用户名: 密码: 验证码:
温度和pH值双重敏感的快速响应聚(N,N-二乙基丙烯酰胺-co-丙烯酸)水凝胶的合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以N,N-二乙基丙烯酰胺(DEA)和丙烯酸(AA)分别作为温度敏感性单体和pH值敏感性单体,分别采用致孔技术、相分离技术等物理改性方法和在聚合物网络中引入梳型接枝链等化学改性方法,合成了温度/pH值双重敏感的快速响应聚(N,N-二乙基丙烯酰胺-co-丙烯酸)(P(DEA-co-AA))水凝胶,系统地研究了共聚水凝胶对外界环境变化的刺激响应行为,并在此基础上,通过掺杂多壁碳纳米管(MWCNTs),合成了响应速度快且机械强度较好的复合物水凝胶。此外,还系统地研究了DEA的RAFT聚合反应条件,为以后合成结构可控的PDEA共聚水凝胶奠定了理论基础。取得的主要研究结果有:
     1、以PEG-6000为致孔剂,采用自由基交联共聚法,通过调控单体的组成,合成了温度/pH值双重敏感的快速响应P(DEA-co-AA)水凝胶,FTIR结果表明,PEG-6000可以通过在碱溶液中浸泡的方法完全去除。对水凝胶溶胀研究的结果表明:(1)调节单体的组成,当AA占单体总量的1.1 wt%时,P(DEA-co-AA)水凝胶的体积相转变温度(VPTT)可达到人体生理温度(37.5℃)附近;(2)由于共聚单体AA含有可解离的羧基,赋予了共聚水凝胶明显的pH值敏感性;(3)P(DEA-co-AA)水凝胶在60℃(高于其VPTT)的二次蒸馏水中的退溶胀速度受PEG-6000加入与否和共聚单体AA的加入量的影响,而20℃(低于其VPTT)时在pH=3.0的酸性介质中的退溶胀行为分为两个阶段;(4)当温度在20℃和60℃之间交替改变时,P(DEA-co-AA)水凝胶具有可逆的脉冲响应行为,而当pH值在3.0和6.9之间交替改变时,P(DEA-co-AA)水凝胶的脉冲响应行为受PEG-6000加入与否和共聚单体AA的加入量的影响。
     2、以不同浓度的NaCl水溶液为反应介质,采用自由基交联共聚法,合成了一系列温度/pH值双重敏感的P(DEA-co-AA)水凝胶,与在二次蒸馏水中制备的P(DEA-co-AA)水凝胶相比,该凝胶对外界温度和pH值的变化具有相似的响应行为。不同的是,在NaCl水溶液中制备的P(DEA-co-AA)水凝胶对温度和pH值变化具有更快的响应速度,而且响应速度受NaCl水溶液浓度的影响。扫描电子显微镜(SEM)分析结果表明,以NaCl水溶液为反应介质所制备的P(DEA-co-AA)水凝胶具有更大的孔隙率。
     3、将相分离技术和致孔技术两种物理改性手段相结合,采用两步法制备了温度/pH值双重敏感的快速响应P(DEA-co-AA)水凝胶。溶胀实验结果表明:(1)水凝胶的VPTT只与共聚凝胶中两种单体的组成有关,而与具体的聚合过程无关,即采用一步法和采用两步法制备的共聚水凝胶具有相同的VPTT; (2)由于体系中引入了共聚单体AA,水凝胶在很宽的pH值范围内都具有敏感性,而且两步法制备的水凝胶在高温下和酸性介质中的退溶胀速度更快;(3)溶胀/退溶胀动力学实验表明,两步法中的任何一步对水凝胶的快速响应速度都有重要影响;(4)同一种水凝胶的退溶胀速率明显快于溶胀速率。
     4、合成了末端带有双键的PDEA大分子单体,并将其与单体DEA、AA自由基交联共聚,制备了具有梳型接枝链的P(DEA-co-AA)水凝胶,采用化学改性方法,从分子水平上对该水凝胶的化学结构进行了改性。对所制备的水凝胶的溶胀能力、退溶胀动力学以及对温度/pH值交替改变的脉冲响应行为进行了研究。结果表明,在低于水凝胶的VPTT时,梳型接枝的P(DEA-co-AA)水凝胶在pH>5.0时具有更大的平衡溶胀比(ESRs);同时在二次蒸馏水中的退溶胀动力学显示,退溶胀速率与退溶胀温度有重要关系。此外,梳型接枝水凝胶对温度的交替改变具有更优越的脉冲响应性能。但是,需要说明的是梳型接枝水凝胶对pH值交替改变的脉冲响应行为较差,几乎是不可逆的。此外,还合成了荧光标记的梳型接枝微凝胶,利用荧光手段对梳型接枝水凝胶的快速响应机理进行了探讨。
     5、首先合成了乙烯基功能化的MWCNTs,并采用拉曼、FTIR等分析手段对其结构进行了表征。在此基础上,将乙烯基功能化的MWCNTs与DEA、AA交联共聚,制备了MWCNT/P(DEA-co-AA)复合水凝胶,系统地研究了水凝胶的机械强度以及对外界刺激的响应行为和响应速度。研究发现,MWCNT/ P(DEA-co-AA)复合水凝胶与P(DEA-co-AA)水凝胶具有类似的温度/pH值响应行为,但MWCNT/P(DEA-co-AA)复合水凝胶具有更高的弹性模量,同时在高温时(60℃)具有较快的响应速度。此外,对水凝胶溶胀机理的研究表明,MWCNT/P(DEA-co-AA)复合水凝胶和P(DEA-co-AA)水凝胶中水的扩散均遵循Fickian扩散定律。
     6、通过可逆加成断裂链转移(RAFT)聚合方法,合成了一系列不同分子量的PDEA,系统地研究了反应温度、反应时间、[CTA]0/[I]0等对DEA的RAFT聚合反应的影响,结果表明,二硫代苯甲酸苄酯(BDTB)作为链转移剂可以很好的控制DEA的RAFT聚合,为以后合成结构可控以及响应速度快的PDEA共聚水凝胶奠定了理论基础。
In this thesis, thermo-and pH-sensitive poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid response rates were prepared by radical cross-linked copolymerization. Several strategies, including physical and chemical, were adopted to improve the response rates. Meanwhile, functionalized multi-walled carbon nanotubes (MWCNTs) with vinyl groups were introduced to the gel networks to enhance its mechanical strength. The stimuli responsive properties, the swelling/deswelling kinetics as well as the mechanical properties were investigated in detail. Furthermore, a series of poly(N,N-diethylacrylamide) samples with different molecular weights was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The reaction conditions such as reaction temperature, reaction time, and [CTA]o/[/]o were studied systematically. The main results are shown as following:
     1. Thermo-and pH-sensitive P(DEA-co-AA) hydrogels with fast response rates were obtained by using PEG-6000 as a pore-forming agent during polymerization. PEG-6000 can be removed completely by sequential immersed in alkaline buffer solutions and distilled water. The swelling studies show that (1) the volume phase transition temperature (VPTT) of the hydrogels can be modulated to 37.5℃, which is close to human physiological temperature, by changing the amount of AA in the initial total monomers. (2) The hydrogels respond to the pH change by introducing AA into the copolymers. (3) The shrinking process at 60℃(above VPTT) is remarkably influenced by combination of the addition of PEG-6000 and the amount of hydrophilic comonomer (AA). The shrinking behavior in buffer solutions of pH= 3.0 has two stages. (4) The pulsatile swelling behavior in distilled water at temperatures alternating between 20℃and 60℃is remarkably reversible. However, the reversibility behavior of pH-responsive is dependent on the AA amount, and also the network structure of the hydrogel.
     2. A series of porous P(DEA-co-AA) hydrogels with thermo-and pH-response was successfully prepared by using NaCl aqueous solution as the reaction medium. In comparison with the conventional P(DEA-co-AA) hydrogels, the P(DEA-co-AA) hydrogels prepared in NaCl solution have the similar temperature and pH sensitivity, but exhibit much faster deswelling response rates to both temperature and pH changes, and the deswelling rates depend on the concentration of NaCl solution. These improved properties are attributed to the porous network structure formed by using NaCl solution as the polymerization/crosslinking medium, a finding that is further confirmed by SEM micrographs.
