用户名: 密码: 验证码:
Ghrelin在肥胖发生机制中的实验研究及临床意义探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
儿童单纯性肥胖症是一种由于长期能量的摄入超过人体的消耗,体内的脂肪过度积聚、体质量超过一定范围的营养障碍性疾病。近年来,随着社会经济的发展,人民物质生活水平不断提高,生活现代化膳食结构发生改变,体力活动日益减少,儿童肥胖的患病率呈逐年增加的趋势,肥胖已成为一种全球性的流行病。儿童肥胖不仅损害儿童的身心健康,而且可能发展为成人肥胖,增加成人期心血管疾病发病的危险。由于其高发因素和高危后果,肥胖已经成为公共卫生领域的研究热点,预防肥胖的流行是21世纪前50年世界各国面临的最大公共卫生挑战之一。从儿童期着手预防和治疗肥胖显得十分重要。
     肥胖是体脂的过多积聚,是脂肪细胞体积的增大和数目的增加。过量的能量合成甘油三酯储存于脂肪细胞中,甘油三酯的不断积累,使脂肪细胞体积增大。当前脂肪细胞增殖和分化异常增多或成熟脂肪细胞凋亡减少时,就会引起脂肪组织的过多堆积和脂肪细胞内分泌功能的紊乱,继而导致肥胖和胰岛素抵抗,最终引发糖尿病。因此,脂肪细胞生长、发育、分化及凋亡的分子调控机制已成为目前国际上研究肥胖及其相关疾病的热点方向。
     Ghrelin是在1999年由Kojima等发现的生长激素促分泌素受体的第一个内源性配体,是一种胃源性促生长激素释放多肽,也是第一个被确认的末梢具有活性的促食欲因子。Ghrelin不仅能有效促进生长激素的分泌,还参与摄食、能量代谢、心血管和免疫功能的调节,是目前调节肽研究领域中的一个热点。Ghrelin可能是生长激素/胰岛素样生长因子-1轴和调节能量平衡的神经内分泌之间一个新的联结纽带。Ghrelin通过启动进食,增加食欲,增加营养物质、尤其是脂类的摄取,促进脂肪形成等多方面作用调节着机体能量代谢的平衡,在控制摄食与能量平衡及对饥饿的神经内分泌调节方面发挥重要的作用。
     基于前脂肪细胞增殖、分化和凋亡在肥胖发生机制中的重要作用,本研究以3T3-L1前脂肪细胞为实验对象,观察ghrelin对其增殖、分化和凋亡的影响,并探讨其可能的分子生物学机制,进而深化对ghrelin这一目前已知的唯一能够促进食欲的外周激素的认识,深化对脂肪细胞增殖、分化和凋亡分子机制的认识,并进一步为肥胖及其相关疾病的预防和治疗提供新的研究方向。
     第一部分生长激素促分泌素受体-1a基因在脂肪细胞分化成熟中的作用研究
     目的通过观察生长激素促分泌素受体-1a(growth hormone secretagogue receptor,GHSR-1a)基因在3T3-L1前脂肪细胞诱导分化过程中不同时段表达水平的变化,从而进一步探讨GHSR-1a基因在脂肪细胞分化过程中的作用。
     方法体外培养3T3-L1前脂肪细胞,采用经典的激素鸡尾酒诱导分化法诱导3T3-L1前脂肪细胞分化。在诱导其向成熟脂肪细胞分化的不同时段(从第1天到第8天),采用光学显微镜观察脂肪细胞的形态学变化及细胞内脂滴的形成,通过油红O染色测定脂肪细胞分化程度及细胞内脂滴的聚积情况,采用化学比色法测定脂肪细胞中甘油三酯(triglyceride, TG)的总量,采用半定量逆转录-聚合酶链反应(RT-PCR)技术检测脂肪细胞中GHSR-1a基因mRNA表达水平的变化。
     结果诱导分化前,3T3-L1前脂肪细胞呈梭形的成纤维细胞形态,胞浆内无脂滴;诱导分化第4天时,脂肪细胞变大、变圆,胞浆中出现脂滴;分化第6天时,细胞进一步变大、变圆,脂滴明显增多,分布于核周围,形成“戒环”样结构,从形态上由前脂肪细胞向成熟脂肪细胞转变;分化第8天时,胞浆中更多的脂滴积聚,大多数细胞分化成熟。分化第4天时,脂肪细胞的TG总量明显升高,分化第8天时TG总量进一步升高,与前脂肪细胞和对照组相比差异均有极显著的统计学意义(P<0.01)。同时,GHSR-1a基因mRNA低表达于3T3-L1前脂肪细胞和分化第1天的脂肪细胞,随着脂肪细胞逐渐分化成熟,分化第4天和第8天时GHSR-1a基因mRNA的表达逐渐增加,分别是前脂肪细胞的1.7倍和1.9倍,差异均有显著的统计学意义(P<0.05);分化第8天时GHSR-1a基因mRNA的表达分别是分化第1天和第4天的1.3倍和1.1倍,差异均有显著的统计学意义(P<0.05);GHSR-1a基因mRNA的表达水平除在诱导分化第0~1天和第1~4天内差异无统计学意义(P>0.05)外,其余各时间段间表达水平差异均有显著的统计学意义(P<0.05)。
     结论经典的激素鸡尾酒诱导分化法能够诱导3T3-L1前脂肪细胞向成熟脂肪细胞分化,并且能够显著增加前脂肪细胞分化过程中甘油三酯的积累。3T3-L1前脂肪细胞分化过程中GHSR-1a基因表达逐渐上调,其表达变化与脂肪细胞分化、脂质积聚过程相一致,可能参与了脂肪细胞分化过程。
     第二部分Ghrelin对前脂肪细胞增殖的作用及相关机制的研究
     目的观察不同浓度ghrelin对3T3-L1前脂肪细胞增殖活力的影响,进而探讨其可能的作用机制。
     方法体外培养3T3-L1前脂肪细胞,采用MTT法检测不同浓度ghrelin对其增殖活力的影响,采用半定量RT-PCR技术检测ghrelin对前脂肪细胞c-myc和胸苷激酶基因mRNA表达水平的影响。
     结果10~(-7)~10~(-15)mol/L ghrelin作用24h均能明显促进3T3-L1前脂肪细胞增殖(P<0.05),其中10~(-11)mol/L,时促增殖效应最明显(P<0.01),而且同一浓度ghrelin促进前脂肪细胞增殖的效应随作用时间的延长而提高;ghrelin干预后前脂肪细胞c-myc和胸苷激酶基因mRNA表达水平明显升高,与对照组相比差异均有显著的统计学意义(P<0.05)。
