用户名: 密码: 验证码:
铂—钌电催化剂中助剂钌的形态及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PtRu催化剂是迄今为止最有效的直接甲醇燃料电池(DMFC)的阳极催化剂,目前对于何种氧化态的钌在实际电催化过程中起有效的助催化作用尚未澄清。系统考察助剂钌的化学状态与其助催化性能的关系对于提高Pt基催化剂的催化活性以及改善DMFC的性能无疑具有重要意义。本工作制备了一系列只含水合氧化钉(RuOxHy)物种的Pt-(RuOxHy)m/MWCNTs催化剂(m为Ru/Pt原子比),系统研究了催化剂组成(Ru/Pt原子比),预处理电势等因素对于水合氧化钌助催化性能的影响,并对有效稳定阳极催化剂中水合氧化钉物种的多种途径深入探索研究,取得了以下主要结果:
     1)采用分步负载法制备了Pt-(RuOxHy)m/MWCNTs系列电催化剂,使用X射线衍射,X射线光电子能谱,透射电子显微镜,程序升温还原和热重分析等手段对催化剂的结构和组成进行了系统表征。结果显示,所合成样品中的钉物种均以RuOxHy状态存在,为单独考察RuOxHy的助催化作用提供了基础。对比考察了经窄电势(-0.20~0.46 V vs.SCE)和扩展电势区间(-0.20~0.96 V vs.SCE)循环伏安预处理的电极催化剂的催化性能,发现RuOxHy能有效促进CO在Pt催化剂上氧化脱除,但同时也会导致Pt电化学活性面积的下降。窄电势区间预处理不会导致RuOxHy的溶解流失,Pt-(RuOxHy)0.10/MWCNTs显示出最高的甲醇电氧化活性,为相应Pt/MWCNTs的9~10倍。扩展电势区间预处理会造成RuOxHy明显溶解,使Pt-RuOxHy催化剂性能显著下降。文中还通过调变制备条件(如:MWCNTs的预处理方式,钌前体溶液浓度及RuOxHy的干燥温度等),对影响Pt-RuO-Hy催化剂性能及RuOxHy稳定性的因素进行了讨论。
     2)发现过渡金属氧化物(WOm或MoOm)的存在可有效提高Pt-(RuOxHy)0.10/MWCNTs催化剂中RuOxHy的稳定性。在扩展电势区间预处理过程中,RuOxHy的溶解程度由Pt-RuOxHy/MWCNTs中70%显著降至Pt-RuOxHy-WOm/MWCNTs和Pt-RuOxHy-MoOm/MWCNTs样品中的约15%,Pt-RuOxHy-WOm/MWCNTs和Pt-RuOxHy-MoOm/MWCNTs中Pt的抗CO毒化性能明显优于Pt-RuOxHy/MWCNTs,其甲醇电氧化的本征活性为Pt-RuOxHy/MWCNTs的2倍以上。
     3)发现XC-72炭黑负载的Pt-RuOxHy样品中RuOxHy在酸性电解质中的稳定性明显优于MWCNTs负载的Pt-RuOxHy样品。但将WOm或MoOm引入Pt-RuOxHy/XC对进一步提高RuOxHy在酸性电解质中的稳定性作用并不显著。以上结果表明,RuOxHy在酸性电解质中的稳定性以及WOm或MoOm对RuOxHy的稳定效果同载体的类型密切相关。
PtRu electrocatalyst is so far the most effective anode catalyst for direct methanol fuel cell (DMFC). However, the exact state of the active ruthenium component that takes effect in promoting the catalytic performance of Pt is still a point of discussion. A comprehensive investigation of the actual chemical state and the corresponding promotional effect of ruthenium would be of great significance for improving the electrocatalytic activity of Pt catalyst as well as the performance of DMFC. In the present dissertation, a series of Pt-(RuOxHy)m electrocatalysts with RuOxHy as the exclusive ruthenium species were carefully prepared. The influence of catalyst composition (atomic Ru/Pt ratio) and pretreatment potential range on the promotional effect of RuOxHy was systematically investigated, and further, various approaches were studied in depth in a hope to efficiently stabilize the RuOxHy species. The results obtained are as follows:
     1) Multi-walled carbon nanotube supported Pt-(RuOxHy)m electrocatalysts (m is atomic Ru/Pt ratio), in which amorphous hydrous ruthenium oxide (RuOxHy) is the exclusive Ru-containing species, were prepared and comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, thermogravimetric analysis and transmission electron microscopy techniques. Before the electrochemical measurement, the electrode catalyst was pretreated in H2SO4 by cyclic voltammetric scanning over two different potential ranges:narrow (-0.20-0.46 V vs. SCE) and extended (-0.20~0.96 V vs. SCE) potential ranges. The results show that RuOxHy can effectively promote the oxidative removal of CO on Pt surface, but also lead to a loss of electrochemically active surface area of Pt. When the electrode catalysts were pretreated in the narrow potential range, Pt-(RuOxHy)0.10/MWCNTs exhibited the highest activity for methanol oxidation among all the investigated samples, with both mass-specific activity (MSA) and intrinsic activity (IA) one order of magnitude higher than those of the reference Pt/MWCNT catalyst, which further verified the significant promotion effect of RuOxHy. After being subjected to electrochemical pretreatment over the extended potential range, however, the activity for methanol oxidation of Pt-(RuOxHy)m/MWCNTs decreased remarkably relative to their counterparts pretreated in narrow potential range duing to the dissolution of RuOxHy. The effects of preparation conditions on the electrochemical behavior of Pt-RuOxHy catalyst and the stability of RuOxHy were also studied.
