用户名: 密码: 验证码:
多壁碳纳米管和富勒烯碳60对星形胶质细胞功能的差异性影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当一种材料的组成颗粒的三维尺寸中至少有一维介于0.1-100纳米之间时,该材料即可称为纳米材料。纳米材料不但具有迥异于宏观材料的理化性能,还可表现出独特的生物学效应;纳米材料的理化特征是决定其生物学效应的关键因素。多壁碳纳米管(MWCNTs)和富勒烯碳60(C60)是碳的两种同素异形体,同时也是具有独特分子结构、理化和生物学性能的纳米材料。MWCNTs和C60与神经组织的相互作用是目前的热点研究领域,并且这两种碳基纳米材料已表现出在中枢神经系统(CNS)的巨大应用潜力。但由于CNS的复杂性,在将MWCNTs和C60安全而有效地引入CNS之前,尚需开展全面和细致的研究以确保其应用的安全性和有效性。星形胶质细胞是CNS十分活跃的细胞成分,其在人脑中的数量十倍于神经元,在神经系统的结构和生理、病理功能方面发挥着至关重要的作用。但目前有关纳米材料与CNS相互作用的研究主要集中于神经元而较少关注胶质细胞。有鉴于此,本课题对原型MWCNTs和C60与大鼠星形胶质细胞和由人星形胶质细胞转化而来的胶质瘤细胞的相互作用开展了研究。本课题包括以下三部分内容。
     细胞活力检测是任何细胞水平研究的常规和基础性工作。噻唑蓝(MTT)和刃天青(resazurin)还原法是目前广为应用的两种细胞活力检测法。但我们发现,MTT和resazurin法并不能准确反映MWCNTs对细胞活力影响。为能准确检测MWCNTs的细胞效应,我们建立、验证了一系列基于流式细胞技术(FCM)的方法,并行之有效地用于研究MWCNTs对星形胶质细胞的效应。作为对照,C60的细胞效应也经相同的方法进行了分析。JC-1、DiOC6(3)、R123、FDA和PI是反映细胞不同功能的荧光探针。我们首先对它们的染色指征进行了表征。结果表明JC-1和DiOC6 (3)染色是线粒体膜电位(△Ψm)的良好指标。△Ψm是细胞摄取R123的驱动力,但细胞膜转运蛋白Pgp对细胞内R123的含量有决定性的影响。而另一种细胞膜转运蛋白MRP则是细胞FDA染色的决定因素。随后分别以上述探针在原位(in situ)和非原位(ex situ)条件下对经MWCNTs和C60处理(24h)的细胞进行染色,并FCM进行分析。结果显示,在in situ条件下,MWCNTs显著降低JC-1和DiOC6(3)的细胞染色但却增强R123和FDA的染色。而在ex situ条件下,除FDA外,MWCNTs对其他探针的染色无显著影响。与MWCNTs相比,C60对上述探针的细胞染色无显著影响,in situ和ex situ染色结果也无显著差异。显微镜观察显示MWCNTs和C60对细胞形态无明显影响。上述结果表明:1.探针的染色方式对染色结果有着根本影响提示,2.在本实验的暴露浓度和时间的条件下,MWCNTs和C60不影响细胞的总体活力,3.但涉及细胞膜的一些细胞功能可能发生改变,4.荧光探针结合FCM可方便、有效地反映MWCNTs的细胞效应。
     细胞膜是维持细胞形态和完成细胞生命功能的重要结构,同时也是细胞与纳米材料相互作用的起始界面。跨膜转运以实现细胞内外的物质交换是细胞膜的一个重要功能。细胞膜转运蛋白如Pgp和MRP是完成跨膜物质转运的重要机制。我们在前面的工作中观察到MWCNTs能提高细胞内罗丹明123(R123)和荧光素(Flu)的含量。R123和Flu分别是Pgp和MRP的特异性转运底物,因此推测MWCNTs可能影响细胞膜,尤其是PgP和MRP介导的跨膜转运。在此部分工作中我们即对此假设进行了检验:以MWCNTs处理星形胶质细胞后,分析了细胞对PgP和MRP特异性底物的摄取、潴留和外排动力学。Pgp的底物为R123和阿霉素(DOX); MRP的底物为荧光素(Flu)和羧基荧光素(CF);并仍以C60作为对照。结果表明,经过MWCNTs处理后,in situ细胞对DOX的摄取显著降低,但对其他药物的摄取无明显改变;同时MWCNTs可显著增加R123、Flu和CF在in situ细胞内的潴留。动力学分析表明MWCNTs明显降低ex situ细胞对R123和Flu的外排速率。与MWCNTs相比,C60对各底物的细胞摄取、潴留以及外排速率无明显影响。上述结果提示MWCNTs可影响跨细胞膜物质转运,特别是Pgp和MRP介导的跨膜转运。
     前面的工作利用大鼠星形胶质细胞模型表明MWCNTs可抑制细胞膜PgP和MRP介导的跨膜转运。PgP和MRP在人体内有广泛的分布并有重要的生理和病理意义。尤其值得重视的是,肿瘤细胞过度表达PgP和MRP是肿瘤多药耐药(MDR)现象的重要机制。因此在人肿瘤细胞中研究MWCNTs对Pgp和MRP的影响更具实际意义和价值。鉴于此,此部分工作在MDR人脑胶质瘤细胞中验证了MWCNTs对Pgp和MRP的效应,并围绕MRP对MWCNTs的效应进行了初步的机制研究。MRP的转运功能依赖于还原型谷胱甘肽(GSH)的参与。同时,细胞膜电位也是Flu外排的重要调控因素。验证实验表明,减少细胞内的GSH和改变细胞膜电位均可影响胶质瘤细胞对Flu的外排转运。我们在经MWCNTs处理的胶质瘤细胞中检测到大量活性氧(ROS),同时细胞内的GSH水平显著降低。两种细胞膜电位探针(DiBAC4(3)和DiOC6(3))染色分析也显示MWCNT可降低细胞膜电位。上述结果提示MWCNTs对MRP的影响机制涉及细胞膜电位改变和氧化应激所致的GSH减少。
     总结
     1.研究方法和手段的选择、验证和优化对于纳米材料的生物学效应研究尤为重要。本课题表明流式细胞技术是适用于MWCNTs细胞效应研究的良好手段。但在应用中仍应全面考虑材料本身、细胞模型和研究方法等方面存在的影响因素,以获得准确的结论。
     2.纳米材料的形态结构对其生物活性有着决定性的影响。本课题表明碳基纳米材料MWCNTs可影响跨细胞膜物质转运,尤其是抑制PgP和MRP介导的跨膜转运。而同为大分子碳,但纳米结构不同的C60却无此效应。
     3. MWCNTs对MRP的影响机制可能涉及细胞内GSH耗竭和细胞膜电位改变。