     3. Thermo-and pH-sensitive P(DEA-co-AA) hydrogels with fast swelling/deswelling rates were obtained by a two-step copolymerization. The following significant facts are found:(1) the VPTTs of the hydrogels are not dependent on the synthesis procedure of the hydrogels, but the composition of the hydrogels; (2) the hydrogels respond to pH change in a wide range after introducing AA into the copolymers, and the response rates are improved by using the two-step copolymerization; (3) the hydrogels produced by the two-step copolymerization have faster swelling/deswelling rates compared with that by conventional method, and both the two steps are necessary for the fast response rates; (4) the deswelling rates are much faster than the swelling rates, because the diffusion resistance of water is considered to be smaller in the shrinking process than that in the swelling process.
     4. Thermo-and pH-sensitive comb-type grafted P(DEA-co-AA) hydrogels with different compositions were synthesized by free radical copolymerization. The swelling capacities and the deswelling kinetics as well as their reversibility to temperature and pH changes were examined. At room temperature, hydrogels with comb-type grafted chains exhibited higher equilibrium swelling ratios in both distilled water and higher pH buffer solutions (pH> 5). The deswelling behavior of the hydrogels was dependent on the test temperature. In addition, the pulsatile stimuli-responsive studies showed that the hydrogels with comb-type grafted chains had better thermo-reversibility, which was attributed to the freely mobile grafted chains. Furthermore, the mechanism of the response behavior was studied by using steady state fluorescence anisotropy.
     5. First, multi-walled carbon nanotubes (MWCNTs) with vinyl groups were prepared and characterized by Ramman and FTIR. Second, dual-stimuli sensitive MWCNT-polymer composite hydrogel was synthesized by copolymerizing DEA, AA and MWCNTs with vinyl groups. The results showed that the composite hydrogel (NCG) had both temperature and pH sensitivity. Particularly, comparing with the normal type hydrogel (NTG), NCG exhibited better mechanical strength, and relatively faster response rates to temperature changes. Moreover, the swelling results showed that both NCG and NTG adopt the same diffusion mechanism (Fickian diffusion mechanism).
     6. A series of poly(N,N-diethylacrylamide) samples with narrow molecular weight distribution was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The reaction conditions such as reaction temperature, reaction time, and [CTA]o/[I]o were studied systematically. It was proved that well-defined PDEA could be successfully synthesized by RAFT polymerization, and this work provided a theory basis for the synthesis of well-defined PDEA-based hydrogels with rapid response rates.
引文
[1]姚康德.智能材料.天津:天津大学出版社,(1996).
    [2]R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, Y.H. Bae, S.W. Kim. Surface-modulated skin layers of thermal responsive hydrogels as on-off switches:Ⅰ. Drug release. J. Biomater. Sci. Polym. Ed.,1992,3:155-162.
    [3]T. Okano, Y.H. Bae, H. Jacobs, S.W. Kim. Thermally on-off switching polymers for drug permeation and release. J. Control. Rel.,1990,11:255-265.
    [4]N. Nashi, T. Kotaca. Complex-forming polyoxyethylene:poly(acrylic acid) interpenetrating polymer networks Ⅲ. Swelling and mechanochemical behavior. Polym. J.,1989,21:393-402.
    [5]A.R. Siegel, B.A. Firestone. pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules,21:3254-3259.
    [6]K.D. Yao, T. Peng, M.F.A. Goosen, J.M. Min, Y.Y. He. pH-sensitivity of hydrogels based on complex forming chitosan:polyether interpenetrating polymer network. J. Appl. Polym. Sci.,1993,48:343-353.
    [7]K.D. Yao, S. Sun. pH stimulus response of complex-forming poly[(ethylene glycol-co-propylene glycol)-g-acrylamide]:cr-poly(acrylic acid). Polym. Int., 1993,32:19-22.
    [8]K.D. Yao, S. Shon. Bending behavior of an electrically activated complex forming hydrogel. Polym. Bull.,1992,28:677-681.
    [9]I. Ohmine, T. Tanaka. Salt effects on the phase transition of ionic gels. J. Chem. Phys.,1982,77:5725-5729.
    [10]K. Ishihara, N. Hamada, S. Kato, I. Shinohara. Photoresponse of the release behavior of an organic compound by a azoaromatic polymer device. J. Polym. Sci. Polym. Chem.,1984,22:881-884.
    [11]铃木淳史.机能材料.(1993).
    [12]A. Suzuki, T. Tanaka. Phase transition in polymer gels induced by visible light. Nature,1990,346:345-347.
    [13]T. Shiga, Y. Hirose, A. Okada, T. Kurauchi. Bending of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogel in electric fields. J. Appl. Polym. Sci.,1992,44:249-253.
    [14]S.W. Kim, C.M. Paii, M. Kimiko, L.A. Seminoff, D.L. Holmberg, J.M. Gleeson, D. E. Wilson, E.J. Mack. Self-regulated glycosylated insulin delivery. J. Control. Rel.,1990,11:193-201.
    [15]T. Tanaka, D. Fillmore, S. Sun. Phase transitions in ionic gels. Phys. Rev. Lett., 1980,45:1636-1639.
    [16]K. Otake, H. Inomata, M. Konuo. Thermal analysis of the volume phase transition with NIPA gels. Macromolecules,1990,23:283-289.
    [17]M. Iiasky. Phase transition in swollen gels. Macromolecules,1982,15:782-788.
    [18]王昌华,曹维孝.温敏水凝胶.化学通报,1996,1:33-35.
    [19]W. Kuhn, B. Hargitay, A. Katchalaky, H. Eisenberg. Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature,1950,165:514-516.
    [20]H. Inomata, S. Goto, S. Saito. Phase transition of N-substituted acrylamide gels. Macromolecules,1990,23:4887-4888.
    [21]张剑波.温敏性水凝胶对金属离子Y3+,UO2+的浓集分离.环境科学,1999,20:87-90.
    [22]王昌华,曹维孝.新型阴离子型温敏水凝胶.高等学校化学学报,1996,17:332-333.
    [23]曹维孝,陈四文.N-异丙基丙烯酰胺共聚热缩温敏水凝胶.高等学校化学学报,1996,17:1630-1633.
    [24]陈莉,董晶,孟庆杰.阳离子型温敏水凝胶的溶胀性能及其对表面活性剂的吸附行为.应用化学,2003,20:328-331.
    [25]王昌华,卢英先,曹维孝.阳离子型温敏水凝胶的合成与性质.高分子学报,1998,2:236-239.
    [26]B.S. Kim, L. Chen, J.P. Gong, Y. Osada. Titration behavior and spectral transitions of water-soluble polythiophene carboxylic acids. Macromolecules, 1999,32:3964-3969.
    [27]L. Chen, B.S. Kim, M. Nishino, J.P. Gong, Y. Osada. Environmental responses of polythiophene hydrogels. Macromolecules,2000,33:1232-1236.
    [28]Y. Yan, X.R. Gu, C.Z. Yang. Abnormal pH sensitivity of polyacrylate-polyurethane hydrogels. J. Appl. Polym. Sci.,1998,70:1047-1052.
    [29]O. Emmamuel, Akala, K. Pavla, K. Jindich. Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials,1998,19:1037-1047.
    [30]T.A. Horbett, J. Kost, M. Singh. Delivery systems. Anderson, New York:Plenum Press, (1984).
    [31]J. Kopeek, P. Kopekova, H. Br(?)ndsted, R. Rathi, B. ihova, P.Y. Yeh, K. Ikesue. Polymers for colon-specific drug delivery. J. Contr. Rel.,1992,19:121-130.
    [32]R.A. Siegel, M. Falamarzian, B.A. Firestone, B.C. Moxley. pH-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J. Contr. Rel.,1988,8: 179-182.
    [33]S.S. Shah, M.G. Kulkarni, R.A. Mashelkar. pH dependent zero order release from glassy hydrogels:penetration vs. diffusion control. J. Contr. Rel.,1991,15: 121-131.
    [34]马建标.功能高分子材料.北京:化学工业出版社,(2000).