     2) It was found that the doping of transition metal oxides (WOm and MoOm) could effectively improve the stability of RuOxHy in Pt-(RuOxHy)0.10/MWCNTs. The dissolution of RuOxHy in Pt-(RuOxHy)0.10/MWCNT catalyst could be reduced from 70% to ca.15% by the addition of WOm or MoOm. Furthermore, the resultant Pt-RuOxHy-WOm/MWCNT and Pt-RuOxHy-MoOm/MWCNT catalysts showed enhanced CO tolerance, and also more than double in IA value of Pt for methanol electro-oxidation, as compared with Pt-RuOxHy/MWCNT catalyst.
     3) The effects of the carbon support properties on Pt-RuOxHy were also investigated. The stability of RuOxHy in Pt-RuOxHy catalysts supported on XC-72 was significantly higher than that in the catalysts supported on MWCNTs. The introduction of WOm or MoOm into Pt-RuOxHy/MWCNTs could induce an enhanced stability of RuOxHy, while it was not applicable for Pt-RuOxHy/XC catalyst. These results showed that the effects of WOm and MoOm on the the stability of RuOxHy were closely related with the type of carbon support.
引文
[1]Kordesch H, Simader G. Fuels cells and their applications [M]. VCH, Weinheim, Germany,1996.
    [2]衣宝廉 燃料电池-原理.技术.应用[M].北京:化学工业出版社,2003.
    [3]Choudhary T V, Goodman D W. Stepwise methane steam reforming:a route to CO-free hydrogen [J]. Catal. Lett.,1999,59(1):93-94.
    [4]Hoogers G, Thompsett D. Catalysis in proton exchange membrane fuel cell technology [J]. Cattech,2000,3(2):106-124.
    [5]Oetjen H F, Schmidt V M, Stimming U, et al. Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas [J]. J. Electrochem. Soc.,1996,143:3838-3842.
    [6]Gottesfeld S, Pafford J. A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures [J]. J. Electrochem. Soc.,1988,135(10):2651-2652.
    [7]Schmidt V M, Oetjen H F, Divisek J. Performance improvement of a PEMFC using fuels with CO by addition of oxygen-devolving compounds [J]. J. Electrochem. Soc., 1997,144(9):L237-L238.
    [8]Barz D P J, Schmidt V M. Addition of dilute H2O2 solutions to H2-CO fuel gases and their influence on performance of a PEMFC [J]. Phys. Chem. Chem. Phys.,2001,3(3): 330-332.
    [9]Prater K B. Polymer electrolyte fuel cell:a review of recent developments [J]. J. Power Sources,1994,51(1-2):129-144.
    [10]Lin Y M, Lee G L, Rei M H. An integrated purification and production of hydrogen with a palladium membrane-catalytic reactor [J]. Catal. Today,1998,44(1-4): 343-348.
    [11]Igarashi H, Uchida H, Suzuki M, et al. Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite [J]. Appl. Catal. A:General,1997,159(1-2):159-169.
    [12]Siswana N P, Trimm D L. Metal-support interactions in the catalytic oxidation of carbon monoxide [J]. Catal. Lett.,1997,46(1-2):27-29.
    [13]Ishikawa Y, Liao M S, Cabrera C R. Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M=Ru, Sn):a theoretical study [J]. Surf. Sci.,2000,463(1): 66-80.
    [14]Carrette L, Friedrich K A, Stimming U. Fuel Cells:Principles, Types, Fuels, and Applications ChemPhysChem,2000,1:162-193.
    [15]Hughes V B, Miles R. A cyclic voltammetric investigation of adsorbed residues derived from methanol on platinum-based electrocatalysts [J]. J. Electroanal. Chem.,1983,145:87-107.
    [16]Wetanabe M, Saegusa S, Stonehart D. High platinum electrocatalyst utilizations for direct methanol oxidation [J]. J. Electroanal. Chem.,1989,271:213-220.