Nanomaterials refer to materials that have at least one dimension 100 nanometres or less. Materials at nanoscale not only possess extraordinary physic-chemical properties not seen at macroscale but also can have unique biological effects which are foundamentally determined by their physic-chemistry. A best pair of examples is multiwalled carbon nanotubes (MWCNTs) and flullerene C60 (C60) which are carbon allotropes of distinct nano structures. Neuroscience is a field where the interactions of theses two types of carbon macromolecules with neverous system are a focus of research attention and where the biological properties and application potential of MCNTs and C60 are most extensively explored. Astrocytes, or astroglial cells, are a dominant and highly active component of the central nervous system (CNS) that play pivotal structural and functional roles and outnumber neurons by about 10 fold in the human brain. The purpose of the present project was to investigate the interactions of MWCNTs and C60 with astrocytes and transformed astrocytes i.e. glioma cells and to compare the dfferent biological effects of MWCNTs and C60.
     Monitoring of cell viability is a regular but essential part of work in any cell-based study. Two widely used assays i.e. MTT reduction and resazurin reduction were first performed to evaluate the effects of MWCNTs and C60 on the viability of in vitro rat astrocytes, but yielded contradictory results regarding MWCNTs, indiating unsuitability of these methods for assaying cellular responses to MWCNTs. To provide accurate information on MWCNTs' cellular effects, a series of flow cytometry-based procedures were then developed, validated and effectively applied. C60 was also tested in comparison with MWCNTs. Briefly, cells exposed to MWCNTs were stained by a panel of fluorescent probes for different aspects of cell function, including 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1),3,3'-Dihexyloxacarbocyanine, iodide (DiOC6(3)), rhodamine 123 (R123) and fluorescein diacetate (FDA). Probe indications were characterized and probe staining performed both in an "in situ" and "ex situ" manner on MWCNTs-or C60-exposed cells were analyzed by flow cytometry. JC-1 and DiOC6 (3) staining were found good indicators of mitochondrial membrane potential (ATm). WhileΔ(?)m contributed to R123 uptake, intracellular accumulation of R123 was largely determined by the function of P-glycoprotein, a cell membrane bound efflux protein. Multidrug-resistance associated protein, another efflux protein, was found to determine cellular FDA staining. Decreased JC-1 and DiOC6(3) uptake were observed in MWCNTs-exposed cells but couldn't be attributed toΔ(?)m disruption. In contrast, cellular staining of R123 and FDA was enhanced after MWCNT exposure. Mode of dye loading was found to significantly affect the outcome of cellular dye staining after MWCNT exposure. Compared with MWCNTs, C60 generally exerted insignificant influence on the staining of all probes. In summary, fluorescent probe staining in combination with flow cytometry, after careful validation, can provide good assay of cellular reposnses to the exposure of MWCNTs and C60. Astrocyte viability appeared to be maintained in the presence of MWCNTs and C60 at concentrations and for the duration tested. However, certain aspect of cell function relating to the cell membrane might be affected.