     结论Ghrelin能够促进3T3-L1前脂肪细胞增殖。Ghrelin可能通过增加c-myc的含量,进而引起胸苷激酶的活化,从而导致细胞周期的激活,促进细胞增殖。
     第三部分Ghrelin诱导前脂肪细胞分化过程中形态学观察、甘油三酯总量变化及分化转录因子表达的研究
     目的通过观察ghrelin诱导3T3-L1前脂肪细胞分化过程中的形态学变化,测定分化过程中甘油三酯在细胞中的累积情况,检测分化过程中分化转录因子的表达情况,进而探讨ghrelin诱导脂肪细胞分化的作用机制。
     方法体外培养3T3-L1前脂肪细胞,采用经典的激素鸡尾酒诱导分化法以及ghrelin诱导其分化。在诱导其向成熟脂肪细胞分化的不同时段(从第1天到第8天),采用光学显微镜观察脂肪细胞的形态学变化及细胞内脂滴的形成,通过油红O染色测定脂肪细胞分化程度及脂滴的聚积情况,采用化学比色法测定脂肪细胞TG总量,采用半定量RT-PCR技术检测脂肪细胞中过氧化物酶体增殖剂活化受体γ(PPARγ)、CAAT/增强子结合蛋白α(C/EBPα)基因mRNA的表达情况。
     结果3T3-L1前脂肪细胞呈典型的梭形,胞浆中无脂滴,形态与成纤维细胞相似。Ghrelin诱导分化第4天时,细胞形态开始变圆,仅少量细胞中出现细小的脂滴;分化第6天时,细胞变圆,体积稍变大,胞浆中脂滴增多,聚集在细胞核周围;分化第8天时,细胞明显变大、变圆,胞浆内出现明显的脂滴,脂滴分布于核周围,形成“戒环”样结构。10~(-11)mol/L ghrelin诱导3T3-L1前脂肪细胞的分化率可达70%,而激素鸡尾酒诱导分化组为90%。诱导分化第4天时,ghrelin组脂肪细胞的TG总量明显升高,与前脂肪细胞和对照组相比差异均有极显著的统计学意义(P<0.01);分化第8天时,TG总量进一步升高,与前脂肪细胞、分化第4天时的脂肪细胞和对照组相比差异均有极显著的统计学意义(P<0.01)。Ghrelin诱导分化第4天时,PPARγ基因mRNA表达水平较对照组升高,是对照组的1.77倍,差异有极显著的统计学意义(P<0.01);分化第8天时,PPARγ基因mRNA表达进一步升高,分别是对照组和分化第4天时的1.62倍和1.81倍,差异均有极显著的统计学意义(P<0.01)。而ghrelin组与同分化时间点Insulin组比较,差异没有显著的统计学意义(P>0.05)。Ghrelin诱导分化第4天时,C/EBPα基因mRNA表达水平较对照组升高,是对照组的1.44倍,差异有极显著的统计学意义(P<0.01);分化第8天时,C/EBPα基因mRNA表达进一步升高,分别是对照组和分化第4天时的1.44倍和2.08倍,差异均有极显著的统计学意义(P<0.01)。而ghrelin组与同分化时间点Insulin组比较,分化第4天时差异没有显著的统计学意义(P>0.05),分化第8天时差异有极显著的统计学意义(P<0.01)。
     结论Ghrelin具有诱导3T3-L1前脂肪细胞分化的生物学作用,PPARγ、C/EBPα随着脂肪细胞分化的进行表达水平逐渐升高,并发挥协同作用,直至终末分化期。这提示在ghrelin诱导前脂肪细胞分化过程中,PPARγ、C/EBPα对细胞完成终末分化具有重要意义。
     第四部分Ghrelin对前脂肪细胞凋亡的作用及相关机制的研究
     目的通过观察不同浓度ghrelin对3T3-L1前脂肪细胞凋亡率和细胞周期的影响,以及p-ERK1/2和p-Akt蛋白表达水平的变化,进而探讨ghrelin对3T3-L1前脂肪细胞凋亡的作用及分子机制。
     方法体外培养3T3-L1前脂肪细胞,采用AnnexinⅤ-FITC/PI双染流式细胞仪分析不同浓度ghrelin对3T3-L1前脂肪细胞凋亡率的影响:采用PI单染流式细胞仪检测细胞周期的构成;采用Western blot方法检测ghrelin干预后脂肪细胞p-ERK1/2和p-Akt蛋白表达水平的变化。
     结果10~(-7)~10~(-15)mol/L ghrelin组细胞凋亡率分别为(53.3±6.1)%,(48.2±5.6)%,(42.3±4.6)%,(45.5±4.3)%,(57.8±6.3)%,对照组细胞凋亡率为(58.2±6.3)%,10~(-11)mol/L和10~(-13)mol/L ghrelin干预后细胞凋亡率较对照组显著降低(P<0.05),其中10~(-11)mol/L时抑凋亡效应最明显。流式细胞仪细胞周期分析显示10~(-11)mol/Lghrelin干预后,3T3-L1前脂肪细胞处于亚二倍体峰的细胞数明显减少(P<0.05),而G_0/G_1,S和G_2/M期细胞数基本不变(P>0.05)。10~(-7)~10~(-15)mol/Lghrelin均可以引起前脂肪细胞和成熟脂肪细胞ERK1/2快速而强烈的活化(P<0.01),然而ghrelin诱导的ERK1/2的活化在脂肪细胞分化早期虽然与对照组相比明显升高(P<0.05),但是与分化前和成熟脂肪细胞相比却是明显减弱的(P<0.05);同时在前脂肪细胞和成熟脂肪细胞中,ghrelin诱导的ERK1/2的活化可早至ghrelin刺激后2min,在5~10min达到作用高峰,持续至少30min以上,然而在脂肪细胞分化早期,ERK1/2的活化持续仅不足10min。10~(-9)~10~(-15)mol/L ghrelin均可以引起前脂肪细胞和成熟脂肪细胞Akt的活化(P<0.05),同时在前脂肪细胞和成熟脂肪细胞中,ghrelin刺激30min后即可检测到p-Akt蛋白的高水平表达,并且持续高水平表达可达24h (P<0.05)。
     结论Ghrelin可以抑制3T3-L1前脂肪细胞凋亡,而ERK1/2和P13K/Akt信号通路可能参与了ghrelin调节细胞凋亡的过程。