    [17]Googenough J B, Hamnett A, Kennedy B J. XPS investigation of platinized carbon electrodes for the direct methanol air fuel cell [J]. Electrochim. Acta.,1987,32:1233-1238.
    [18]胡为工.聚合物电解膜燃料电池的发展及预测[J].化工新型材料,1999,27(10):16-19.
    [19]Attwood P A, Mcniwl B D, Short R T. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fibre paper catalysts for methanol electrooxidation [J]. J. Catal., 1987,67:287-295.
    [20]Mikhaylova A A, Khazova O A, Bagotzky V S. Electrocatalytic and adsorption properties of platinum microparticles electrodeposited onto glassy carbon and into Nafion films [J]. J. Electroanal. Chem.,2000,480:225-232.
    [21]Parson R, Vanderneot T. The oxidation of small organic molecules. A survey of recent fuel cell related research [J]. J. Electroanal. Chem.,1988,257:9-45.
    [22]Iwasita Y, Nart F C, Vielstich W. An FTIR study of the catalytic activity of a 85:15 platinum-ruthenium alloy for methanol oxidation [J]. Ber. Bunsenges. Phys. Chem.,1990,94: 1030-1034.
    [23]Frelink T, Visscher W. The effect of Sn on Pt/C catalysts for the methanol electro-oxidation [J]. J. Electrochim. Acta,1994,39:1871-1875.
    [24]Kennedy B J, Hamnett A. Oxide formation and reactivity for methanol oxidation on platinized carbon anodes [J]. J. Electroanal. Chem.,1990,283:271-285.
    [25]Samjeske G, Wang H, Loffler T, et al. CO and methanol oxidation at Pt-electrodes modified by Mo [J]. Electrochim. Acta,2002,47:3681-3692.
    [26]Grgur B N, Markovic N M, Ross P N. Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode [J]. J. Phys. Chem. B,1998,102: 2494-2501.
    [27]Grgur B N, Markovic N W, Ross P N. The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts [J]. J. Electrochem. Soc.,1999,146:1613-1619.
    [28]Wang Y, Fachini E R, Cruz G, et al. Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation [J]. J. Electrochem. Soc., 2001,148:C222-C226.
    [29]Zhang H Q, Wang Y, Fachini E R, et al. Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution [J]. Electrochem. Solid-State Lett.,1999,2(9):437-439.
    [30]Dos Anjos D M, Kokoh K B, Leger J M, et al. Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium [J]. J. Appl. Electrochem.,2006,36:1391-1397.
    [31]Jeon M K, Lee K R, Woo S 1. Ternary Pt45Ru45M10/C (M=Mn, Mo and W) catalysts for methanol and ethanol electro-oxidation [J]. Kor. J. Chem. Eng.,2009,26(4):1028-1033.
    [32]Gojkovic S L, Tripkovic A V, Stevanovic R M, et al. High activity of Pt4Mo alloy for the electrochemical oxidation of formic acid [J]. Langmuir,2007,25:12760-12764.
    [33]Mukerjee S, Lee S J, Ticianelli E A, et al. Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst [J]. Electrochem. Solid-State Lett.,1999,2:12-15.
    [34]Santiago E I, Camara G A, Ticianelli E A. CO tolerance on PtMo/C electrocatalysts prepared by the formic acid Method [J]. Electrochim. Acta,2003,48:3527-3534.
    [35]Shen P K, Tseung A C C. Anodic oxidation of methanol on Pt/WO3 in acidic media [J]. J. Electrochem. Soc.,1994,141:3082-3090.
    [36]Janssen M M P, Moolhuysen J. Platinum-tin catalysts for methanol fuel cells prepared by a novel immersion technique, by electrocodeposition and by alloying [J]. Electrochim. Acta, 1976,21:861-868.
    [37]Beden B, Kardigan F, Lamy C, et al. Electrocatalytic oxidation of methanol on platinum-based binary electrodes [J]. J. Electroanal. chem.,1981,127:75-85.
    [38]Park K W, Choi J H, Sung Y E. Structural, chemical, and electronic properties of Pt/Ni thin film electrodes formethanol electrooxidation [J]. J. Phys. Chem. B,2003,107:5851-5856.
    [39]Liu F, Lee J Y, Zhou W J. Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites [J]. J. Phys. Chem. B,2004, 108:17959-17963.
    [40]Demirci U B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells [J]. J. Power Sources,2007,173:11-18.
    [41]Ruban A, Hammer B, Stoltze P, et al. Surface electronic structure and reactivity of transition and noble metals [J]. J. Mol. Catal. A,1997,115:421-429.
    [42]Hammer B, N(?)rskov J K. Theoretical surface science and catalysis-calculations and concepts [J]. Adv. Catal.,2000,45:71-99.