     One of the many functions of the cell membrane is to execute substance transport into and out of the cell and cell membrane transporter proteins like P-glycoprotein (Pgp) and multidrug resistance related protein (MRP) are a key mechanism therefor. As observed in my work presented in Part 1, rat astrocytes exposed to MWCNTs but not C60 displayed increased contents of rhodamine 123 (R123) and fluorescein (Flu) which are respective substrates of Pgp and MRP. It was thus postulated that MWCNTs might be able to affect cross-membrane drug transport, particularly that mediated by Pgp and MRP. To test this hypothesis, we investigated the influence of MWCNTs, and C60 as a comparison, on the transport of several compounds across the cell membrane of rat astrocytes using flow cytometry. These compounds were fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNTs-exposed cells after an efflux period. Kinetics study also demonstrated slowed efflux of intracellular fluorescein and rhodamine 123. C60 generally had no siginificant effect on the uptake and efflux of the tested substrates. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membrane.
     MRP-mediated drug transport in a human glioma cell model In the study on the interactions of carbon nanotubes with living cells, the cell membrane deserves particular attention as it provides the first interface to initiate CNTs-cell interactions. In my work presented in Part 2, MWCNTs were demonstrated to be able to affect cross-membrane drug transport, especially that mediated by Pgp and MRP in a rat astrocyte model. In the present work, the inhibiting effect of MWCNTs on the MRP mediated fluorescein efflux in a human glioma cell model was also demonstrated. To provide clues to explanation of this effect, intracellular glutathione content and reactive oxygen species production were determined as fluorescein is a specific substrate of cell membrane MRP whose transport activity requires glutathione which can be depleted under oxidative stress. The plasma membrane potential was also probed as the susceptibility of fluorescein efflux to modulation of the plasma membrane potential has been documented. Results showed a remarkable decrease in cellular glutathione level as well as an increase in reactive oxygen species production. Probe staining also indicated decreased plasma membrane potential. The data suggested that multiwalled carbon nanotubes may affect the transport activity of cell membrane multidrug resistance-related protein through reduction of intracellular glutathione content. Hypopolarization of the plasma membrane may also contribute to MWCNTs'effect.
     In vitro rat astrocytes and human glioma cells were studied for their interactions with prestine MWCNTs and C60. Principle and original discoveries of my work are 1) Investigation methods and approaches commonly used for conventional drug studies might yield misleading results when used for biological study of nanomaterials like MWCNTs. Optimized and validated flow cytometry based assays are convenient and effective for studying cellular effects of nanomaterials like MWCNTs. Yet, caution and discretion are still needed to ward off false judgements.2) Prestine MWCNTs and C60 both have little influence on cell viability, but drug transport across cell membrane, particularly that mediated by transporter proteins can be affected by MWCNTs but not C60. MWCNTs and C60 are both carbon macromolecules. But they can have distinct biological effects as demonstrated in the present work, probably due to their different nanostructures.3) The mechanisms of MWCNTs'effects may involve cell membrane perturbation and depletion of intracellular glutathione due to oxidatice stress.
引文
[1]Iijima S. Helical microtubules of graphitic carbon. Nature.1991,354:56-58
    [2]Rojas-Chapana JA, Giersig M. Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. J. Nanosci. Nanotechnol. 2006;6(2):316-21.
    [3]Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Hara K, Ogiwara N, Nakamura K, Ishigaki N, Kato H, Taruta S, Endo M. Carbon nanotubes:biomaterial applications. Chem. Soc. Rev.2009;38(7):1897-903.
    [4]Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ. Biological properties of carbon nanotubes. J. Nanosci. Nanotechnol.2007;7(4-5):1284-97.
    [5]Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 2000;14(3):175-182.
    [6]Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004;4(3),507-511.
    [7]Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA, et al. Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J Biomater Sci Polym 2007;18(10):1245-1261.
    [8]Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 2005; 5(6):1107-1110.
    [9]Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 2009;4(2):126-133.
    [10]Taber KH, Hurley RA. Astroglia:not just glue. J Neuropsychiatry Clin Neurosci. 2008;20(2):iv-129.
    [11]Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements:the revolution continues. Nat Rev Neurosci 2005;6(8):626-640.
    [12]Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007;28(3):138-145.
    [13]Floyd CL, Lyeth BG. Astroglia:important mediators of traumatic brain injury. Prog Brain Res 2007; 161:61-79.