    [35]L.C. Dong, A.S. Hoffman. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J. Contr. Rel.,1991,15:141-152.
    [36]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)-co-(丙烯腈)水凝胶的合成及性能研究.高分子学报,1997,4:500-503.
    [37]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究.高分子学报,1998,1:39-42.
    [38]陈双基,薛梅,李福绵.甲基丙烯酸-N,N-二甲氨基乙酯及其聚合物的热和pH响应性.高分子学报,1995,3:373-376.
    [39]T. Tanaka, T. Nishio. S.T. Sun. Collapse of gels under an electric field. Science, 1982,218:467-469.
    [40]T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio. Phase transitions in ionic gels. Phys. Rev. Lett.,1980,45:1636-1639.
    [41]P.J. Flory. Principles of polymer chemistry. Ithaca, New York:Cornell University Press, (1953).
    [42]T. Tanaka. Collapse of gels and the critical endpoint. Phys. Rev. Lett.,1978,40: 820-823.
    [43]T. Amiya, Y. Hirokawa, Y. Hirose, Y. Li, T. Tanaka. Reentrant phase transition of N-isopropylacrylamide gels in mixed solvents. J. Chem. Phys.,1987,86: 2375-2379.
    [44]T. Amiya, T. Tanaka. Phase transitions in crosslinked gels of natural polymers. Macromolecules,1987,20:1162-1164.
    [45]S. Katayama, A. Ohata. Phase transition of a cationic gel. Macromolecules,1985, 18:2781-2782.
    [46]Y. Hirokawa, T. Tanaka, E. Sato. Phase transition of positively ionized gels. Macromolecules,1985,18:2782-2784.
    [47]S. Hirotsu, Y. Hiorkawa, T. Tanaka. Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys.,1987,87:1392-1395.
    [48]S. Beltran, H.H. Hooper, H. Blanch. Swelling equilibria for ionized temperature-sensitive gels in water and in aqueous salt solutions. J. Chem. Phys., 1990,92:2061-2066.
    [49]M. Marcheti, S. Prager, E.L. Cussler. Thermodynamic predictions of volume changes in temperature-sensitive gels.2. Experiments. Macromolecules,1990, 23:3445-3450.
    [50]F.M. Winnik. Fluorescence studies of aqueous solutions of poly (N-isopropylacrylamide) below and above their LCST. Macromolecules,1990, 23:233-242.
    [51]S. Fujishige, K. Kubota, I. Ando. Single-chain transition of poly (N-isopropylacrylamide) in water. J. Phys. Chem.,1990,94:5154-5158.
    [52]J.P. Baker, H.W. Blanch, J.M. Prausnitz. Popcorn-polymer formation during hydrogel synthesis. Polym. Gels Networks,1995,3:47-58.
    [53]P.Y. Yeh, P. Kopeckova, J. Kopecek. Biodegradable and pH-sensitive hydrogels: Synthesis by crosslinking of N,N-dimethylacrylamide copolymer precursors. J. Polym. Sci. Part A:Polym. Chem.,1994,32:1627-1637.
    [54]H. Ghandehari, P. Kopeckova, P.Y. Yeh, J. Kopecek. Biodegradable and pH sensitive hydrogels:synthesis by a polymer-polymer reaction. Macromol. Chem. Phys.,1996,197:965-980.
    [55]D. Wang, K. Dusek, P. Kopeckova, M. Duskova-Smrckova, J. Kopecek. Novel aromatic azo-containing pH-sensitive hydrogels:synthesis and characterization. Macromolecules,2002,35:7791-7803.
    [56]N. Gupta, A.K. Srivastava. Interpenetrating polymer networks:A review on synthesis and properties. Polym. Int.,2003,35:109-118.
    [57]J. Zhang, N.A. Peppas. Morphology of poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymeric networks. J. Biomater. Sci. Polym. Ed., 2002,13:511-525.
    [58]H. Sasase, T. Aoki, H. Katono, K. Sanui, N. Ogata. Regulation of temperature-response swelling behavior of interpenetrating polymer networks composed of hydrogen bonding polymers. Makromol. Chem. Rapid Commun., 1992,13:577-581.
    [59]H. Katono, K. Sanui, N. Ogata, T. Okano, Y. Sakurai. Drug release off behavior and deswelling kinetics of thermo-responsive IPNs composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). Polym. J. (Tokyo) 1991,23:1179-1189.
    [60]J. Zhang, N.A. Peppas. Synthesis and characterization of pH-and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules,2000,33:102-107.
    [61]P. Chivukula, K. Dusek, D. Wang, M. Duskova-Smrckova, P. Kopeckova, J. Kopecek. Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials,2006,27: 1140-1151.
    [62]B. Jeong, Y.H. Bae, S.W. Kim. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules,1999,32:7064-7069.
    [63]J.M. Bezemer, R. Radersma, D.W. Grijipma. Zero-or der-release of lysozyme from poly(ethylene glycol)/poly(butylenes terephthalate) matrices. J. Contr. Rel., 2000,64:179-192.
    [64]H.H. Lin, Y.L. Cheng. In-situ thermoreversible gelation of block and star copolymer of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules,2001,34:3710-3715.
    [65]R.J.H. Stenekes, H. Talsma, W.E. Hennink. Formation of dextran hydrogels by crystallization. Biomaterials,2001,22:1891-1898.
    [66]A.M. Mathur, K.F. Hammonds, J. Klier. Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels:effect of swelling medium and synthesis conditions. J. Contr. Rel.,1998,54:177-184.
    [67]A. Tang, C. Wang, R. J. Stewart. The coiled coils in the design of protein-based constructs:hybrid hydrogels and epitope displays. J. Contr. Rel.,2001,72: 57-70.
    [68]赵三平,冯增国.基于光聚合星型PEG-b-PCL大分子单体可生物降解水凝胶的合成及表征.高分子学报,2003,2:201-206.
    [69]Y. Okumura, K. Ito. The polyrotacxane gel:a topological gel by figure-of-eight cross-links. Adv. Mater.,2001,13:485-487.
    [70]T. Karino. Y. Okunura, K. Ito, M. Shibayama. SANS studies on spatial inhomogeneities of slide-ring gels. Macromolecules,2004,37:6177-6182.
    [71]T. Oku, Y. Furusho, T. Tanaka. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew. Chem. Int. Ed.,2004,43:966-969.
    [72]J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada. Double-network hydrogels with extremely high mechanical strength. Adv. Mater.,2003,15:1155-1158.
    [73]H. Tsukeshiba, M. Huang, Y.H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, J.P. Gong, Y. Osada. Effect of polymer entanglement on the toughening of double network hydrogels. J. Phys. Chem. B,2005,109:16304-16309.
    [74]Y. Tanaka, J.P. Gong, Y. Osada. Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci.,2005,30:1-9.
    [75]A. Nakayama, A. Kaguko, J.P. Gong, Y. Osada, M. Takai, T. Erata. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater.,2004,14:1124-1128.
    [76]K. Yasuda, J.P. Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Konodo, M. Ueno, Y. Osada. Biomechanical properties of high-toughness double network hydrogels. Biomaterials,2005,26:4468-4475.
    [77]K. Haraguchi, T. Takehisa. Nanocomposite Hydrogels:A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater.,2002,14:1120-1124.
    [78]K. Haraguchi, T. Takehisa, S. Fan. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules,2002,35:10162-10171.
    [79]K. Haraguchi, H.J. Li. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew. Chem. Int. Ed.,2005,44:6500-6504.
    [80]K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules,2003,36:5732-5741.
    [81]K. Haraguchi, H.J. Li, K. Matsuda, T. Takehisa, E. Elliott. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules,2005,38: 3482-3490.
    [82]J. Nie, B. Du, W. Oppermann. Dynamic fluctuations and spatial inhomogeneities in poly(N-isopropylacrylamide)/clay nanocomposite hydrogels studied by dynamic light scattering. J. Phys. Chem. B,2006,110:11167-11175.
    [83]E. Loizou, P. Butler, L. Porcar, G Schmidt. Dynamic responses in nanocomposite hydrogels. Macromolecules,2006,39:1614-1619.
    [84]G. Odian. Principles of polymerization,4th edn. Wiley, Hoboken, NJ (2004).