Simple obesity is the consequence of a chronic positive energy balance. Childhoodobesity is a global epidemic and rising trends in overweight and obesity is apparent in bothdeveloped and developing countries. Simple obesity in particular constitutes a growinghealth problem throughout the world. It is widely accepted that childhood obesity is animportant risk factor for the appearance of obesity in adulthood. And the great increase inobesity portends future increases in incidence of heart diseases; diabetes, stroke, andpossibly cancers. There has been a growing concern about obesity worldwide.
     On cellular level, obesity is caused by increasing amount and volume of adipocytesinduced by unceasing differentiation of preadipocytes. Abnormal differentiation,proliferation and apoptosis of preadipocytes will affect glucolipid metabolism, induceobesity and insulin resistance, and then influence the development of type 2 diabetes. It issignificant to study the effects of drugs on proliferation, differentiation and apoptosis ofpreadipocytes for prevention and cure of those metabolic diseases which have a closerelationship with obesity and insulin resistance. Therefore, many scholars have recentlyfocused on the regulation of the adipocyte proliferation, differentiation and apoptosis, andits relationship with obesity.
     Ghrelin is a stomach-derived hormone. It was originally identified as an endogenousligand of growth hormone secretagogue receptor (GHSR). In addition to its predictable effect on growthhormone (GH) secretion, ghrelin has an important role in the short-termregulation of appetite and the long-term regulation of energy balance and glucosehomeostasis. It is reported that ghrelin could induce adipogenesis not only through centralmechanisms but also though its direct effects on adipocytes. Therefore in recent years,much-attention has been paid to the research on ghrelin.
     In this study, 3T3-L1 preadipocytes were cultured in vitro. The effects of ghrelin onthe proliferation, differentiation and apoptosis of 3T3-L1 preadipocytes and the possiblemechanisms were investigated in order to analyze the relationship between ghrelin and thepathogenesis of obesity from cellular level.
     PartⅠGrowth Hormone Seeretagogue Receptor-la Gene Expression
     during the Period of 3T3-L1 Preadipoeyte Differentiation
     Objective To investigate growth hormone secretagogue receptor-la (GHSR-la) geneexpression during the period of 3T3-L1 adipocyte differentiation and toexplore the relationship between the GHSR-la gene expression andadipocytes differentiation.