    [43]Jeon M K, Won J Y, Lee K R, et al. Highly active PtRuFe/C catalyst for methanol electro-oxidation [J]. Electrochem. Comm.,2007,9:2163-2166.
    [44]Jeon M K, Lee K R, Daimon H, et al. Pt45Ru45M10/C (M=Fe, Co and Ni) catalysts for methanol electro-oxidation [J]. Catal. Today,2008,132:123-126.
    [45]Choi J H, Park K W, Kwon B K, et al. Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs [J]. J. Electrochem. Soc.,2003, 150:A973-A978.
    [46]Wang Z B, Yin G P, Shi P E, et al. Novel Pt-Ru-Ni/C catalysts for methanol electro-oxidation in acid medium [J]. Electrochem. Solid-State Lett.,2006,9:A13-A16.
    [47]Liu J, Cao J, Huang Q, et al. Methanol oxidation on carbon-supported Pt-Ru-Ni ternary nanoparticle electrocatalysts [J]. J. Power Sources,2008,175:159-165.
    [48]Cooper J, McGinn P J. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode [J]. J. Power Sources,2006,163:330-338.
    [49]Umeda M, Ojima H, Mohamedi M, et al. Methanol electrooxidation at Pt-Ru-W sputter deposited on Au substrate [J]. J. Power Sources,2004,136:10-15.
    [50]Goetz M, Wendt H. Composite electrocatalysts for anodic methanol and methanol-reformate oxidation [J]. J. Appl. Electrochem.,2001,31:811-817.
    [51]Roth C, Goetz M, Fuess H. Synthesis and characterization of carbon-supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods [J]. J. Appl. Electrochem.,2001,31: 793-798.
    [52]Choi W C, Kim J D, Woo S I. Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry [J]. Catal. Today,2002,74:235-240.
    [53]田立朋,李伟善.钼酸盐的电化学行为及其对甲醇氧化的催化作用[J].电源技术,2001,25(2):72-83.
    [54]Burke L D, Murphy O J. The electrooxidation of methanol and related compounds at ruthenium dioxide-coated electrodes [J]. J. Electroanal. Chem.,1979,101:351-361.
    [55]Batista E A, Malpass G R P, Motheo A J, et al. New mechanistic aspects of methanol oxidation [J]. J. Electroanal. Chem.,2004,571:273-282.
    [56]Shukla A K, Ravikumar M K, Arico A S, et al. Methanol electrooxidation on carbon-supported Pt-WO3-x electrodes in sulphuric acid electrolyte [J]. J. Appl. Electrochem., 1995,25:528-532.
    [57]Machida K, Enyo M, Adachi G, et al. Methanol oxidation characteristics of rare earth tungsten bronze electrodes doped with platinum [J]. J. Electrochem. Soc.,1988,135: 1955-1961.
    [58]Iwasita T, Hoster H, John-Anacker A, et al. Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution [J]. Langmuir,2000,16:522-529.
    [59]Park K W, Ahn K S, Nah Y C, et al. Electrocatalytic enhancement of methanol oxidation at Pt-WOx nanophase electrodes and in-situ observation of hydrogen spillover using electrochromism [J]. J. Phys. Chem. B,2003,107:4352-4355.
    [60]Ioroi T, Akita T, Yamazaki S, et al. Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts [J]. Electrochim. Acta,2006,52:491-498.
    [61]Xi J Y, Wang J S, Yu L H, et al. Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles [J]. Chem. Commun.,2007,1656-1658.
    [62]Scibioh M A, Kim S K, Cho E A, et al. Pt-CeO2/C anode catalyst for direct methanol fuel cells [J]. Appl. Catal., B,2008,84:773-782.
    [63]Wang J S, Xi J Y, Bai Y X, et al. Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation [J]. J. Power Sources,2007,164:555-560.
    [64]Guo X, Guo D J, Qiu X P, et al. Excellent dispersion and electrocatalytic properties of Pt nanoparticles supported on novel porous anatase TiO2 nanorods [J]. J. Power Sources,2009, 194(1):281-285.
    [65]Hayden B E, Malevich D V. Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions [J]. Electrochem.Commun.,2001,3:395-399.
    [66]Liu J H, Yu C B, Wang Y J, et al. Studies on electrocatalytic performance of titanium oxide electrode modified with Pt toward oxidation of CO [J]. Chem. J. Chin. Univ.2003,12(24): 2263-2267.
    [67]Ribeiro N F P, Mendes F M T, Perez C A C, et al. Selective CO oxidation with nano gold particles-based catalysts over A12O3 and ZrO2 [J]. Appl. Catal. A,2008,347:62-71.