    [85]A.P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D.J. Pine, D. Pochan, D. Pochan, T.J. Deming. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature,2002,417:424-428.
    [86]T. Tanaka, D.J. Fillmore. Kinetics of swelling of gels. J. Chem. Phys.,1979,70: 1214-1218.
    [87]S.Y. Lin, K.S. Chen, L.R. Chu. Drying methods affecting the particle sizes, phase transition, deswelling/reswelling processes and morphology of poly(N-isopropylacrylamide) microgel beads. Polymer,1999,40:6307-6312.
    [88]X.Z. Zhang, R.X. Zhuo. Synthesis of temperature-sensitive poly(N-isopropyl acrylamide) hydrogel with improved surface property. J. Colloid Interface Sci., 2000,223:311-313.
    [89]B.G. Kabra, S.H. Gehrke. Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. Polym. Commun.,1991,32:322-323.
    [90]C. Sayil, O. Okay. Macroporous poly(N-isopropylacrylamide) networks. Polym. Bull.,2002,48:499-506.
    [91]S. Tanaka, K. Suzuki, T. Norisuye, M. Shibayama. Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature. Polymer,2002,43:3101-3107.
    [92]X.Z. Zhang, R.X. Zhuo. Novel synthesis of temperature-sensitive poly (N-isopropylacrylamide) hydrogel with fast deswelling rate. Eur. Polym. J., 2000,36:643-645.
    [93]X.Z. Zhang, R.X. Zhuo, Y.Y. Yang. Using mixed solvent to synthesize temperature sensitive poly(-isopropylacrylamide) gel with rapid dynamics properties. Biomaterials,2002,23:1313-1318.
    [94]X.Z. Zhang, Y. Y. Yang, T.S. Chung. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels. Langmuir,2002,18:2538-2542.
    [95]K. Laszlo, K. Kosik, C. Rochas, E. Geissler. Phase transition in poly (N-isopropylacrylamide) hydrogels induced by phenols. Macromolecules,2003, 36:7771-7776.
    [96]X. Li, X.Z. Zhang, Y.F. Chu, X.D. Xu, S.X. Cheng, R.X. Zhuo, Q.R. Wang. Fast responsive poly(N-isopropylacrylamide) hydrogels prepared in phenol aqueous solutions. Eur. Polym. J.,2006,42:2458-2463.
    [97]H.G. Schild, M. Muthukumar, D.A. Tirrell. Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide). Macromolecules,1991,24:948-952.
    [98]F.M. Winnik, M.F. Ottaviani, S.H. Bossmann, W. Pan, M. Garcia-Garibay, N.J. Turro. Cononsolvency of poly(N-isopropylacrylamide):a look at spin-labeled polymers in mixtures of water and tetrahydrofuran. Macromolecules,1993,26: 4577-4585.
    [99]T. Okajima, I. Harada, K. Nishio, S. Hirotsu. Kinetics of volume phase transition in poly(N-isopropylacrylamide) gels. J. Chem. Phys.,2002,116:9068-9077.
    [100]X.Z. Zhang, C.C. Chu. Dynamics studies on thermoresponsive poly (N-isopropylacrylamide) hydrogel in tetrahydrofuran/water mixtures. Colloid Polym. Sci.,2004,282:589-595.
    [101]F.M. Winnik, M.F. Ottaviani, S.H. Bossmann, M. Garcia-Garibay, N.J. Turro. Consolvency of poly(N-isopropylacrylamide) in mixed water-methanol solutions:a look at spin-labeled polymers. Macromolecules,1992,25: 6007-6017.
    [102]T.H. Young, L.P. Cheng, C.C. Hsieh, L.W. Chen. Phase behavior of EVAL polymers inwater-2-propanol cosolvent. Macromolecules,1998,31:1229-1235.
    [103]X.Z. Zhang, R.X. Zhuo. Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. Eur. Polym. J.,2000,36:2301-2303.
    [104]X.Z. Zhang, Y.Y. Yang, T.S. Chung, K.X. Ma. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir, 2001,17:6094-6099.
    [105]T. Serizawa, K. Wakita, M. Akashi. Rapid deswelling of porous poly (N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules,2002,35:10-12.
    [106]K.V. Durme, B.V. Mele, W. Loos, F.E.D. Prez. Introduction of silica into thermo-responsive poly(N-isopropyl acrylamide) hydrogels:A novel approach to improve response rates. Polymer,2005,46:9851-9862.
    [107]T. Kaneko, T. Asoh, M. Akashi. Ultrarapid molecular release from poly(N-isopropylacrylamide) hydrogels perforated using silica nanoparticle networks. Macromol. Chem. Phys.,2005,206:566-574.
    [108]X.Z. Zhang, C.C. Chu, R.X. Zhuo. Using hydrophobic additive as pore-forming agent to prepare macroporous PNIPA hydrogels. J. Polym. Sci. Part A:Polym. Chem.,2005,43:5490-5497.
    [109]R.X. Zhuo, W. Li. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J. Polym. Sci. Part A:Polym. Chem.,2003,41:152-159.
    [110]H.L. Liu, M.Z. Liu, S.P. Jin, S.L. Chen. Synthesis and characterization of fast responsive thermo-and pH-sensitive poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [111]J. Chen, H. Park, K. Park. Synthesis of superporous hydrogels:Hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. Res.,1999,44: 53-62.
    [112]刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅰ.以CaCO3为成孔剂制备方法、表征及动力学研究.高分子学报,2002,3:354-357.
    [113]陈兆伟,陈明清,刘晓亚.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征.功能高分子学报,2004,17:46-50.
    [114]X.Z. Zhang, R.X. Zhuo. A novel method to prepare a fast responsive, thermosensitive poly(N-isopropylacrylamide) hydrogel. Macromol. Rapid Commun.,1999,20:229-231.
    [115]X.Z. Zhang, R.X. Zhuo. Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromol. Chem. Phys.,1999,200: 2602-2605.
    [116]W. Xue, I.W. Hamley, M.B. Huglin. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization. Polymer,2002,43:5181-5186.
    [117]W. Xue, S. Champ, M.B. Huglin, T.GJ. Jones. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic acid). Eur. Polym. J.,2004,40:467-476.
    [118]X.Z. Zhang, F.J. Wang, C.C. Chu. The Influence of cold treatment on properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels. J. Colloid Interface Sci.,2002,246:105-111.
    [119]X.Z. Zhang, F.J. Wang, C.C. Chu. Thermosensitive gel with rapid response dynamics. J. Mater. Sci.:Mater. Med.,2003,14:451-455.
    [120]H. Yan, H. Fujiwara, K. Saraki, K. Tsujii. Rapid swelling/collapsing behavior of thermoresponsive poly(N-isopropylacrylamdie) gel containing poly(2-(methacryloyloxy)decyl phosphate) surfactant. Angew. Chem. Int. Ed., 2005,44:1951-1954.
    [121]A. Gutowska, Y.H. Bae, H. Jacobs, J. Feijen, S.W. Kim. Thermosensitive interpenetrating polymer networks:synthesis, characterization, and macromolecular release. Macromolecules,1994,27:4167-4175.
    [122]D. Dhara, G.V.N. Rathna, P.R. Chatterji. Volume phase transition in interpenetrating networks of poly(N-isopropylacrylamide) with gelatin. Langmuir,2000,16:2424-2429.
    [123]X.Z. Zhang, D.Q. Wu, C.C. Chu. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPA hydrogels. Biomaterials,2004,25: 3793-3805.
    [124]E.S. Gil, S.M. Hudson. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels. Biomacromolecules,2007,8:258-264.
    [125]H.L. Liu, M.Z. Liu, J. Huang, L.W. Ma, J. Chen. A novel method to prepare temperature/pH-sensitive poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid swelling/deswelling behaviors. Polym. Adv. Technol.,2009, 20:1152-1156.
    [126]H.G Shild. Poly(N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci.,1992,17:163-249.
    [127]A. Gutowska, Y.H. Bae, J. Feijen, S.W. Kim. Heparin release from thermosensitive hydrogels. J. Contr. Rel.,1992,22:95-104.