    [14]Ma DK, Ming GL, Song H. Glial influences on neural stem cell development:cellular niches for adult neurogenesis. Curr Opin Neurobiol 2005; 15(5):514-520.
    [15]Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl R. F. and Smalley, R. E. (1985). "C60: Buckminsterfullerene". Nature 318:162-163.
    [16]Zhao B, He YY, Bilski PJ, Chignell CF. Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes:type Ⅰ vs type Ⅱ mechanisms. Chem Res Toxicol.2008 May;21(5):1056-63.
    [17]Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem.2005 Nov;24(11):2757-62.
    [18]Marcorin GL, Da Ros T, Castellano S, Stefancich G, Bonin I, Miertus S, Prato M.Design and synthesis of novel [60]fullerene derivatives as potential HIV aspartic protease inhibitors. Org Lett.2000 Dec 14;2(25):3955-8.
    [19]Yin JJ, Lao F, Fu PP, Warner WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J, Liang XJ, Chen C. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials.2009 Feb;30(4):611-21.
    [20]Pinteala M, Dascalu A, Ungurenasu C. Binding fullerenol C(60)(OH)(24) to dsDNA. Int J Nanomedicine.2009;4:193-9.
    [21]Fernandez G, Sanchez L, Perez EM, Martin N.Large exTTF-based dendrimers. Self-assembly and peripheral cooperative multiencapsulation of C60. J Am Chem Soc. 2008 Aug 13;130(32):10674-83.
    [22]Slater TF, Sawyer B, Straeuli U. Studies on succinate-tetrazolium reductase systems.Ⅲ. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta. 1963;77:383-93.
    [23]Zalata AA, Lammertijn N, Christophe A, Comhaire FH. The correlates and alleged biochemical background of the resazurin reduction test in semen. Int J Androl.1998 Oct;21(5):289-94.
    [24]Pradelli LA, Beneteau M, Ricci JE. Mitochondrial control of caspase-dependent and-independent cell death. Cell Mol Life Sci.2010 Feb 12.
    [25]Fontana A, Fierz W, Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature.1984;307:273-6.
    [26]Schluesener HJ. Transforming growth factors type beta inhibit multidrug transport in rat astrocyte cell lines Autoimmunity.1991;9:269-75.
    [27]Shapiro HM. Cell membrane potential analysis. Meth. Cell. Biol.1994;41:121-133.
    [28]Gottesman MM, Hrycyna CA, Schoenlein PV, Germann UA, Pastan I. Genetic analysis of the multidrug transporter. Annu Rev Genet 1995;29:607-649.
    [29]Nare B, Prichard RK, Georges E. Characterization of rhodamine 123 binding to P-glycoprotein in human multidrug-resistant cells. Mol Pharmacol 1994;45(6):1145-1152.
    [30]Petriz J, Garcia-Lopez J. Flow cytometric analysis of P-glycoprotein function using rhodamine 123. Leukemia 1997; 11 (7):1124-1130.
    [31]Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. Mitochondria and programmed cell death:back to the future. FEBS Lett 1996;396(1):7-13.
    [32]Sabnis RW, Deligeorgiev TG, Jachak MN, Dalvi TS. DiOC6(3):a useful dye for staining the endoplasmic reticulum. Biotech Histochem 1997;72(5):253-258.
    [33]Brewis IA, Morton IE, Mohammad SN, Browes CE, Moore HD. Measurement of intracellular calcium concentration and plasma membrane potential in human spermatozoa using flow cytometry. J Androl 2000;21(2):238-249.
    [34]Hasmann M, Valet GK, Tapiero H, Trevorrow K, Lampidis T. Membrane potential differences between adriamycin-sensitive and-resistant cells as measured by flow cytometry. Biochem Pharmacol 1989;38(2):305-312.
    [35]Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 1997;411(1):777-782.
    [36]Mercier C, Masseguin C, Roux F, Gabrion J, Scherrmann JM. Expression of P-glycoprotein (ABCB1) and Mrpl (ABCC1) in adult rat brain:focus on astrocytes. Brain Res 2004;1021(1):32-40.
    [37]Dallas S, Zhu X, Baruchel S, Schlichter L, Bendayan R. Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 2003;307(1):282-290.
    [38]Nies AT, Jedlitschky G, Konig J, Herold-Mende C, Steiner HH, Schmitt HP, et al. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 2004;129(2):349-360.
    [39]Decleves X, Regina A, Laplanche JL, Roux F, Boval B, Launay JM, et al. Functional expression of P-glycoprotein and multidrug resistance-associated protein (Mrpl) in primary cultures of rat astrocytes. J Neurosci Res 2000;60(5):594-601.
    [40]Sun H, Johnson DR, Finch RA, Sartorelli AC, Miller DW, et al. Transport of fluorescein in MDCKII-MRP1 transfected cells and mrpl-knockout mice. Biochem Biophys Res Commun 2001;284(4):863-869.