     Methods 3T3-L1 preadipocytes were cultured in vitro and induced to differentiate intomatured adipocytes by lmg/L Insulin+0.5mM IBMX+1.0μM DEX. Themorphological changes of 3T3-L1 adipocytes were observed by microscope,the differentiation rate was assayed by Oil-Red O staining, and triglyceride(TG) mass was detected by chemical colorimetry methods during the periodof 3T3-L1 adipocyte differentiation. Total RNA was extracted fromadipocytes at various time, and the levels of GHSR-1a gene mRNAexpression were measured by RT-PCR.
     Results 3T3-L1 preadipocytes were fibroblastic and had no obvious fat droplet incytoplasm. However, there were some fat drops in 3T3-L1 cells and thesecells became bigger and rounder on the forth day of differentiation. With timegone, more and more fat drops accumulated in these cells. Compared withpreadipocytes and control group, the concentration of TG mass began toincrease on the forth day of differentiation and increase more significantly onthe eighth day (P<0.01). The GHSR-1a gene mRNA began to express low onthe first day of differentiation. From the fourth day to the eighth day, theGHSR-1a gene mRNA expression was obviously up-regulated (P<0.05).There were significant differences between any two detected time points inthe levels of GHSR-1a gene mRNA expression (P<0.05), except those pointsbetween 0 day to 1 day, and 1 day to 4 day (P>0.05).
     Conclusion Insulin+IBMX+DEX can induce 3T3-L1 adipocytes differentiate, andstimulate the TG mass accumulate. GHSR-1a gene mRNA expression isup-regulated during 3T3-L1 adipocyte differentiation. Up-regulation in thelevels of GHSR-la gene mRNA expression during 3T3-L1 adipocytedifferentiation may be involved in the adipogenesis of adipocytes.
     PartⅡ
     Effects of Ghrelin on the Proliferation of 3T3-L1 Preadipoeytes andIts Possible Mechanisms
     Objective To investigate the effects of ghrelin on the proliferation of 3T3-L1preadipocyte and analyze the possible mechanisms.
     Methods 3T3-L1 preadipocytes were cultured in vitro. The proliferation potentials of3T3-L1 preadipocytes that were treated with different concentrations ofghrelin were evaluated by MTT method and the levels of c-myc andthymidine kinase gene mRNA expression were detected by RT-PCR.
     Results Ghrelin at concentrations of 10~(-7)mol/L to 10~(-15)mol/L significantly stimulatedpreadipocyte proliferation (P<0.05), with the most pronounced effectobserved at 10~(-11)mol/L (P<0.01). Treatment of 3T3-LI preadipocytes with10~(-9)mol/L and 10~(-11)mol/L ghrelin significantly increased the levels of c-mycand thymidine kinase gene mRNA expression (P<0.01).
     Conclusions Ghrelin can promote the proliferation of 3T3-L1 preadipocytes and enhancethe expression of c-myc, activate thymidine kinase which may play animportant role in the proliferation of 3T3-L1 preadipocytes.
     PartⅢ
     Effects of Ghrelin on the Differentiation of 3T3-L1 Preadipocytesand Its Possible Mechanisms
     Objective To observe the morphological changes, the differentiation rate, TG mass andthe sequential expression of transcription factors in 3T3-L1 adipocytesdifferentiation induced by ghrelin.
     Methods 3T3-L1 preadipocytes were cultured in vitro and induced to differentiate intomatured adipocytes by 1mg/L Insulin+0.5mM IBMX+1.0μM DEX and10~(-11)mol/L ghrelin respectively. The morphological changes of 3T3-L1adipocytes were observed by microscope, the differentiation rate was assayedby Oil-Red O staining, TG mass was detected by chemical colorimetry methods, and the levels of peroxisome proliferation activated receptorγ(PPART) and CAAT/enhancer binding protein (C/EBPα) gene mRNAexpression were detected by RT-PCR during the period of 3T3-L1preadipocyte differentiation.
     Results 3T3-L1 preadipocytes were fibroblastic and had no obvious fat droplet incytoplasm. However, there were some fat drops in 3T3-L1 cells on the forthday induced by ghrelin. And there were a lot of fat drops in 3T3-L1 cells andthese cells became bigger and rounder on the sixth day induced by ghrelin.With time gone, more and more fat drops accumulated in these cells. The rateof differentiation induced by ghrelin was 70%, compared with that byInsulin+IBMX+DEX was 90%. Compared with preadipocytes and controlgroup, the concentration of TG mass began to increase on the forth day ofdifferentiation and increase more significantly on the eighth day (P<0.01).Compared with the control group, 10~(-11)mol/L ghrelin significantly increasedthe levels of PPARy and C/EBPαgene mRNA expression during thedifferentiation (P<0.05). There were significant differences between 4 day to8 day in the levels of PPARγand C/EBPαgene mRNA expression during thedifferentiation induced by ghrelin or Insulin+IBMX+DEX (P<0.01).
     Conclusions Ghrelin can induce 3T3-L1 preadipocytes differentiate. During the period ofadipocyte differentiation induced by ghrelin, PPARγand C/EBPαwereinduced to express and keep high levels until the preadipocytes werecompletely differentiated into adipocytes. It suggests that the sequentialexpression of these transcription factors induced by ghrelin could explain apart of the mechanism for ghrelin to induce the preadipocytes differentiation.