    [68]Aramata A, Toyoshima I, Enyo M. Study of methanol electrooxidation on Rh/Sn oxide, Pt/Sn oxide, and Ir/Sn oxide in comparison with that on the Pt metals [J]. Eletrochim. Acta,1992, 37:1317-1320.
    [69]Santos A L, Profeti D, Olivi P. Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films [J]. Electrochim. Acta,2005,50:2615-2621.
    [70]Wang G, Takeguchi T, Zhang Y, et al. Effect of SnO2 deposition sequence in SnO2-modified PtRu/C catalyst preparation on catalytic activity for methanol electro-oxidation [J]. J. Electrochem. Soc.,2009,156(7):B862-B869.
    [71]Zhou C M, Wang H, Peng F, et al. MnO2/CNT supported Pt and PtRu nanocatalysts for direct Methanol fuel cells [J]. Langmuir,2009,25(13):7711-7717.
    [72]Shen P K, Chen K Y, Tseung A C C. CO oxidation on Pt/Ru/WO3 electrodes [J]. J. Electrochem. Soc.,1995,142(6):L85-L86.
    [73]Tseung A C C, Chen K Y. Hydrogen spill-over effect on Pt/WO3 anode catalysts [J]. Catal. Today,1997,38(2):439-443.
    [74]Park K W, Choi J H, Ahn K S, et al. PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method [J]. J. Phys. Chem. B, 2004,118:5989-5994.
    [75]Yoshiike N, Kondo S. Electrochemical properties of WO3·x(H2O) Ⅰ. The influences of water adsorption and hydroxylation [J]. J. Electrochem. Soc.,1983,130:2283-2287.
    [76]Yoshiike N, Kondo S. Electrochemical properties of WO3·x(H2O) Ⅱ. The influence of crystallization as hydration [J]. J. Electrochem. Soc.,1984,131:809-812.
    [77]Arico A S, Poltarzewski Z, Kim H, et al. Investigation of a carbon-supported quaternary Pt/Ru/Sn/W catalyst for direct methanol fuel cells [J]. J. Power Sources,1995,55:159-166.
    [78]Anderson A B, Gratscharova E, Seong S. Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance [J]. J. Electrochem.Soc.,1996,143:2075-2082.
    [79]Lima A, Coutanceau C, Leger J M, et al. Investigation of ternary catalysts for methanol electrooxidation [J]. J. Appl. Electrochem.,2001,31:379-386.
    [80]Li W S, Tian L P, Huang Q M, et al. Catalytic oxidation of methanol on molybdate-modified platinum electrode insulfuricacidsolution [J]. J Power Sources,2002,104:281-288.
    [81]Lu J, Du J H, Li W S, et al. Formation and oxidation of hydrogen molybdenum bronze or platinum electrode in sulfuric acid solution [J]. Chin. Chem. Lett.,2004,15:703-706.
    [82]Jusys Z, Schmidt T J, Dubau L, et al. Activity of PtRuMeOx (Me=W, Mo or V) catalysts towards methanol oxidation and their characterization [J]. J. Power Sources,2002,105: 297-304.
    [83]Lasch K, Jorissen L, Garche J. The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum-ruthenium [J]. J. Power Sources,1999,84: 225-230.
    [84]Hou Z, Yi B, Yu H, et al. CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me=W, Mo) made by composite support method [J]. J. Power Sources,2003,123:116-125.
    [85]Wang Z B, Yin G P, Lin Y G. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell [J]. J. Power Sources,2007,170:242-250.
    [86]Gasteiger H A, Markovic N M, Ross P N. Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface [J]. J. Phys. Chem.,1995,99:8945-8949.
    [87]Arico A S, Antonucci P L, Modica E, et al. Effect of Pt-Ru alloy composition on high-temperature methanol electro-oxidation [J]. Electrochim. Acta,2002,47:3723-3732.
    [88]Dubau L, Coutanceau C, Gamier E, et al. lectrooxidation of methanol at platinum-ruthenium catalysts prepared from colloidal precursors:Atomic composition and temperature effects [J]. J. Appl. Electrochem.,2003,33:419-429.
    [89]Liu Z, Ling X Y, Su X, et al. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell [J]. J. Phys. Chem. B,2004,108:8234-8240.
    [90]Kabbabi R, Faure R, Durand R, et al. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes [J]. J. Electroanal. Chem.,1998,444:41-53.
    [91]Wu G, Li L, Xu B Q. Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation [J]. Electrochim. Acta,2004,50:1-10.
    [92]Huang S F, Chi Y, Liu C S, et al. Preparation of Pt-Ru alloyed thin films using a single-source CVD precursor [J]. Chem. Vapor Depos.,2003,9:157-161.
    [93]Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell [J]. Catal. Today, 1997,38:445-457.