    [128]L.C. Dong, A.S. Hoffman. Synthesis and application of thermally reversible heterogels for drug delivery. J. Contr. Rel.,1990,13:21-31.
    [129]H. Feil, Y.H. Bae, S.W. Kim. Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels. Macromolecules,1992,25: 5528-5530.
    [130]S. Hirotsu. Coexistence of phases and the nature of first-order phase transition in poly-N-isopropylacrylamide gels. Adv. Polym. Sci.,1993,110:1-26.
    [131]M. Irie. Stimuli-responsive poly(N-isopropylacrylamide):Photo-and chemical-induced phase transitions. Adv. Polym. Sci.,1993,110:49-65.
    [132]M. Ebara, T. Aoyagi. K. Sakai, T. Okano. The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking. J. Polym. Sci. Part A:Polym. Chem., 2001,39:335-342.
    [133]X.Z. Zhang, Y.Y. Yang, F.J. Wang, T.S. Chung. Thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties. Langmuir, 2002,18:2013-2018.
    [134]E.S. Gil, S.M. Hudson. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.,2004,29:1173-1222.
    [135]M. Shibayama, Y. Fujikawa, S. Nomura. Dynamic light scattering study of poly(N-isopropylacrylamide-co-acrylic acid) gels. Macromolecules,1996,29: 6535-6540.
    [136]J.H. Kim, S.B. Lee, S.J. Kim, Y.M. Lee. Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer,2002,43: 7549-7558.
    [137]R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature,1995,374:240-242.
    [138]Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, T. Okano. Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules,1995,28:7717-7723.
    [139]Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, T. Okano. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules,1998,31:6099-6105.
    [140]N. Kobuta, T. Matsubara, Y. Eguchi. Permeability properties of isometrically temperature-responsive poly(acrylic acid)-graft-oligo(N-isopropylacrylamide) gel membranes. J. Appl. Polym. Sci.,1998,70:1027-1034.
    [141]H.K. Ju, S.Y. Kim, Y.M. Lee. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer,2001,42:6851-6857.
    [142]L.F. Zhang, A. Eisenberg. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science,1995,268: 1728-1731.
    [143]A. Rosler, G.W.M. Vandermeulen, H.A. Klok. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Delivery Rev., 2001,53:95-108.
    [144]E.R. Gillie, T.B. Jonsson, J.M.J. Frechet. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc.,2004,126: 11936-11943.
    [145]L.F. Zhang, K. Yu, A. Eisenberg. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science,1996,272: 1777-1779.
    [146]D. Neradovic, C.F. van Nostrum, W.E. Hennink. Thermoresponsive polymeric micelles with controlled instability based on hydrolytically sensitive N-isopropylacrylamide copolymers. Macromolecules,2001,34:7589-7591.
    [147]J. Virtanen, S. Holappa, H. Lemmetyinen, H. Tenhu. Aggregation in aqueous poly(N-isopropylacrylamide)-block-poly(ethylene oxide) solutions studied by fluorescence spectroscopy and light scattering. Macromolecules,2002,35: 4763-4769.
    [148]D.N.T. Hay, P.G. Richert, S. Seigert, M.A. Firestone. Thermoresponsive nanostructures by self-assembly of a poly(N-isopropylacrylamide)-lipid conjugate. J. Am. Chem. Soc.,2004,126:2290-2291.
    [149]Y. Noguchi, K. Okeyoshi, R. Yoshida. Design of surfactant-grafted hydrogels with fast response to temperature. Macromol. Rapid Commun.,2005,26: 1913-1917.
    [150]X.D. Xu, X.Z. Zhang, J. Yang, S.X. Cheng, R.X. Zhuo, Y.C. Huang. Strategy to introduce a pendent micellar structure into poly(N-isopropylacrylamide) hydrogels. Langmuir,2007,23:4231-4236.
    [151]Q.F. Liu, P. Zhang, M.G Lu. Synthesis and swelling behavior of comb-type grafted hydrogels by reversible addition-fragmentation chain transfer polymerization. J. Polym. Sci. Part A:Polym. Chem.,2005,43:2615-2624.
    [152]Q.F. Liu, P. Zhang, A.X. Qing, Y.X. Lan, M.G. Lu. Poly(N-isopropylacrylamide) hydrogels with improved shinking kinetics by RAFT polymerization. Polymer, 2006,47:2330-2336.
    [153]Y. Ito, Y. Ochiai, Y.S. Park. pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J. Am. Chem. Soc., 1997,119:1619-1623.
    [154]Y. Ito, Y.S. Park, Y. Imanishi. Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. J. Am. Chem. Soc.,1997, 119:2739-2740.
    [155]M. Yoshida, N. Nagaoka, M. Asano. Nuclear instrument and methods in physics research, Section B,1997,122:39-44.
    [156]Y. Osada, A. Matsuda. Shape memory in hydrogels. Nature,1995,376: 219-233.
    [157]H. Feil, Y.H. Bae, S.W. Kim. Molecular separation by thermosensitive hydrogel membranes. J. Membrane Sci.,1991,64:283-294.
    [158]T. Nonaka, T. Ogata. Preparation of poly(vinyl alcohol)-graft-N-isopropyl acrylamide copolymer membranes and permeation of solutes through the membranes. J. Appl. Polym. Sci.,1994,52:951-957.
    [159]T. Ogata, T. Nonaka. Permeation of solutes with different molecular size and hydrophobicity through the poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membrane. J. Membrane Sci.,1995,103:159-165.
    [160]S. Kurihara, S. Sakamaki, T. Nonaka. Crosslinking of poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membranes with glutaraldehyde and permeation of solutes through the membranes. Polymer, 1996,37:1123-1128.
    [161]M. Schmid, D. Nerger, W. Burchard. Quasi-elastic light scattering:separability of effects of polydispersity and internal modes of motion. Polymer,1979,20: 577-581.
    [162]Y.D. Kim, B.K. Lee, E.J. Jeon, Y.C. Shin, S.C. Kim. Hydrophilic-hydrophobic interpenetrating polymer networks and dicyanate-based semi-IPN materials. Macromol. Symp.,1995,98:665-672.
    [163]Z.B. Hu, Y. Li, X.M. Zhang, C. Littler. CO2 laser-controlled transmission of visible light in N-isopropylacrylamide gel. Polym. Gels Networks,1995,3: 267-279.
    [164]J.M. Weissman, H.B. Sunkara, A.S. Tse, S.A. Asher. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science, 1996,274:959-963.
    [165]S.A. Jeneke, X.L. Chen. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science,1999,283:372-375.
    [166]Y. Fang, D.D. Hu. Synthesis of catalysis by the fictionalization of silica and its applications. Chinese J. Polym. Sci.,1999,17:1-12.
    [167]M.Z. Wang, J.C. Qiang, Y. Fang Y. Preparation and properties of chitosan-poly(N-isopropylacrylamide) semi-IPN hydrogels. J. Polym. Sci. Part A:Polym. Chem.,2000,38:474-481.
    [168]K. Salehpoor, M. Shahinpoor, M. Mojarrad. SPIE Proceedings, A. Crowson ed, (1996).
    [169]Z.B. Hu, X. Zhang, Y. Li. Synthesis and application of modulated polymer gels. Science,1995,269:525-527.
    [170]Z.B. Hu, Y.Y. Chen, C.J. Wang, Y.D. Zheng, Y. Li. Polymer gels with engineered environmentally responsive surface patterns. Nature,1998,393: 149-152.
    [171]P. Calvert, Z. Liu. Freeform fabrication of hydrogels. Acta. Materialia.,1998,46: 2565-2571.
    [172]Y. Osada, H. Okuzaki, H. Horie. A polymer gel with electrically driven motility. Nature,1992,355:242-244.
    [173]J.P. Gong, S. Matsumoto, M. Uchida M. Motion of polymer gels by spreading organic fluid on water. J. Phys. Chem.,1996,100:11092-11097.
    [174]M. Mojarrad, M. Shahinpoor. SPIE Proceedings, A. Crowson ed, (1996).
    [175]R. Dagani. Intelligent gels. Chem. Eng. News,1997,75:26-36.