    [41]Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006;6(6):1261-12688.
    [42]Monteiro-Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 2009;234(2):222-235.
    [43]Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 2007;21(3):438-448.
    [44]Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006;6(6):1261-12688.
    [45]Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 2007;21(3):438-448.
    [46]Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 2007;45(7):1425-1432
    [1]Regev R, Yeheskely-Hayon D, Katzir H, Eytan GD. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol. 2005;70(1):161-9.
    [2]Raffa V, Ciofani G, Nitodas S, Karachalios T, D'Alessandro D, Masini M, Cuschieri A. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon.2008; 46:1600-10.
    [3]Cheng C, Miiller KH, Koziol KK, Skepper JN, Midgley PA, Welland ME, Porter AE. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials.2009; 30:4152-60.
    [4]Hirano S, Kanno S, Furuyama A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol.2008; 232:244-51.
    [5]Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammation mediators and frustrated phagocytosis. Carbon. 2007;45:1743-56.
    [6]Milena DN, Stefano B, Enrico T, Giovanni DB, Federico M, Lina G. Carbon nanotubes on Jurkat cells:effects on cell viability and plasma membrane potential. J. Phys.: Condens. Matter.2008;20:1-9.
    [7]Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Carbon nanotube substrates boost neuronal electrical signaling Nano Lett.2005; 5:1107-10.
    [8]Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett.2006; 6:562-7.
    [9]Prosperi E. Intracellular turnover of fluorescein diacetate:Influence of membrane ionic gradients on fluorescein efflux Histochem. J.1990;22:227-33.
    [10]Dogan AL, Legrand O, Faussat AM, Perrot JY, Marie JP. Evaluation and comparison of MRP1 activity with three fluorescent dyes and three modulators in leukemic cell lines Leuk. Res.2004;28:619-22.
    [11]Breeuwer P, Drocourt JL, Bunschoten N, Zwietering MH, Rombouts FM, Abee T. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol.1995; 61:1614-9.
    [12]Breeuwer P, Drocourt JL, Rombouts FM, Abee T. Energy-dependent, carrier-mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry. Appl. Environ. Microbiol. 1994;60:1467-72.
    [13]Lushchak V, Abrat O, Miedzobrodzki J, Semchyshyn H. Pdr12p-dependent and-independent fluorescein extrusion from baker's yeast cells. Acta Biochim. Pol.2008;55: 595-601.
    [14]Zhang X, Meng L, Wang X, Lu Q. Preparation and cellular uptake of pH-dependent fluorescent single-wall carbon nanotubes. Chemistry.2010;16:556-61.
    [15]Duvvuri M, Gong Y, Chatterji D,Krise JP. Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. J. Biol. Chem.2004; 279:32367-72.
    [16]Miller DS, Villalobos AR, Pritchard JB. Organic cation transport in rat choroid plexus cells studied by fluorescence microscopy. Am. J. Physiol.1999;276:C955-68.
    [17]Bass(?)e CF, Li N, Ragheb K, Lawler G, Sturgis J, Robinson JP. Investigations of phagosomes, mitochondria, and acidic granules in human neutrophils using fluorescent probes. Cytometry B. Clin. Cytom.2003;51:21-9.
    [18]Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl.2009; 48:7668-72.
    [19]Veldman RJ, Zerp S, van Blitterswijk WJ, Verheij M. N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx. Br. J. Cancer.2004; 90:917-25.
    [20]Speelmans G, Staffhorst RW, de Kruijff B, de Wolf FA. Transport studies of doxorubicin in model membranes indicate a difference in passive diffusion across and binding at the outer and inner leaflets of the plasma membrane. Biochemistry. 1994;33:13761-8.
    [21]Liang X, Huang Y. Physical state changes of membrane lipids in human lung adenocarcinoma A(549) cells and their resistance to cisplatin. Int. J. Biochem. Cell Biol. 2002;34:1248-55.
    [22]Eckford PD, Sharom FJ. Interaction of the P-glycoprotein multidrug efflux pump with cholesterol:effects on ATPase activity, drug binding and transport. Biochemistry.2008; 47:13686-98.
    [23]Orlowski S, Martin S, Escargueil A. P-glycoprotein and'lipid rafts':some ambiguous mutual relationships (floating on them, building them or meeting them by chance?) Cell Mol. Life Sci.2006;63.1038-59.
    [24]Regev R, Assaraf YG, Eytan GD. Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells. Eur. J. Biochem.1999;259:18-24.
    [25]Lopez CF, Nielsen SO, Moore PB, Klein ML. Understanding nature's design for a nanosyringe. Proc. Natl. Acad. Sci. USA 2004;101:4431-4.