     PartⅣ
     Effects of Ghrelin on the Apoptosis of 3T3-L1 Preadipocytes and ItsPossible Mechanism
     Objective To explore the possible mechanisms of ghrelin inhibiting apoptosis of 3T3-L1preadipocytes, and analyze the relationship between ghrelin and thepathogenesis of obesity from cellular level.
     Methods 3T3-L1 preadipocytes were cultured in vitro. The apoptotic rates ofpreadipocytes that were treated with different concentrations of ghrelin weredetected by flow cytometry (FCM) with AnnexinⅤ-FITC and propidiumiodide (PI) double labeling technique. Cell cycle was analyzed by using FCMwith PI labeling technique. The levels of p-ERK1/2 and p-Akt proteinexpression were determined by Western blot.
     Results The apoptotic rates of 3T3-L1 preadipocytes treated by 10~(-11)mol/L,10~(-13)mol/L ghrelin were (42.3±4.6) % and (45.5±5.3) % respectively.Compared with the control group, the apoptotic rates in the above groupsdecreased significantly (P<0.05), with the most pronounced effect observed at10~(-11)mol/L. Cell cycle analysis showed that, with the treatment of 10~(-11)mol/Lghrelin, the cell number in sub-G_0 peak (apoptotic peak) decreasedsignificantly (P<0.05), while the cell number in G_0/G_1, S and G_2/M had nosignificant changes (P>0.05). The levels of p-ERK1/2 and p-Akt proteinexpression were significantly enhanced by treatment with ghrelin in 3T3-L1preadipocytes and terminally differentiated adipocytes (P<0.01).
     Conclusions Ghrelin can efficiently inhibit the apoptosis of 3T3-L1 preadipocytes withenhancing the expression of p-ERK1/2 and p-Akt.
引文
1. Ghigo E, Broglio F, Arvat E, et al. Ghrelin: more than a natural GH secretagogue and/or an orexigenic factor[J]. Clin Endocrinol (Oxf), 2005, 62(1):1-17.
    2. Couce ME, Cottam D, Esplen J, et al. Is ghrelin the culprit for weight loss after gastric bypass surgery? A negative answer[J]. Obes Surg, 2006, 16(7):870-878.
    3. Neri BP, Frings CS. Improved method for determination of triglycerides in serum[J]. Clin Chem, 1973, 19(10):1201-1202.
    4.胡丽茎.温兰英,刘引弟.目前我国儿童肥胖症的流行病学现状及防治对策[J].国际医药卫生导报,2007,13(18):126-128.
    5. Carvalhal MM, Padez MC, Moreira PA, et al. Overweight and obesity related to activities in Portuguese children, 7-9 years[J]. Eur J Public Health, 2007, 17(1):42-46.
    6. Tremblay F, Gagnon A, Veilleux A, et al.Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes[J]. Endocrinology, 2005, 146(3):1328-1337.
    7. Mano-Otagiri A, Nemoto T, Sekino A, et al. Growth hormone-releasing hormone (GHRH) neurons in the arcuate nucleus (Arc) of the hypothalamus are decreased in transgenic rats whose expression of ghrelin receptor is attenuated: Evidence that ghrelin receptor is involved in the up-regulation of GHRH expresson in the arc[J]. Endocrinology, 2006, 147(9):4093-4103.
    8. Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans[J]. J Clin Endocrinol Metab, 2002, 87(6):2988-2991.
    9. Baessler A,Hasinoff MJ,Fischer M, et al. Genetic linkage and association of the growth hormone secretagogue receptor(ghrelin receptor) gene in human obesity[J]. Diabetes, 2005.54(1):259-267.
    10. Tritos NA, Kokkotou EG. The physiology and potential clinical applications of ghrelin, a novel peptide hormone [J].Mayo Clin Proc. 2006, 81(5):653-660.
    11. Sun Y, Butte NF, Garcia JM, et al. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance [J]. Endocrinology, 2008,149(2):843-850.
    12. Kang X, Xie Y, Powell HM, et al. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds [J].Biomaterials, 2007,28(3):450-458.
    13. Novakofski J. Adipogenesis: usefulness of in vitro and in vivo experimental models [J]. J Anim Sci, 2004, 82(3):905-915.
    1. Gagnon A, Lau S, Sorisky A. Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion [J]. J Cell Physiol, 2001, 189(l):14-22.
    2. Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis [J]. Proc Natl Acad Sci USA, 2003,100(3):850-855.
    3. Druce MR, Neary NM, Small CJ, et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers [J]. Int J Obes (Lond), 2006,30(2):293-296.
    4. Kopelman PG. Obesity as a medical problem [J]. Nature, 2000, 130(12): 3110S-3115S.
    5. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance [J]. Cell, 2001,104(4): 531-543.
    6. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach [J]. Nature, 1999,402(6762):656-660.
    7. Tritos NA, Kokkotou EG. The physiology and potential clinical applications of ghrelin,a novel peptide hormone [J]. Mayo Clin Proc, 2006, 81(5):653-660.