    [94]Chu D, Gilman S. Methanol electrooxidation on unsupported Pt-Ru alloys at different temperatures [J]. J. Electrochem. Soc.,1996,143:1685-1690
    [95]Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells:a selective review [J]. J. Electroanal. Chem.,1999,461:14-31
    [96]Gurau B, Viswanathan R, Liu, R, et al. Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation [J]. J. Phys. Chem. B,1998,102:9997-10003
    [97]Rolison D R, Hagans P L, Swider K E, et al. Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts:the importance of mixed electron/proton conductivity [J]. Langmuir,1999,15:774-779.
    [98]Long J W, Stroud D M, Swider Lyons K E, et al. How to make electrocatalysts more active for direct methanol oxidation avoid PtRu bimetallic alloys [J]. J. Phys. Chem. B,2000,104: 9772-9776.
    [99]Dubau L, Hahn F, Coutanceau C, et al. On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation [J]. J. Electroanal. Chem.,2003,554/555: 407-415.
    [100]Tong Y Y, Kim H S, Badu P K, et al. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst [J]. J. Am. Chem. Soc.,2005,124:468-473.
    [101]McNicol B D. Electrocatalytic problems associated with the development of direct methanol-air fuel cell [J]. J. Electroanal. Chem. Interf. Electrochem.,1981,118:71-87.
    [102]Goodenough J B, Hamnett A, Kennedy B J, et al. Methanol oxidation on unsupported and carbon supported platinum + ruthenium anodes [J]. J. Electroanal. Chem.,1988,240: 133-145.
    [103]Villullas H M, Mattos-Costa F I, Bulhoes L O S. Electrochemical oxidation of methanol on Pt nanoparticles dispersed on RuO2 [J]. J. Phys. Chem. B,2004,108:12898-12903.
    [104]Cao L, Scheiba F, Roth C, et al. Novel nanocomposite Pt/RuO2.x H2O/carbon nanotube catalysts for direct methanol fuel cells [J]. Angew. Chem. Int. Ed.,2006,45:5315-5319.
    [105]Huang S, Chang C, Wang K, et al. Promotion of platinum-ruthenium catalyst for electrooxidation of methanol by crystalline ruthenium dioxide [J]. ChemPhysChem,2007,8: 1774-1777.
    [106]Zeng J, Lee J Y. More active PtRu/C catalyst for methanol electrooxidation by reversal of mixing sequence in catalyst preparation [J]. Mater. Chem. Phys.,2007,104:336-341.
    [107]Eguiluz K I B, Salazar-Banda G R, Miwa D, et al. Effect of the catalyst composition in the Ptx(Ru-Ir)1-x/C system on the electro-oxidation of methanol in acid media [J]. J. Power Sources,2008,179:42-49.
    [108]Gomez de la Fuente J L, Martinez-Huerta M V, Rojas S, et al. Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications:New evidence of the hydrous ruthenium oxide phase [J]. Appl. Catal. B:Environ.,2009,88: 505-514.
    [109]Lu Q, Yang B, Zhuang L, et al. Activation of PtRu/C catalysts for methanol oxidation [J]. J. Phys. Chem. B,2005,109:1715-1722.
    [110]Trasatti S, Lodi G. Electrodes of conductive metallic oxide-part A [M]. Elsevier, New York, 1980.
    [111]Dinh H N, Ren X, Garzon F H, et al. Electrocatalysis in direct methanol fuel cells:in-situ probing of PtRu anode catalyst surfaces [J]. J. Electroanal. Chem.,2000,491:222-233.
    [112]Kim H, Moraes I R, Tremiliosi-Filho G, et al. Chemical state of ruthenium submonolayers on a Pt(111) electrode [J]. Surf. Sci.,2001,474:L203-L212.
    [113]Bock C, Collier A, MacDougall B, Active form of Ru for the CH3OH electro-oxidation reaction [J]. J. Electrochem. Soc.,2005,152:A2291-A2299.
    [114]He C Z, Kunz H R, Fenton J M. Evaluation of platinum-based catalysts for methanol electro-oxidation in phosphoric acid electrolyte [J]. J. Electrochem. Soc.,1997,144:970-979
    [115]Valdez T I, Firdosy S, Koel B E, et al. Investigation of ruthenium dissolution in advanced membrane electrode assemblies for direct methanol based fuel cell stacks. ECS Trans.2006, 1:293-303.
    [116]Piotr P, Eickes C, Brosha E, et al. Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode [J]. J Electrochem. Soc.,2004,151:A2053-A2059.
    [117]Chen W, Sun G, Guo J, et al. Test on the degradation of direct methanol fuel cell [J]. Electrochim. Acta,2006,51:2391-2399.
    [118]Liang Z X, Zhao T S, Xu J B. Stabilization of the platinum-ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold [J]. J. Power Sources,2008,185: 166-170.