    [26]Wallace EJ, Sansom MS. Carbon nanotube self-assembly with lipids and detergent:a molecular dynamics study. Nanotechnology.2009;20:45101.
    [27]Liu J, Hopfinger AJ. Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure--activity relationship analysis. Chem. Res. Toxicol.2008;21:459-66.
    [28]Liu B, Li X, Li B, Xu B, Zhao Y. Carbon nanotube based artificial water channel protein:membrane perturbation and water transportation. Nano Lett.2009;9:1386-94.
    [29]Mozafari MR, Pardakhty A, Azarmi S, Jazayeri JA, Nokhodchi A, Omri A. Role of nanocarrier systems in cancer nanotherapy. J. Liposome Res.2009; 19:310-21.
    [30]Gindy ME, Prud'homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert. Opin. Drug Deliv.2009;6:865-78.
    [31]Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology. 2010;21:025102.
    [1]Johansson AC, Lindahl E. The role of lipid composition for insertion and stabilization of amino acids in membranes. J. Chem. Phys.2009;130:185101.
    [2]McIntosh TJ, Simon SA. Roles of bilayer material properties in function and distribution of membrane proteins. Annu. Rev. Biophys. Biomol. Struct.2006;35:177-198.
    [3]Tillman TS, Cascio M. Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys.2003;38:161-190.
    [4]Ye SF, Wu YH, Hou ZQ, Zhang QQ. ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem. Biophys. Res. Commun.2009;379:643-648..
    [5]Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesh GT. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J. Nanosci. Nanotechnol.2007;7:2466-2472.
    [6]Garza KM, Soto KF, Murr LE. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int. J. Nanomedicine 2008;3:83-94.
    [7]Prosperi E. Intracellular turnover of fluorescein diacetate:Influence,of membrane ionic gradients on fluorescein efflux, Histochem. J.1990;22:227-233.
    [8]Raffa V, Ciofani G, Nitodas S, Karachalios T, D'Alessandro D, Masini M, Cuschieri A. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon.2008; 46:1600-10.
    [9]Cheng C, Muller KH, Koziol KK, Skepper JN, Midgley PA, Welland ME, Porter AE. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials.2009; 30:4152-60.
    [10]Hirano S, Kanno S, Furuyama A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol.2008; 232:244-51.
    [11]Milena DN, Stefano B, Enrico T, Giovanni DB, Federico M, Lina G. Carbon nanotubes on Jurkat cells:effects on cell viability and plasma membrane potential. J. Phys.: Condens. Matter.2008;20:1-9.
    [12]Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Carbon nanotube substrates boost neuronal electrical signaling Nano Lett.2005; 5:1107-10.
    [13]Xu H, Bai J, Meng J, Hao W, Xu H, Cao JM. Multi-walled carbon nanotubes suppress potassium channel activities in PC 12 cells. Nanotechnology.2009;20:285102.
    [14]Brauner T, Hiilser DF, Strasser RJ. Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes. Biochim Biophys. Acta.1984;771: 208-216.
    [15]Shapiro HM, Natale PJ, Kamentsky LA. Estimation of membrane potentials of individual lymphocytes by flow cytometry. Proc. Natl. Acad. Sci. USA 1979;76: 5728-5730.
    [16]Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 2009;257:161-171.
    [17]Jin J, Huang M, Wei HL, Liu GT. Mechanism of 5-fluorouraci required resistance in human hepatocellular carcinoma cell line Bel(7402). World J Gastroenterol. 2002;8:1029-1034.
    [18]Zhu B, Liu GT, Zhao YM, Wu RS, Strada SJ. Chemosensitizing multiple drug resistance of human carcinoma by Bicyclol involves attenuated p-glycoprotein, GST-P and Bcl-2. Cancer Biol. Ther.2006;5:536-543.
    [19]Ruiz-Gomez MJ, Souviron A, Martinez-Morillo M, Gil L. P-glycoprotein, glutathione and glutathione S-transferase increase in a colon carcinoma cell line by colchicine. J. Physiol. Biochem.2000;56:307-312.
    [20]Liu J, Hopfinger AJ. Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure--activity relationship analysis. Chem. Res. Toxicol.2008;21:459-466.
    [21]Liu B, Li X, Li B, Xu B, Zhao Y. Carbon nanotube based artificial water channel protein:membrane perturbation and water transportation. Nano. Lett.2009;9: 1386-1394.