    8. Bagnasco M, Tulipano G, Melis MR, et al. Endogenous ghrelin is an orexigenic peptide acting in the arcuate nucleus in response to fasting [J]. Regul Pept, 2003,
    9. Seoane LM, Lopez M, Tovar S, et al. Agouti-related peptide, neuropeptide Y, and somatostatin-producing neurons are targets for ghrelin actions in the rat hypothamlamus [J]. Endocrinology, 2003, 144(2):544-551.
    10. Toshinai K, Date Y, Murakami N, et al. Ghrelin-induced food intake is mediated via th orexin pathway [J]. Endocrinology, 2003, 144(4):1506-1512.
    11. Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer [J]. Semin Cancer Biol, 2006, 16(4):318-330.
    12.郭倩钰,陶莎.c-myc基因在HL60细胞增殖中的作用[J]。现代预防医学,2007,34(19):3754-3755.
    13. Lacy J, Sarkar SN, Summers WC. Induction of c-myc expression in human B lymphocytes by B-cell growth factor and anti-immunoglobulin[J]. Proc Natl Acad Sci USA, 1986, 83(5):1458-1462.
    14. Shi Y, Hutchinson HG, Hall DJ, et al. Downregulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells[J]. Circulation, 1993, 88(3): 1190-1195.
    15.张绪森,陈同钰,王旭芬.c-myc、Rb及细胞G_1期调控蛋白在乳腺癌中的表达[J].诊断病理学杂志,2004,11(3):159-162.
    1. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation [J]. Physiol Rev, 1998, 78(3):783-809.
    2. Tamori Y, Masugi J, Nishino N, et al. Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes [J].Diabetes, 2002, 51(7):2045-2055.
    3. Rosen ED, Hus CH, Wang X, et al. C/EBP alpha induces adipogenesis through PPARgamma: a unified pathway [J]. Genes Dev, 2002, 16(l):22-26.
    4. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism,differentiation, and cell growth [J]. J Biol Chem, 2001,276(41):37731-37734.
    5. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism,differentiation, and cell growth [J]. J Biol Chem, 2001, 276(41):37731-37734.
    6. Lehrke M, Lazar MA. The many faces of PPARgamma [J]. Cell, 2005,123(6):993-999.
    7. Hamm JK, Park BH, Farmer SR. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes [J]. J Biol Chem, 2001,276(21): 18464-18471.
    8. Tang QQ, Jiang MS, Lane MD. Repressive effect of Spl on the C/EBPalpha gene promoter: role in adipocyte differentiation [J]. Mol Cell Biol, 1999,19(7):4855-4865.
    9. Rieusset J, Andreelli F, Auboeuf D. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes [J]. Diabetes,1999,48(4):699-705.
    10. Zuo Y, Qiang L, Farmer SR. Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter [J]. J Biol Chem, 2006,281(12):7960-7967.
    11. Laitinen S, Fontaine C, Fruchart JC, et al. The role of the orphan nuclear receptor Rev-Erb alpha in adipocyte differentiation and function[J]. Biochimie, 2005, 87(1):21-25.
    12. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation[J]. Biochem J, 2002, 365(Pt3):561-575.
    13. Barlier-Mur AM, Chailley-Heu B, Pinteur C, et al. Maturational factors modulate transcription factors CCAAT/enhancer-binding proteins alpha, beta, delta, and peroxisome proliferator-activated receptor-gamma in fetal rat lung epithelial cells[J]. Am J Respir Cell Mol Biol, 2003, 29(5):620-626.
    14.刘静,林汉华,程佩萱,等.生长激素促分泌素受体-la基因在3T3-L1脂肪细胞诱导分化过程中的表达[J].实用儿科临床杂志,2008,23(8):571-573.
    1. Roncari DA. Abnormalities of adipose cells in massive obesity[J]. Int J Obes, 1990, 14(S3):187-192.
    2. Prins JB, Walker NI, Winterford CM, et al. Apoptosis of human adipocytes in vitro[J]. Biochem Biophys Res Commun, 1994, 201 (2):500-507.
    3. Prins JB, Niesler CU, Winterford CM, et al. Tumor necrosis factor-alpha induces apoptosis of human adipose cells[J]. Diabetes, 1997, 46(12): 1939-1944.
    4.范红旗,郭锡熔,陈荣华,等.凋亡蛋白酶活化因子1基因在脂肪细胞诱导分化中表达及肿瘤坏死因子-α对其调节作用[J].中国循证儿科杂志,2007,2(1):38-42.
    5. Fajas L. Adipogenesis: a cross-talk between cell proliferation and cell differentiation[J]. Ann Med, 2003, 35(2):79-85.
    6. Olszanecka-Glinianowicz M, Zahorska-Markiewicz B, Zurakowski A, et al. Differentiation and apoptosis of adipocytes-the role of tumor necrosis factor (TNF-alpha)[J]. Pol Arch Med Wewn, 2004, 111(5):635-639.
    7. Prins JB, O'Rahilly S. Regulation of adipose cell number in man[J]. Clin Sci(Lond), 1997, 92(1):3-11.
    8. Walker NI, Bennett RE, Kerr JF. Cell death by apoptosis during involution of the lactating breast in mice and rats[J]. Am J Anat, 1989, 185(1): 19-32.
    9.周殿元,姜泊,主编.细胞凋亡基础与临床.北京:人民军医出版社,1999,280-285.