    [176]T. Tanaka, C. Wang, V. Pande, A.Y. Grosberg, A. English, S. Masamune, H. Gold, R. Levy, K. King. Polymer gels that can recognize and recover molecules. Faraday Discuss,1995,101:201-206.
    [177]N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y. Sakurai. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Chem. Rapid Commun.,1990,11:571-576.
    [178]M. Yamazaki, M. Tsuchida, K. Kobayashi, T. Takezawa, Y. Mori. A novel method to prepare size-regulated spheroids composed of human dermal fibroblasts. Biotech. Bioeng.,1994,44:38-44.
    [179]闰欲晓.食品科技,2002,11:13-14.
    [180]V.R. Tirumala, J. Ilavsky. Effect of chemical structure on the volume phase transition in neutral and weekly charged poly(N-alkyl(meth)acrylamide) hydrogels studied by ultrasmall-angle X-ray scattering. J. Chem. Phys.,2006, 124:234911-234920.
    [181]P. Marilia, F. Ruth. Synthesis and characterization of stimuli-responsive poly(N,N-diethylacrylamide) hydrogels. Polymer,2005,46:615-621.
    [1]S. Shinji, O. Masayuki, I. Isao. Synthesis of fine hydrogel microspheres and capsules from thermoresponsive coacervate. Macromolecules,2007,40: 3394-3401.
    [2]D.T. Pual, R.H. Jonathan, J.C. Colin, P.A. Steven, A.L.J. Richard, J.R. Anthony. Antagonistic triblock polymer gels powered by pH oscillations. Macromolecules, 2007,40:4393-4395.
    [3]J.F. Yaung, T.K. Kwei. pH-sensitive hydrogels based on poly vinyl pyrrolidone-polyacrylic acid (PVP-PAA) semi-interpenetrating networks (semi-IPN):swelling and controlled release. J. Appl. Polym. Sci.,1998,69: 921-930.
    [4]S.P. Jin, M.Z. Liu, F. Zhang, S.L. Chen, A.Z. Niu. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer,2006,47:1526-1532.
    [5]T. Tanaka, I. Nishio, S.T. Sun, S. Ueno-Nishio. Collapse of gels in an electric field. Science,1982,218:467-469.
    [6]Y.H. Bae, T. Okano, R. Hsu, S.W. Kim. Thermo-sensitive polymers as on-off switches for drug release. Macromol. Chem. Rapid Commun.,1987,8:481-485.
    [7]T. Okano, Y.H. Bae, H. Jacobs, S.W. Kim. Thermally on-off switching polymers for drug permeation and release. J. Control. Rel.,1990,11:255-265.
    [8]A.S. Hoffman. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Rel.,1987,6:297-305.
    [9]A. Percot, M. Lafleur, X.X. Zhu. New hydrogels based on N-isopropylacrylamide copolymers crosslinked with polylysine:membrane immobilization systems. Polymer,2000,41:7231-7239.
    [10]J.E. Chung, M. Yokoyama, T. Okano. Inner core segment design for drug delivery control of the thermo-responsive polymeric micelles. J. Control. Rel., 2000,65:93-103.
    [11]P.S. Stayton, T. Shimobji, C. Long, A. Chilkoti, G. Chen, J.M. Harris. A.S. Hoffman. Control of protein-ligand recognition using a stimuli-responsive polymer. Nature,1995,387:472-474.
    [12]Y. Osada, H. Okuzaki, H. Hori. A polymer gel with electrically driven motility. Nature,1992,355:242-244.
    [13]R. Yoshida, T. Takahashi, T. Yamaguchi, H. Ichijo. Self-oscillating gel. J. Am. Chem. Soc.,1996,118:5134-5135.
    [14]Y. Li, Z. Hu, Y. Chen. Shape memory gels made by the modulated gel technology. J. Appl. Polym. Sci.,1997,63:1173-1178.
    [15]H.G Schild. Poly(N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci.,1992,17:163-249.
    [16]S.Y. Kim, S.M. Cho, Y.M. Lee, S.J. Kim. Thermo-and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-Isopropylacrylamide. J. Appl. Polym. Sci.,2000,78:1381-1391.
    [17]H.K. Ju, S.Y. Kim, Y.M. Lee. pH/temperature-responsive behavior of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer,2001,42:6851-6587.
    [18]X.S. Wu, A.S. Hoffman, Y. Paul. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci. Part A:Polym. Chem.,1992,30:2121-2129.
    [19]X.Z. Zhang, R.X. Zhuo. Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. Eur. Polym. J.,2000,36:2301-2303.
    [20]X.Z. Zhang, Y.Y. Yang, T.S. Chung, K.X. Ma. Preparation and Characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir, 2001,17:6094-6099.
    [21]R.X. Zhuo, W. Li. Preparation and characterization of macroporous poly (N-isopropylacrylamide) hydrogels for the controlled release of proteins. J. Polym. Sci. Part A:Polym. Chem.,2003,41:152-159.
    [22]L.H. Gan, W.S. Cai, K.C. Tam. Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur. Polym. J.,2001,37:1773-1778.
    [23]W.S. Cai, L.H. Gan, K.C. Tam. Phase transition of solutions of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetric and spectrophotometric methods. Colloid Polym. Sci.,2001,279: 793-799.
    [24]T. Shibanuma, T. Aoki, K. Sanui, N. Ogata, A. Kikuchi, Y. Sakurai, T. Okano. Thermosensitive phase-separation behavior of poly(acrylic acid)-graft-poly(N,N-dimethylacrylamide) aqueous solution. Macromolecules, 2000,33:444-450.
    [25]M.R. Guilherme, R.D. Silva, A.F. Rubira, G. Geuskens, E.C. Muniz. Thermo-sensitive hydrogels membranes from PAAm networks and entangled PNIPA:effect of temperature, cross-linking and PNIPA contents on the water uptake and permeability. React. Funct. Polym.,2004,61:233-243.
    [26]P. Marilia, F. Ruth. Synthesis and characterization of stimuli-responsive poly(N,N-diethylacrylamide) hydrogels. Polymer,2005,46:615-621.
    [27]X.Z. Zhang, R.X. Zhuo, Y.Y. Yang. Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamics properties. Biomaterials,2002,23:1313-1318.
    [28]A.C. Robin. Benzamide hydrolysis in strong acids-The last word. Can. J. Chem., 2008,86:290-297.
    [29]Y. Kaneko, R. Yoshida, K. Sakai, Y. Sakurai, T. Okano. Temperature-responsive shrinking kinetics of poly(N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers. J. Membr. Sci.,1995,101:13-22.
    [30]R. Yoshida, U. Uchida, Y. Kaneko, K. Sakal, A. Kikuchi, Y. Sakural, T. Okano. Comb-type grafted hydrogels with rapid de-swelling response to temperaute changes. Nature,1995,374:240-242.
    [1]X. Qu, A.C. Wirsen, A.C. Albertsson. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer,2000,41:4589-4598.
    [2]D.T. Pual, R.H. Jonathan, J.C. Colin, P.A. Steven, A.L.J. Richard, J.R. Anthony. Antagonistic triblock polymer gels powered by pH oscillations. Macromolecules, 2007,40:4393-4395.
    [3]T. Tanaka, I. Nishio, S.T. Sun, S. Ueno-Nishio. Collapse of gels in an electric field. Science,1982,218:467-469.
    [4]J.F. Yaung, T.K. Kwei. H-sensitive hydrogels based on poly vinyl pyrrolidone-polyacrylic acid (PVP-PAA) semi-interpenetrating networks (semi-IPN):swelling and controlled release. J. Appl. Polym. Sci.,1998,69: 921-930.
    [5]S.P. Jin, M.Z. Liu, F. Zhang, S.L. Chen, A.Z. Niu. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer,2006,47:1526-1532.
    [6]G.H. Chen, A.S. Hoffman. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature,1995,373:49-52.
    [7]H.J. Dai, Q. Chen, H.L. Qin, Y. Guan, D.Y. Shen, Y.Q. Hua, Y.L. Tang, J. Xu. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules,2006,39:6584-6589.
    [8]S. Shinji, O. Masayuki, I. Isao. Synthesis of fine hydrogel microspheres and capsules from thermoresponsive coacervate. Macromolecules,2007,40: 3394-3401.