    1. Perez-Tomas R. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment. Curr. Med. Chem.2006; 13(16):1859-76.
    2. Baguley BC.Multidrug resistance in cancer. Methods Mol Biol.2010;596:1-14.
    3. Chien AJ, Moasser MM. Cellular mechanisms of resistance to anthracyclines and taxanes in cancer:intrinsic and acquired. Semin. Oncol.2008;35(2 Suppl 2):S1-S14
    4. Wang JP, Li JH, Wang KS. Advances in mechanisms of drug resistance in gastric cancer. Shijie Huaren Xiaohua Zazhi 2009; 17(26):2692-2699 (Published in a Chinese journal)
    5. Minchinton, AI, Tannock, IF. Drug penetration in solid tumours. Nat. Rev. Cancer 2006;6:583-592.
    6. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48-58
    7. Mousseau M, Schaerer R, Pasquier B, Chauvin C, Nissou MF, Chaffanet M, Plantaz D, Benabid A. A study of the expression of four chemoresistance-related genes in human primary and metastatic brain tumours. Eur. J. Cancer.1993; 29A:753-759
    8. Deeley RG, Cole SP (2006) Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett.580:1103-1111
    9. Spiegl-Kreinecker S. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrugresistance Protein 1 in human brain tumor cells and astrocytes. J. Neuro-Oncology.2002;57:27-36
    10. Haga S, Hinoshita E, Ikezaki K, Fukui M, Scheffer GL, Uchiumi T, Kuwano M Involvement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma. Jpn. J. Cancer Res.2001;92:211-219
    11. Korshunov A, Sycheva R, Timirgaz V, Golanov A. Prognostic value of immunoexpression of the chemoresistancerelated proteins in ependymomas:an analysis of 76 cases. J. Neurooncol.1999;45:219-227
    12. Knight ZA, Lin H, Shokat KM. Targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer.2010;10(2):130-7.
    13. Nobili S, Landini I, Giglioni B, Mini E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets.2006;7(7):861-79.
    14. Lage H. Therapeutic potential of RNA interference in drug-resistant cancers. Future Oncol.2009;5(2):169-85.
    15. Thomas H, Coley HM. Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control.2003;10(2):159-65.
    16. Boumendjel A, Baubichon-Cortay H, Trompier D, Perrotton T, Di Pietro A. Anticancer multidrug resistance mediated by MRP1:recent advances in the discovery of reversal agents. Med. Res. Rev.2005;25(4):453-72.
    17. Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol.2009;6(1):43-51.
    18. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.2007;9:257-88.
    19. Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer.2007;120(12):2527-37.
    20. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther.2006;5(8):1909-17.
    21. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-58.
    22. Rojas-Chapana JA, Giersig M. Multi-walled carbon nanotubes and metallic nanoparticle and their application in biomedicine. J. Nanosci. Nanotechnol.2006;6(2):316-21.
    23. Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Hara K, Ogiwara N, Nakamura K, Ishigaki N, Kato H, Taruta S, Endo M. Carbon nanotubes:biomaterial applications. Chem. Soc. Rev.2009;38(7):1897-903.
    24. Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ. Biological properties of carbon nanotubes. J. Nanosci. Nanotechnol.2007;7(4-5):1284-97.
    25. Rojas-Chapana JA, Giersig M. Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. J. Nanosci. Nanotechnol.2006; 6(2): 316-21.
    26. Bianco A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin. Drug Deliv.2004;1(1):57-65.
    27. Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta. 2006;1758(3):404-12.
    28. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials. 2009;30(30):6041-7.
    29. VanHandel M, Alizadeh D, Zhang L, Kateb B, Bronikowski M, Manohara H, Badie B. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J. Neuroimmunol.2009;208(1-2):3-9.
    30. Kateb B, Van Handel M, Zhang L, Bronikowski MJ, Manohara H, Badie B. Internalization of MWCNTs by microglia:possible application in immunotherapy of brain tumors. Neuroimage.2007;37 Suppl 1:S9-17.
    31. Liu Z, Fan A C, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher D W and Dai H.2009 Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy Angew. Chem. Int. Ed. Engl.487668-72
    32. Cheng C, Muller KH, Koziol KK, Skepper JN, Midgley PA, Welland ME and Porter AE. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells Biomaterials.2009;30:4152-60.
    33. Hirano S, Kanno S and Furuyama A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol. Appl. Pharmacol.2008; 232:244-51.
    34. Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldsone K and Stone V. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammation mediators and frustrated phagocytosis. Carbon 2007; 45:1743-56
    35. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M and Ballerini L Carbon nanotube substrates boost neuronal electrical signaling Nano Lett.2005; 5:1107-10
    36. Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett.2006;6:562-7
    37. Regev R, Yeheskely-Hayon D, Katzir H, Eytan GD.Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol. 2005;70(1):161-9.
    38. Seddon AM, Casey D, Law RV, Gee A, Templer RH, Ces O. Drug interactions with lipid membranes. Chem. Soc. Rev.2009;38(9):2509-19.
    39. Mukherjee S, Maxfield FR. Role of membrane organization and membrane domains in endocytic lipid trafficking.Traffic.2000;1(3):203-11.