    10. Prins JB, Walker NI, Winterford CM, et al. Apoptosis of human adipocytes in vitro[J]. Biochem Biophys Res Commun, 1994, 201 (2):500-507.
    11. Domingo P, Vidal F, Domingo JC, et al. Tumor necrosis factor alpha in fat redistribution syndromes associated with combination antiretroviral therapy in HIV-1-infected patients: potential role insubcutaneous adipocyte apoptosis[J]. Eur J Clin Invest, 2005, 35(12):771-780.
    12. Wu BT, Huang PF, Chen HC, et al. The apoptotic effect of green tea epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Cdk2 pathway [J]. J Agric Food Chem, 2005,53(14):5695-5701.
    13. Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERKl/2 and PI 3-kinase/AKT [J]. J Cell Biol, 2002, 159(6): 1029-1037.
    14. Chang F, Steelman LS, Lee JT, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention [J].Leukemia, 2003, 17 (7): 1263-1293.
    15. Scorziello A, Santillo M, Adornetto A, et al. NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERKl/2 pathway [J]. J Neurochem, 2007, 103(4): 1472-1480.
    16. Lee do Y, Lee MW, Lee HJ, et al. ERKl/2 activation attenuates TRAIL-induced apoptosis through the regulation of mitochondria-dependent pathway [J]. Toxicol in Vitro, 2006, 20(6):816-823.
    17. Hawkins PT, Anderson KE, Davidson K, et al. Signalling through Class I PI3Ks in mammalian cells [J]. Biochem Soc Trans, 2006, 34(Pt5):647-662.
    18. McDonald PC, Oloumi A, Mills J, et al. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival [J]. Cancer Res, 2008,68(6): 1618-1624.
    1. Calderon KS, Yucha CB, Schaffer SD. Obesity-related cardiovascular risk factors:intervention recommendations to decrease adolescent obesity [J]. J Pediatr Nurs, 2005,20(l):3-14.
    2. Charles MA. Early nutrition and weight evolution in children [J]. Ann Endocrinol(Paris), 2005, 66(2Pt3):2S11-18.
    3. Kojima M, Hosoda H, Date Y. Ghrelin is a growth-hormone-releasing acylated peptide from stomach [J]. Nature, 1999,402(6762):656-660.
    4. Baldelli R, Bellone S, Castellino N, et al. Oral glucose load inhibits circulating ghrelin levels to the same extent in normal and obese children [J]. Clin Endocrinol (Oxf), 2006,64(3):255-259.
    5. Otto B, Cuntz U, Fruehauf B, et al. Weight gain decreases elevated plasma ghrelin concentration of patients with anorexia nervosa [J]. Eur J Endocrinol, 2001,145(5):669-673.
    6. Druce MR, Neary NM, Small CJ, et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers [J]. Int J Obes(Lond), 2006, 30(2):293-296.
    7. Tang-Christensen M. Vrang N. Ortmann S, et al. Central administration of ghrelin and agouti-related protein (83-132) increase food intake and decreases spontaneous locomotor activity in rats [J]. Endocrinology, 2004,145(10): 4645-4652.
    8. Tschop M, Smiley DL, Heiman ML, et al. Ghrelin induces adiposity in rodents [J].Nature, 2000, 407(6806):908-913.
    9. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding [J]. Nature, 2001, 409(6817):194-198.
    10. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulatig energy homeostasis[J]. Neuron, 2003, 37(4):649-661.
    11.黄先玫.章毅英,余钟声,等.肥胖儿童血浆同型半胱氨酸含量及动脉病变的研究[J].中华儿科杂志,2005,43(3):192-195.
    12.秦方.阮蕾,张廷杰.动脉粥样硬化危险因素的现代认识[J].心血管病学进展,2000.21(1):29-33.
    13. Tschop M, Weyer C, Tataranni PA, et al. Circulating ghrelin levels are decreased in human obesity[J]. Diabetes, 2001, 50(4):707-709.
    14.龚海红,陆超,徐华国.Ghrelin与儿童肥胖关系[J].江苏医药,2007,33(7):691-692.
    1. Tritos NA, Kokkotou EG. The physiology and potential clinical applications of ghrelin, a novel peptide hormone[J].Mayo Clin Proc, 2006, 81(5):653-660.
    2. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach[J]. Nature, 1999, 402(6762):656-660.
    3. Wajnrajch MP, Ten IS, Gertner JM, et al. Genomic Organization of the human ghrelin gene[J]. J Endocr Genet, 2000, 146(1):231-233.
    4. Lee HM, Guiyun W, Englander EW. Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric diatribution, ontogeny, influence of endocrine, and dietary manip[J]. Endocrinology, 2002, 143(1): 185-190.
    5. Gauna C, Delhanty PJ, Hofland LJ, et al. Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes[J]. J Clin Endocrinol Metab, 2005, 90(2): 1055-1060.
    6. Hosoda H, Kojima M, Matsuo H, et al. Purification and characterization of rat des-Gln14-ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor[J]. J Biol Chem, 2000, 275(29):21995-22000.