    [9]K. Katalin, W. Erzsebet, G. Erik, L. Krisztina. Distribution of phenols in thermoresponsive hydrogels. Macromolecules,2007,40:2141-2147.
    [10]C.H. Ni, Z. Wang, X.X. Zhu. Preparation and characterization of thermosensitive beads with macroporous structures. J. Appl. Polym. Sci.,2004,91:1792-1797.
    [11]T. Gotoh, Y. Nakatani, S. Sakohara. Novel synthesis of thermosensitive porous hydrogels. J. Appl. Polym. Sci.,1998,69:895-906.
    [12]O. Hirasa, S. Ito, A. Yamauchi, S. Fujishige, H. Ichijo. Polymer gels. Plenum: New York, (1991).
    [13]B.G. Kabra, S.H. Gehrke. Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. Polym. Commun.1991,32:322-323.
    [14]X.S. Wu, A.S. Hoffman, P. Yager. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci. Part A:Polym. Chem.,1992,30:2121-2129.
    [15]S.X. Cheng, J.T. Zhang, R.X. Zhuo. Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J. Biomed. Mater. Res. A,2003,67:96-103.
    [16]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)-co-(丙烯腈)水凝胶的合成及性能研究.高分子学报,1997,10(4):500-502.
    [17]O. Okay. Macroporous copolymer networks. Prog. Polym. Sci.,2000,25: 711-779.
    [18]A.C. Robin. Benzamide hydrolysis in strong acids-The last word. Can. J. Chem., 2008,86:290-297.
    [1]H.L. Liu, M.Z. Liu, S.P. Jin, S.L. Chen. Synthesis and characterization of fast responsive thermo-and pH-sensitive poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [2]X.Z. Zhang, R.X. Zhuo. Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromo. Chem. Phys.,1999,200: 2602-2605.
    [3]X.Z. Zhang, R.X. Zhuo. Synthesis of temperature-sensitive poly(N-isopropyl acrylamide) hydrogel with improved surface property. J. Colloid Interface Sci., 2000,223:311-313.
    [4]B.G Kabra, S.H. Gehrke. Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. Polym. Commun.,1991,32:322-323.
    [5]C. Sayil, O. Okay. Macroporous poly(N-isopropylacrylamide) networks. Polym. Bull,2002,48:499-506.
    [6]S. Takata, K. Suzuki, T. Norisuye, M. Shibayama. Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature. Polymer, 2002,43:3101-3107.
    [7]X.Z. Zhang, X.D. Xu, S.X. Cheng, R.X. Zhuo. Strategies to improve the response rate of thermosensitive PNIPA hydrogels. Soft Matter.,2008,4:385-391.
    [8]G Takehiko, N. Yuko, S. Shuji. Novel synthesis of thermosensitive porous hydrogels. J. Appl. Polym. Sci.,1998,69:895-906.
    [9]O. Hirasa, S. Ito, A. Yamauchi, S. Fujishige, H. Ichijo. Polymer gels. Plenum:New York, (1991).
    [10]X.S. Wu, A.S. Hoffman, P. Yager. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci. Part A:Polym. Chem.,1992,30:2121-2129.
    [11]H.L. Liu, F.L. Bian, M.Z. Liu, S.L. Chen. Synthesis of poly (N,N-diethylacrylamide-co-acrylic acid) hydrogels with fast response rate in NaCl medium. J. Appl. Polym. Sci.,2008,109:3037-3043.
    [12]A.C. Robin. Benzamide hydrolysis in strong acids-The last word. Can. J. Chem., 2008,86:290-297.
    [1]X.S. Wu, A.S. Hoffman, Y. Paul. Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. J. Polym. Sci. Part A:Polym. Chem.,1992,30: 2121-2129.
    [2]X.Z. Zhang, R.X. Zhuo. Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. Eur. Polym. J.,2000,36:2301-2303.
    [3]X.Z. Zhang, Y.Y. Yang, T.S. Chung, K.X. Ma. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir, 2001,17:6094-6099.
    [4]R.X. Zhuo, W. Li. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J. Polym. Sci. Part A:Polym. Chem.,2003,41:152-159.
    [5]B.C. Kabra, S.H. Gehrke. Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. Polym. Commun.,1991,32:322-323.
    [6]T. Gotoh, Y. Nakatani, S. Sakohara. Novel synthesis of thermosensitive porous hydrogels. J. Appl. Polym. Sci.,1998,69:895-906.
    [7]R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature,1995,374:240-242.
    [8]Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, T. Okano. Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules,1995,28:7717-7723.
    [9]Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, T. Okano. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules,1998,31:6099-6105.
    [10]N. Kobuta, T. Matsubara, Y. Eguchi. Permeability properties of isometrically temperature-responsive poly(acrylic acid)-graft-oligo(N-isopropylacrylamide) gel membranes. J. Appl. Polym. Sci.,1998,70:1027-1034.
    [11]H.K. Ju, S.Y. Kim, Y.M. Lee. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer,2001,42:6851-6857.
    [12]V.R. Tirumala, J. Ilavsky. Effect of chemical structure on the volume phase transition in neutral and weekly charged poly(N-alkyl(meth)acrylamide) hydrogels studied by ultrasmall-angle X-ray scattering. J. Chem. Phys.,2006, 124:234911-234920.
    [13]P. Marilia, F. Ruth. Synthesis and characterization of stimuli-responsive poly(N,N-diethylacrylamide) hydrogels. Polymer,2005,46:615-621.
    [14]M. Annaka, C. Tanaka, T. Nakahira, M. Sugiyama, T. Aoyagi, T. Okano. Fluorescence study on the swelling behavior of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules,2002,35:8173-8179.
    [15]Pelton R. Temperature-sensitive aqueous microgels. Advan. Colloid Interf. Sci., 2000,85:1-33.
    [16]B. Valeur. Molecular fluorescence:principles and applications.2nd ed. NY, USA: Wiley, (2002).
    [17]X.Z. Zhang, Y.Y. Yang, F.J. Wang, T.S. Chung. Thermosensitive poly (N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties. Langmuir, 2002,18:2013-2018.
    [18]H.L. Liu, M.Z. Liu, S.P. Jin, S.L. Chen. Synthesis and characterization of fast responsive thermo-and pH-sensitive poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [19]H.L. Liu, F.L. Bian, M.Z. Liu, S.L. Chen. Synthesis of poly(N,N-diethyl acrylamide-co-acrylic acid) hydrogels with fast response rate in NaCl medium. J. Appl. Polym. Sci.,2008,109:3037-3043.
    [20]H.L. Liu, M.Z. Liu, J. Huang, L.W. Ma, J. Chen. A novel method to prepare temperature/pH-sensitive poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid swelling/deswelling behaviors. Polym. Adv. Technol.,2009,20: 1152-1156.
    [21]Y. Kaneko, Y. Ryo, K. Sakai, Y. Sakurai, T. Okano. Temperature-responsive shrinking kinetics of poly(N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers. J. Membr. Sci.,1995,101:13-22.
    [22]A. Gutowska, Y.H. Bae, J. Feijen, S.W. Kim. Heparin release from thermosensitive hydrogels. J. Control. Rel.,1992,22:95-104.
    [23]S.H. Zhou, J.G Yang, C.P. Wu. Synthesis and swelling properties of poly(N,N-diethylacrylamide)-caly nanocomposites. Acta. Polym. Sinica.,2003, 3:326-329.
    [24]Y. Fang, J.C. Qiang, D.D. Hu, M.Z. Wang, Y.L. Cui. Effect of urea on the conformational behavior of poly(N-isopropylacrylamide). J. Colloid. Polym. Sci. 2001,279:14-21.
    [1]L.H. Gan, W.S. Cai, K.C. Tam. Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur. Polym. J.,2001,37:1773-1778.
    [2]W.S. Cai, L.H. Gan, K.C. Tam. Phase transition of solutions of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetric and spectrophotometric methods. Colloid Polym. Sci.,2001,279: 793-799.
    [3]E. Smela. Conjugated polymer actuators for biomedical applications. Adv. Matter., 2003,15:481-494.
    [4]Y. Osada, H. Okuzaki, H. Hori. A polymer gel with electrically driven mobility. Nature,1992,355:242-244.
