Mingyuan GU,Jin Y,et al.Mechanism and kinetics of epoxy-imidazole cure studied with two kinetic methods.Polym J,2005,37(11):833~840
    12 Tejado A,Kortaberria G,Labidi J,et al.Isoconversional kinetic analysis of novolac-type lignophenolic resins cure.Thermochim Acta,2008,471(1-2):80~85
    13高家武.高分子材料热分析曲线集.北京:科学出版社,1990
    14陈平,刘立柱.2-乙基-4-甲基咪唑固化环氧树脂的固化反应机理、动力学及其反应活性.高分子学报,1994,(6):641~646
    15 Ooi SK,Cook WD,Simon GP,et al.DSC studies of the curing mechanisms and kineticsof DGEBA using imidazole curing agents.Polymer,2000,41(10):3639~3649
    16 Heise MS,Martin GC.Curing mechanism and thermal properties of epoxy-imidazole systems.Macromolecules,1989,22(1):99~104
    17 Heise MS,Martin GC.Analysis of the cure kinetics of epoxy/imidazole resin systems.J Appl Polym Sci,1990,39(3):721~738
    18王艾戎,赵建喜.咪唑固化剂固化性能研究.第8届全国绝缘材料与绝缘技术学术会议,2002,438~442
    19沈德言.红外光谱法在高分子研究中的应用.北京:科学出版社,1982
    20 Bae J,Jang J,Yoon S-H.Cure behavior of the liquid-crystalline epoxy/carbon nanotube system and the effect of surface treatment of carbon fillers on cure reaction.Macromol Chem Phys,2002,203(15):2196~2204
    21 Fang Z,Wang J,Gu A,et al.Curing behavior and kinetic analysis of epoxy resin/multi-walled carbon nanotubes composites.Front Mater Sci China,2007,1(4):415~422
    22 Vyazovkin S,Sbirrazzuoli N.Isoconversional kinetic analysis of thermally stimulated processes in polymers.Macromol Rapid Commun,2006,27(18):1515~1532
    23 Sbirrazzuoli N,Vyazovkin S.Learning about epoxy cure mechanisms from isoconversional analysis of DSC data.Thermochim Acta,2002,388(1-2):289~298
    24 Vyazovkin S.Model-free kinetics:staying free of multiplying entities without necessity.J Therm Anal Calorim,2006,83(1):45~51
    25 Vyazovkin S,Sbirrazzuoli N.Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry.Macromolecules,1996,29(6):1867~1873
    26 Sbirrazzuoli N,Mititelu-Mija A,Vincent L,et al.Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures.Thermochim Acta,2006,447(2):167~177
    27 Opfermann J , Kaisersberger E . An advantageous variant of the Ozawa-Flynn-Wall analysis.Thermochim Acta,1992,203(C):167~175
    28 Jubsilp C,Damrongsakkul S,Takeichi T,et al.Curing kinetics of arylamine-based polyfunctional benzoxazine resins by dynamic differential scanning calorimetry.Thermochim Acta,2006,447(2):131~140
    1李侃社,王琪.导热高分子材料研究进展.功能材料,2002,33(2):136~141
    2 Song YS,Youn JR.Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites.Carbon,2005,43(7):1378~1385
    3 Shenogin S,Bodapati A,Xue L,et al.Effect of chemical functionalization on thermal transport of carbon nanotube composites.Appl Phys Lett,2004,85(12):2229~2231
    4 Biercuk MJ,Llaguno MC,Radosavljevic M,et al.Carbon nanotube composites for thermal management.Appl Phys Lett,2002,80(15):2767~2769
    5 Sivakumar R,Guo S,Nishimura T,et al.Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites.Scripta Mater,2007,56(4):265~268
    6 Hone J,Whitney M,Piskoti C,et al.Thermal conductivity of single-walled carbon nanotubes.Phys Rev B,1999,59(4):R2514~R2516
    7 Kim P,Shi L,Majumdar A,et al.Thermal transport measurements of individual multiwalled nanotubes.Phys Rev Lett,2001,87(21):2155021~2155024
    8 Huxtable ST,Cahill DG,Shenogin S,et al.Interfacial heat flow in carbon nanotube suspensions.Nat Mater,2003,2(11):731~734
    9 Nan C-W,Liu G,Lin Y,et al.Interface effect on thermal conductivity of carbon nanotube composites.Appl Phys Lett,2004,85(16):3549~3551
    10 Ju S,Li ZY.Theory of thermal conductance in carbon nanotube composites.Phys Lett A,2006,353(2-3):194~197
    11 Lee G-W,Lee JI,Lee S-S,et al.Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites.J Mater Sci,2005,40(5):1259~1263
    12 Gojny FH,Wichmann MHG,Fiedler B,et al.Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites.Polymer,2006,47(6):2036~2045
    13 Lau K-T,Hui D.Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures.Carbon,2002,40(9):1605~1606