    [119]Jeon M K, Cooper J S, McGinn P J. Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach [J]. J. Power Sources,2008,185:913-916.
    [120]Christopher M A, Oliveira A M. Electrochemistry [M]. Oxford University Press, New York,1993.
    [121]Gasteiger H A, Markovic N, Ross P N J, et al. Methanol electrooxidation on well-characterized Pt-Ru alloys [J]. J Phys Chem.,1993,97:12020-12029.
    [122]Gasteiger H A, Markovic N, Ross P N J, et al. Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys [J]. J. Phys. Chem.,1994,98:617-625.
    [123]Holstein W L, Rosenfeld H D. In-situ X-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidation [J]. J. Phys Chem B,2005,109:2176-2186.
    [124]Boudart M, Djega-Mriadassou G. Kinetics of heterogeneous catalytic reactions, Princeton University Press, Princeton, NJ,1984.
    [125]Bett J, Kinoshita K, Routsis K, et al. A comparison of gas-Phase and electrochemical measurements for chemisorbed carbon monoxide and hydrogen on platinum crystallites [J]. J. Catal.,1973,29:160-168.
    [126]Li L, Wu G, Xu B Q. Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids [J]. Carbon,2006,44:2973-2983.
    [127]Pozio A, Francesco M, Cemmi A, et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry [J]. J. Power Sources,2002,105:13-19.
    [128]王恒秀.高性能质子交换膜燃料电池催化剂的研制[D].博士后出站报告.北京:清华大学.2001.
    [129]李莉.[D].含助剂Pt基燃料电池催化剂的研究[D].博士论文.北京:清华大学,2004.
    [130]Chen P, Zhang H B, Lin G D, et al. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst [J]. Carbon,1999,35:1495-1501.
    [131]Fu X, Yu H, Peng F, et al. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance [J]. Appl. Catal. A,2007,321: 190-197.
    [132]Radmilovic V, Gasteiger H A, Ross P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation [J]. J. Catal.,1995,154(1): 98-106.
    [133]Arico A S, Shukla A K, Kim H, et al. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen [J]. Appl. Surf. Sci.,2001, 172(1-2):33-40.
    [134]Eberhardt W, Fayet P, Cox D M. Photoemission from mass-selected monodispersed Pt clusters [J]. Phys. Rev. Lett.,1990,64(7):780-784.
    [135]U. S. National Institute of Standards and Technology (NIST) XPS database. http://srdata.nist.gov/xps/and references therein.
    [136]Kundu S, Wang Y, Xia W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces:a quantitative high-resolution XPS and TPD/TPR study [J]. J. Phys. Chem. C,2008,112:16869-16878.
    [137]Huang S, Chang S, Yeh C. Characterization of surface composition of platinum and ruthenium nanoalloys dispersed on active carbon [J]. J. Phys. Chem. B,2006,110:234-239.
    [138]Trasatti S, Buzzanca G. The nature of adsorbed oxygen on rhodium, palladium and gold electrodes [J]. J. Electroanal. Chem. Interfacial Electrochem.,1971,1:29-38.
    [139]Scheiba F, Scholz M, Cao L. On the suitability of hydrous ruthenium oxide supports to enhance intrinsic proton conductivity in DMFC anodes [J]. Fuel Cells 2006,6(6):439-446.
    [140]Anderson D P, Warren L F. Electrochemical deposition of conducting ruthenium oxide films from solution [J]. J. Electrochem. Soc.,1984,131:347-349.
    [141]Prabhuram J, Zhao T S, Tang Z K, et al. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells [J]. J Phys. Chem. B,2006,110:5245-5252.
    [142]Bock C, Blakely M A, MacDougall B. Characteristics of adsorbed CO and CH3OH oxidation reactions for complex Pt/Ru catalyst systems [J]. Electrochim Acta,2005,50:2401-2414.
    [143]Cao, D, Bergens, S H. A nonelectrochemical reductive deposition of ruthenium adatoms onto nanoparticle platinum:anode catalysts for a series of direct methanol fuel cells [J]. Electrochim. Acta,2003,48:4021-4031.
    [144]Manoharan R, Goodenough J B. Methanol oxidation in acid on ordered NiTi [J]. J. Mater. Chem.,1992,2:875-887.
    [145]Guo J W, Zhao T S, Prabhuram J, et al. Development of PtRu-CeO2/C anode electrocatalyst for direct methanol fuel cells [J]. J. Power Sources,2006,156:345-354.
    [146]Jiang J, Kucernak A. Electrooxidation of small organic molecules on mesoporous precious metal catalysts:Ⅱ:CO and methanol on platinum-ruthenium alloy [J]. J. Electroanal. Chem., 2003,543:187-199.