    [5]X.S. Wu, A.S. Hoffman, P. Yager. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci. Part A:Polym. Chem.,1992,30:2121-2129.
    [6]Z.C. Wang, X.D. Xu, C.S. Chen, GR. Wang, S.X. Cheng, X.Z. Zhang, R.X. Zhuo. In situ formation of thermosensitive P(NIPA-co-GMA)/PEI hydrogels. React. Funct. Polym.,2009,69:14-19.
    [7]B.G Kabra, S.H. Gehrke. Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. Polym. Commun.,1991,32:322-323.
    [8]R. Yoshida, U. Uchida, Y. Kaneko, K. Sakal, A. Kikuchi, Y Sakural, T. Okano. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature,1995,374:240-242.
    [9]X.L. Xie, Y.W. Mai, X.P. Zhou. Dispersion and alignment of carbon nantubes in polymer matrix:A review. Mater. Sci. Eng. R,2005,49:89-112.
    [10]R. Blake, Y.K. Gun'ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc.,2004,126:10226-10227.
    [11]J.B. Gao, B. Zhao, M.E. Itkis, E. Bekyarova, H. Hu, V. Kranak, A. Yu, R.C. Haddon. Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. J. Am. Chem. Soc.,2006,128:7492-7496.
    [12]D.E. Hill, Y. Lin, A.M. Rao, L.F. Allard, Y.P. Sun. Functionalization of carbon nanotubes with polystyrene. Macromolecules,2002,35:9466-9471.
    [13]H. Makamba, J.W. Huang, H.H. Chen, S.H. Chen. Photopatterning of tough single-walled carbon nanotube composites in microfluidic channels and their application in gel-free separations. Electrophoresis,2008,29:2458-2465.
    [14]HYG 的制备过程如下:将0.5 mLDEA、5μLAA、20mgNNMBA,20mgAPS溶于1 mL二次蒸馏水,通入干燥的氮气10 min以除去体系中溶解的氧气。将2 mL含有2 mg MWCNT-COOH的悬浮液(预先除氧)与上述溶液混合,剧烈震荡后超声处理15 min,然后加入20 μLTEMED,在室温下聚合24 h.
    [15]X.Z. Zhang, Y.Y. Yang, T.S. Chung, K.X. Ma. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir, 2001,17:6094-6099.
    [16]M.J. Stoltz, C.S. Brazel. Dual lower critical solution temperature polymer networks based on block, laminate, and interpenetrating network structures composed of N-alkylacrylamides and N,N-dialkylaminoethyl methacrylates. J. Appl. Polym. Sci.,2003,88:2974-2981.
    [17]H.L. Liu, M.Z. Liu, S.P. Jin, S.L. Chen. Synthesis and characterization of fast responsive thermo-and pH-sensitive poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [18]H.L. Liu, F.L. Bian, M.Z. Liu, S.L. Chen. Synthesis of poly(N,N-diethyl acrylamide-co-acrylic acid) hydrogels with fast response rate in NaCl medium. J. Appl. Polym. Sci.,2008,109:3037-3043.
    [19]H.L. Liu, M.Z. Liu, L.W. Ma, J. Chen. Thermo-and pH-sensitive comb-type grafted poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Eur. Polym. J.,2009,45:2060-2067.
    [20]H.L. Liu, M.Z. Liu, J. Huang, L.W. Ma, J. Chen. A novel method to prepare temperature/pH-sensitive poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid swelling/deswelling behaviors. Polym. Adv. Technol.,2009,20: 1152-1156.
    [21]A.C. Robin. Benzamide hydrolysis in strong acids-The last word. Can. J. Chem., 2008,86:290-297.
    [22]P.J. Flory, Principles of polymer chemistry, Cornell Univ. Press:Ithaca, NY, (1953).
    [23]C. Sayil, O. Okay. Macroporous poly(N-isopropyl) acrylamide networks: formation conditions. Polymer,2001,42:7639-7652.
    [24]X.Z. Zhang, Y.Y. Yang, T.S. Chung. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels. Langmuir,2002,18:2538-2542.
    [25]S.P. Jin, F.L. Bian, M.Z. Liu, S.L. Chen, H.L. Liu. Swelling mechanism of porous P(VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pore sizes prepared by a freeze treatment. Polym. Int.,2009,58:142-148.
    [1]Y. Mitsukami, M.S. Donovan, A.B. Lowe. Water-soluble polymers.81. direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules,2001,34:2248-2256.
    [2]M. Teodorescu, K. Matyjaszewski. Atom transfer radical polymerization of (meth)acrylamides. Macromolecules,1999,32:4826-4831.
    [3]Y.A. Vasilieva, D.B. Thomas, C.W. Scales, C.L. McCormick. Direct controlled polymerization of a cationic methacrylamido monomer in aqueous media via the RAFT process. Macromolecules,2004,37:2728-2737.
    [4]McCormick CL, Lowe AB. Aqueous RAFT polymerization:recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc. Chem. Res.,2004,37:312-325.
    [5]D.B. Thomas, A.J. Convertine, L.J. Myrick, C.W. Scales, A.E. Smith, A.B. Lowe, Y.A. Vasilieva, N. Ayres, C.L. McCormick. Kinetics and molecular weight control of the polymerization of acrylamide via RAFT. Macromolecules,2004,37: 8941-8950.
    [6]M.S. Donovan, B.S. Sumerlin, A.B. Lowe, C.L. McCormick. Controlled/"Living" Polymerization of Sulfobetaine Monomers Directly in Aqueous Media via RAFT. Macromolecules,2002,36:8663-8666.
    [7]D.B. Thomas, B.S. Sumerlin, A.B. Low, C.L. McCormick. Conditions for facile, controlled RAFT polymerization of acrylamide in water. Macromolecules,2003, 36:1436-1439.
    [8]G. Moad, J. Chiefari, Y.K. Chong. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int., 2000,49:993-1001.
    [9]M. Bouix, J. Couzi, B. Charleux. Synthesis of amphiphilic polyelectrolyte block copolymers using "living" radical polymerization. Application as stabilizers in emulsion polymerization. Macromol. Rapid Commun.,1998,19:209-213.
    [10]Y.W. Luo, J. Tsavalas, F.J. Schork. Theoretical aspects of particle swelling in
    living free radical miniemulsion polymerization. Macromolecules,2001,34: 5501-5507.
    [11]M.J. Monteiro, M. Sjoberg, J. Van Der Vlist. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer:Effect of surfactant migration upon film formation. J. Polym. Sci. PartA: Polym. Chem.,2000,38:4206-4217.
    [12]T. Shibanuma, T. Aoki, K. Sanui, N. Ogata, A. Kikuchi, Y. Sakurai, T. Okano. Thermosensitive phase-separation behavior of poly(acrylic acid)-graft-poly(N,N-dimethylacrylamide) aqueous solution. Macromolecules, 2000,33:444-450.
    [13]T.P. Le, G. Moad, E. Rizzardo, S.H. Thang. PCT International Patent Application WO 98/01478, (1998).
    [14]F. Ganachaud, M.J. Monteiro, R.G. Gilbert. Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization. Macromolecules,2000,33:6738-6745.
    [15]M. Arotarna, B. Heise, S. Ishaya. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J. Am. Chem. Soc.,2002,124:3787-3793.
    [16]G. Moad, E. Rizzardo, S.H. Thang. Radical addition-fragmentation chemistry in polymer synthesis. Polymer,2008,49:1079-1131.
    [17]J. Chiefari, R.T.A. Mayadunne, C.L. Moad, G. Moad, E. Rizzardo, A. Postma. Thiocarbonylthio compounds (SC(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules,2003,36:2273-2283.
    [18]J. Chiefari, E. Rizzardo. Control of free radical polymerization by chain transfer methods. In:Davis TP, Matyjaszewski K, editors. Handbook of radical polymerization. Hoboken, NY:John Wiley and Sons, (2002).
    [19]Y. Liu, J.P. He, J.T. Xu, D.Q. Fan, W. Tang, Y.L. Yang. Thermal decomposition of cumyl dithiobenzoate. Macromolecules,2005,38:10332-10335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700