    14 Qin Y,Liu L,Shi J,et al.Large-scale preparation of solubilized carbon nanotubes.Chem Mater,2003,15(17):3256~3260
    15 Liu CH,Fan SS.Effects of chemical modifications on the thermal conductivity of carbon nanotube composites.Appl Phys Lett,2005,86(12):123106-1~123106-3
    16 Shenogin S,Xue L,Ozisik R,et al.Role of thermal boundary resistance on the heat flow in carbon-nanotube composites.J Appl Phys,2004,95(12):8136~8144
    17 Clancy TC,Gates TS.Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites.Polymer,2006,47(16):5990~5996
    18 Maiti A,Mahan GD,Pantelides ST.Dynamical simulations of nonequilibrium processes-heat flow and the Kapitza resistance across grain boundaries.Solid State Commun,1997,102(7):517~521
    19 Twu C-J,Ho J-R.Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films.Phys Rev B,2003,67(20):2054221~2054228
    20 Duong HM,Papavassiliou DV,Lee LL,et al.Random walks in nanotube composites:improved algorithms and the role of thermal boundary resistance.Appl Phys Lett,2005,87(1):1~3
    21 Bryning MB,Milkie DE,Islam MF,et al.Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites.Appl Phys Lett,2005,87(16):161909-1~161909-3
    22 Yi X-S,An XF.Effect of interleaf sequence on impact damage and residual strength in a graphite/epoxy laminate.J Mater Sci,2004,39(9):3253~3255
    23 Yi X-S,An X,Tang B,et al.Ex-situ formation of periodic interlayer structure to improve significantly the impact damage resistance of carbon laminates.Adv Eng Mater,2003,5(10):729~732
    24 Moon SI,Jang J.Effect of polybutadiene interlayer on interfacial adhesion and impact properties in oxygen-plasma-treated UHMPE fiber/epoxy composites.Compos Part A,1999,30(9):1039~1044
    25 Duarte A,Herszberg I,Paton R.Impact resistance and tolerance of interleaved tape laminates.Compos Struct,1999,47(1-4):753~758
    26 Zhao Q,Frogley MD,Wagner HD.Direction-sensitive strain-mapping with carbon nanotube sensors.Compos Sci Technol,2002,62(1):147~150
    27 Frogley MD,Ravich D,Wagner HD.Mechanical properties of carbon nanoparticle-reinforced elastomers.Compos Sci Technol,2003,63(11):1647~1654
    28 Kueseng K,Jacob KI.Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes.Eur Polym J,2006,42(1):220~227
    29 Frogley MD,Zhao Q,Wagner HD.Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain.Phys Rev B,2002,65(1):1134131~1134134
    30 Wood JR,Frogley MD,Meurs ER,et al.Mechanical response of carbon nanotubes under molecular and macroscopic pressures.J Phys Chem B,1999,103(47):10388~10392
    31 Wood JR,Zhao Q,Wagner HD.Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy.Compos Part A,2001,32(3-4):391~399
    32 Wu C-S,Liao H-T.Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites.Polymer,2007,48(15):4449~4458
    33 Gojny FH,Schulte K.Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites.Compos Sci Technol,2004,64(15):2303~2308
    34 Du F,Guthy C,Kashiwagi T,et al.An infiltration method for preparing single-wall nanotube/ epoxy composites with improved thermal conductivity.J Polym Sci:Part B:Polym Phys,2006,44(10):1513~1519
    35 Duong HM,Papavassiliou DV,Mullen KJ,et al.Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites.Nanotechnology,2008,19(6):065702-1~065702-8
    36 Kumar S,Alam MA,Murthy JY.Effect of percolation on thermal transport in nanotube composites.Appl Phys Lett,2007,90(10):104105-1~104105-3
    37 Nan C-W,Shi Z,Lin Y.A simple model for thermal conductivity of carbon nanotube-based composites.Chem Phys Lett,2003,375(5-6):666~669
    38 Xue QZ . Model for the effective thermal conductivity of carbon nanotube composites.Nanotechnology,2006,17(6):1655~1660
    39 Deng F,Zheng Q-S,Wang L-F,et al.Effects of anisotropy,aspect ratio,and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites.Appl Phys Lett,2007,90(2):021914-1~021914-3
    40 Gau C,Chen S-Y,Tsai H-L,et al.Synthesis of functionalized carbon nanotubes/phenolic nanocomposites and its electrical and thermal conductivity measurements.Jpn J Appl Phys,2009,48(6 Part 2):06FF101~06FF104