    40. Cascorbi I, Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods Mol. Biol.2010;596:95-121.
    41. Aszalos A, Taylor BJ. Flow cytometric evaluation of multidrug resistance proteins. Methods Mol. Biol.2010;596:123-39.
    42. Chen X, Schluesener HJ. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes. Nanotechnology.2010;21(10):105104.
    43. Klappe K, Hummel I, Hoekstra D, Kok JW. Lipid dependence of ABC transporter localization and function. Chem. Phys. Lipids.2009;161(2):57-64..
    44. Liu J and Hopfinger AJ. Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure--activity relationship analysis. Chem. Res. Toxicol.2008;21:459-66
    45. Liu B, Li X, Li B, Xu B and Zhao Y. Carbon nanotube based artificial water channel protein:membrane perturbation and water transportation. Nano Lett.20099:1386-94
    46. Veldman RJ, Zerp S, van Blitterswijk WJ, Verheij M.2004. N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx. Br. J. Cancer 90 917-25
    47. Fu D, Roufogalis BD. Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation. Am. J. Physiol. Cell Physiol.2007;292:C1543-C1552.
    48. Kim H, Barroso M, Samanta R, Greenberger L, Sztul E. Experimentally induced changes in the endocytic traffic of P-glycoprotein alter drug resistance of cancer cells. Am. J. Physiol.1997;273(2 Pt 1):C687-702.
    49. Kaiser JP, Wick P, Manser P, Spohn P, Bruinink A. Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J. Mater. Sci. Mater. Med. 2008;19(4):1523-7.
    50. Witzmann FA. Monteiro-Riviere NA. Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine:Nanotechnology, Biology and Medicine.2006;2(3):158-168
    51. Dechsupa N, Mankhetkorn S. P-Glycoprotein-Mediated Efflux and Drug Sequestration in Lysosomes Confer Advantages of K562 Multidrug Resistance Sublines to Survive Prolonged Exposure to Cytotoxic Agents. American Journal of Applied Sciences 2009;6(9):1637-1646.
    52. Rajagopal A, Simon SM. Subcellular localization and activity of multidrug resistance proteins. Mol. Biol. Cell.2003;14(8):3389-99.
    53. Raffaa V, Ciofania G, Nitodasb S. Karachalios T. Alessandro D, Masini M, Cuschier A. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon.2008; 46(12):1600-1610
    54. Heller DA, Baik, S, Eurell, TE, Strano, MS. Single-walled carbon nanotube spectroscopy in live cells:Towards long-term labels and optical sensors. Adv. Mater. 2005;17(23):2793-2799.
    55. Renes J, De Vries EGE, Nuenhuis EF, Jansen PLM, Muller M. ATP and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br. J. Pharmacol.1999;126:681-688.
    56. Rappa G, Lorico A, Flavell RA. Sartorelli AC. Evidence that the multidrug resistance protein MRP functions as a co-transporter of glutathione and natural produce toxins. Cancer Res.1997;57:15232-15237.
    57. Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesh GT. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J. Nanosci. Nanotechnol.2007;7:2466-2472.
    58. Garza KM, Soto KF, Murr LE. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials, Int. J. Nanomedicine.2008;3:83-94.
    59. Wartenberg M, Hoffmann E, Schwindt H, Grunheck F, Petros J, Arnold JR, Hescheler J, Sauer H. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett.2005;579(20):4541-4549.
    60. Wartenberg M, Ling FC, Schallenberg M, Baumer AT, Petrat K, Hescheler J, Sauer H. Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J. Biol. Chem.2001;276(20):17420-8.
    61. Dean M. ABC transporters, drug resistance, and cancer stem cells. J. Mammary Gland. Biol. Neoplasia.2009;14(1):3-9.
    62. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity, Toxicol. Lett.2007;168:121-131.
    63. Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M. Comparative in vivo biocompatibility study of single-and multi-wall carbon nanotubes. Acta Biomater.2008; 4:1593-1602.
    1) Chen X #, Schluesener HJ. Mode of dye loading affects staining outcomes of fluorescent dyes in astrocytes exposed to multiwalled carbon nanotubes. Carbon 2010;48(3):730-743 (2008 Impact Factor:4.373)
    2) Chen X #, Schluesener HJ. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes. Nanotechnology 2010; 21:105104. (2008 Impact Factor:3.446)
    3) Xu YH, Chen X *, Cheng YL. Multiwalled carbon nanotubes inhibit fluorescein extrusion and reduce plasma membrane potential in in vitro human glioma cells. Journal of Biomedical Nanotechnology. In press (2008 Impact Factor:0.98)
    4) Chen X #, Schluesener HJ. Nanosilver:a nanoproduct in medical application. Toxicol. Lett.2008; 176(1):1-12. (2008 Impact Factor:3.249)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700