    [147]Conway B E. Electrochemical oxide film formation at noble metals as a surface-chemical process [J]. Prog, in Surface Science,1995,49:331-452.
    [148]Hu C C, Liu K Y. Voltammetric investigation of platinum oxides. I. Effects of ageing on their formation/reduction behavior as well as catalytic activities for methanol oxidation [J]. Electrochim. Acta,1999,44:2727-2738.
    [149]Valbuena W H L, Paganin V A, Leite C A P, et al. Catalysts for DMFC:relation between morphology and electrochemical performance [J]. Electrochim. Acta,2003,48:3869-3878.
    [150]Gojkovic S L, Vidakovic T R, Durovic D R. Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst [J]. Electrochim. Acta,2003,48:3607-3614.
    [151]De Souza J P I, Iwasita T, Nart F C, et al. Performance evaluation of porous electrocatalysts via normalization of the active surface [J]. J. Appl. Electrochem.,2000,30(1):43-48.
    [152]Gasteiger H A, Markovic N, Ross P N, et al. Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys [J]. J. Electrochem. Soc.,1994,141(7): 1795-1803.
    [153]Wang K, Gasteiger H A, Markovic N M, et al. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces [J]. Electrochim. Acta,1996,41:2587-2593.
    [154]Schmidt T J, Gasteiger H A,Behm R J. In:Russow J, Sandstede G, Staab R(Eds.). Elektrochemische reaktionstechnik und synthese-von den grundlagen bis zur industriellen anwendung [J]. GDCH Monographie Gesellschaft Deutscher Chemiker, Frankfurt,1999,14: 196-208.
    [155]Xing Y, Li L, Chusuei C C, et al. Sonochemical oxidation of multiwalled carbon nanotubes [J]. Langmuir,2005,21:4185-4190.
    [156]Cao D, Bergen S H. A nonelectrochemical reductive deposition of ruthenium adatoms onto nanoparticle platinum:anode catalysts for a series of direct methanol fuel cells [J]. Electrochim. Acta,2003,48:4021-1031
    [157]Dmowski W, Egami T. Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering [J]. J Phys. Chem. B,2002,106:12677-12683.
    [158]Liu W J, Wu B L, Cha C S. Surface diffusion and the spillover of H-adatoms and oxygen-containing surface species on the surface of carbon black and Pt/C porous electrodes [J]. J. Electroanal. Chem.,1999,476:101-108.
    [159]Zhou W, Lee J Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid [J]. J. Phys. Chem. C,2008,112(10):3789-3793.
    [160]Wei Z D, Yan C, Tan Y. Spontaneous reduction of Pt(Ⅳ) onto the sidewalls of functionalized multiwalled carbon nanotubes as catalysts for oxygen reduction reaction in PEMFCs [J]. J. Phys.Chem. C,2008,112(10):2671-2677.
    [161]Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons [J]. Carbon,1999,37(9):1379-1389.
    [162]loroi T, Fujiwara N, Siroma Z, et al. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide [J]. Electrochem. Commun.,2002,4:442-446.
    [163]Hobbs B S, Tseung A C C. High Performance, Platinum activated tungsten oxide fuel cell electrodes [J]. Nature,1969,222:556-558.
    [164]Yang L X, Bock C, Dougall B M, et al. The role of the WOX ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction [J]. J. Appl. Electrochem.,2004, 34:427-438.
    [165]Chen K Y, Tseung A C C. Effect of nafion dispersion on the stability of Pt/WO3 electrodes [J]. J. Electrochem. Soc.,1996,143:2703-2707.
    [166]Zellner M B, Chen J G. Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts [J]. Catalysis today,2005,99(3-4):299-307.
    [167]Grgur B N, Zhuang G, Marvovich M M. Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface [J]. J. Phys. Chem. B,1997,101(20):3910-3913.
    [168]Horkans J, Shafer M W. Effect of orientation, composition, and electronic factors in the reduction of O2 on single crystal electrodes of the conducting oxides of molybdenum and tungsten [J]. J. Electrochem. Soc.,1977,124:1196-1202.
    [169]Lebedeva N P, Janssen G J M. On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells [J]. Electrochimica Acta,2005,51(1):29-40.
    [170]Mylswamy S, Wang C Y, Liu R S, et al. Anode catalysts for enhanced methanol oxidation: An in situ XANES study of PtRu/C and PtMo/C catalysts [J]. Chemical Physics Letters,2005, 412:444-448.
    [171]Mukerjee S, Urian R C. Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells:electrochemical and in situ synchrotron spectroscopy [J]. Electrochim. Acta,2002,47(19):3219-3231.
    [172]Ioroi T, Yasuda K, Siroma Z, et al. Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst [J]. J Electrochem Soc.,2003,150:A1225-A1230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700