    41 Liang Q,Wang W,Moon K-S,et al.Thermal conductivity of epoxy/surface functionalized carbon nano materials.Proceedings-Electronic Components and Technology Conference,2009,pp. 460~464
    42 Das A,St?ckelhuber KW,Jurk R,et al.Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubberblends.Polymer,2008,49(24):5276~5283
    43 Lee G-W,Lee JI,Lee S-S,et al.Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites.J Mater Sci,2005,40(5):1259~1263
    44 Chen X,Wang J,Lin M,et al.Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes.Mater Sci Eng A,2008,492(1-2):236~242
    45 Zhou W,Wang B,Zheng Y,et al.Effect of surface decoration of CNTs on the interfacial interaction and microstructure of epoxy/MWNT nanocomposites.ChemPhysChem,2008,9(7):1046~1052
    46 Yaping Z,Aibo Z,Qinghua C,et al.Functionalized effect on carbon nanotube/epoxy nano-composites.Mater Sci Eng A,2008,435~436:145~149
    47 Geng Y,Liu MY,Li J,et al.Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites.Compos Part A,2008,39(12):1876~1883
    1 Xu Y,Chung DDL,Mroz C.Thermally conducting aluminum nitride polymer-matrix composites.Compos Part A,2001,32(12):1749~1757
    2 Gau C,Chen S-Y,Tsai H-L,et al.Synthesis of functionalized carbon nanotubes/phenolic nanocomposites and its electrical and thermal conductivity measurements.Jpn J Appl Phys,2009,48(6 Part 2):06FF101~06FF104
    3 Liu CH,Fan SS.Effects of chemical modifications on the thermal conductivity of carbon nanotube composites.Appl Phys Lett,2005,86(12):123106-1~123106-3
    4 Liang Q,Wang W,Moon K-S,et al.Thermal conductivity of epoxy/surface functionalized carbon nano materials.Proceedings-Electronic Components and Technology Conference,2005,pp. 460~464
    5 Yu A,Ramesh P,Sun X,et al.Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites.Adv Mater,2008,20(24):4740~4744
    6 Lee JH,Jang YK,Hong CE,et al.Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells.J Power Sources,2009,193(2):523~529
    7 Sumfleth J,Adroher XC,Schulte K.Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black.J Mater Sci,2009,44(12):3241~3247
    8 Sumfleth J,de Almeida Prado LAS,Sriyai M,et al.Titania-doped multi-walled carbon nanotubes epoxy composites:enhanced dispersion and synergistic effects in multiphase nanocomposites.Polymer,2008,49(23):5105~5112
    9 Kalappa P,Lee J-H,Rashmi BJ,et al.Effect of polyaniline functionalized carbon nanotubes addition on the positive temperature coefficient behavior of carbon black/high-density polyethylene nanocomposites.IEEE T Nanotechnol,2008,7(2):223~228
    10 Seyhan AT,Tano?lu M,Schulte K.Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by523(1-2):85~92
    11 Fritzsche J,Lorenz H,Kl?ppel M.CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties.Macromol Mater Eng,2009,294(9):551~560
    12 Wang Z,Xu C,Zhao Y,et al.Fabrication and mechanical properties of exfoliated clay-CNTs/epoxy nanocomposites.Mater Sci Eng A,2008,490(1-2):481~487
    13 Tiwari RR,Khilar KC,Natarajan U.New poly(phenylene oxide)/polystyrene blend nanocomposites with clay:intercalation,thermal and mechanical properties.J Appl Polym Sci,2008,108(3):1818~1828
    14 Yao S-H,Dang Z-M,Jiang M-J,et al.BaTiO -carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss.Appl Phys Lett,2008,393(18):182905-1~182905-3
    15 Dang Z-M,Zhou T,Yao S-H,et al.Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity.Adv Mater,2009,21(20):2077~2082
    16 Dang Z-M,Xia B,Yao S-H,et al.High-dielectric-permittivity high-elasticity three-component nanocomposites with low percolation threshold and low dielectric loss.Appl Phys Lett,2009,94(4):042902-1~042902-3
    17 Chu K,Jia C,Liang X,et al.Experimental and modeling study of the thermal conductivity of SiCp / Al composites with bimodal size distribution.J Mater Sci,2009,44(16):4370~4378
    18徐伟平,黄锐,蔡碧华等.大分子偶联剂对HDPE/纳米CaCO 3复合材料性能的影响.中国塑料,1999,13(9):25~29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700