    7. Locatelli V, Bresciani E, Bulgarelli I, et al. Ghrelin in gastroenteric pathophysiology[J]. J Endocrinol Invest, 2005, 28(9):843-848.
    8. Couce ME, Cottam D, Esplen J, et al. Is ghrelin the culprit for weight loss after gastric bypass surgery? A negative answer[J]. Obes Surg, 2006, 16(7):870-878.
    9.张自然,李良平.Ghrelin与消化系统疾病的研究进展[J].临床消化病杂志,2007,19(4):267-268.
    10. Krsek M, Rosicka M, Haluzik M, et al. Plasma ghrelin levels in patients with short bowel syndrome[J]. Endocr Res, 2002, 28(1-2):27-33.
    11. Baldelli R, Bellone S, Castellino N, et al. Oral glucose load inhibits circulating ghrelin levels to the same extent in normal and obese children[J]. Clin Endocrinol (Oxf), 2006, 64(3):255-259.
    12. Li K, Feng J, Xu ZR. A novel acylated peptide-ghrelin [J]. Sheng Li Ke Xue Jin Zhan,2005, 36(3):279-281.
    13. van der Lely AJ, Tschop M, Heiman ML, et al. Biological, physiological, pathophysiological and pharmacological aspects of ghrelin [J]. Endocr. Rev, 2004,25(3):426-457.
    14. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in human [J].Diabetes, 2001, 50(8): 1714-1719.
    15. Briatore L, Andraghetti G, Cordera R. Acute plasma glucose increase, but not early insulin response, regulates plasma ghrelin [J]. Eur J Endocrinol, 2003, 149(5):403-406.
    16. 裴晓萌,艾华.ghrelin与摄食和肥胖的关系[J].卫生研究,2007,36(l):12-127.
    17. Nedvidkova J, Krykorkova I, Bartak V, et al. Loss of meal-induced decrease in plasma ghrelin levels in patients with anorexia nervosa [J]. J Cin Endocrinol Metab, 2003, 88(4):1678-1682.
    18. Haqq AM, Farooqi IS, O'Rahilly S, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome [J]. J Clin Endocrinol Metab, 2003.88(1):174-178.
    19. Kamegai J, Tamura H, Shimizu U. et al. Central effects of ghrelin, an endogenous growth hormone secretagogues, on hypothalamic peptide gene expression [J]. Endocrinology, 2000, 141(12):4794-4800.
    20. Young Cruz CR, Smith RG. The growth hormone secretagogue receptor [J]. Vitam Horm, 2008, 77(1): 47-88.
    21. Mano-Otagiri A, Nemoto T, Sekino A, et al. Growth hormone-releasing hormone (GHRH) neurons in the arcuate nucleus (Arc) of the hypothalamus are decreased in transgenic rats whose expression of ghrelin receptor is attenuated: Evidence that ghrelin receptor is involved in the up-regulation of GHRH expression in the arc [J]. Endocrinology, 2006, 147(9):4093-4103.
    22. Sun Y, Butte NF, Garcia JM, et al. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance [J].Endocrinology,2008, 149(2):843-850.
    23. le Roux CW. Patterson M, Vincent RP, et al. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects [J]. J Clin Endocrinol Metab, 2005, 90(2): 1068-1071.
    24. Ikezaki A, Hosoda H, Ito K, et al. Fasting plasma ghrelin levels are negatively correlated with insulin resistance and PA-1, but not with leptin, in obese children and adolescents [J]. Diabetes, 2002, 51(12):3408-3411.
    25. Faraj M, Havel PJ, Phelis S, et al. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects [J]. J Clin Endocrinol Metab, 2003, 88(4):1594-1602.
    26. Korbonits M, Gueorguiev M, O'Grady E, et al. A variation in the ghrelin gene increases weight and decreases insulin secretion in tall, obese children [J]. J Clin Endocrinol Metab, 2002, 87(8):4005-4008.
    27. Poykko S, Ukkola O, Kauma H, et al. Ghrelin Arg51Gln mutation is a risk factor for Type 2 diabetes and hypertension in a random sample of middle-aged subjects[J]. Diabetologia, 2003, 46(4):455-458.
    28. Miraglia del Giudice E, Santoro N, Cirillo G et al. Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity [J]. Int J Obes Relat Metab Disord, 2004, 28(3):447-450.
    29. Wortley KE, Anderson KD, Garcia K, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference [J]. Proc Natl Acad Sci U S A. 2004. 101(21):8227-8232.
    30. Kohno D, Gao HZ, Muroya S, et al. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca~(2+) signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin [J].Diabetes, 2003, 52(4):948-956.
    31. Date Y, Nakazato M, Murakami N, et al. Ghrelin acts in the central nervous system to stimulate gastric acid secretion [J]. Biochem Biophys Res Commun, 2001,280(3):904-907.
    32. St-Pierre DH, Karelis AD, Cianflone K, et al. Relationship between ghrelin and energy exprenditure in healthy young women [J]. J Clin Endocrinol Metab, 2004,89(12):5993-5997.
    33. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents [J]. Nature,2000,407(6806):908-913.
    34. Asakawa A, Inui A, Kaga T, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice[J]. Gut, 2003, 52(7):947-952.
    35. Thompson NM, Gill DA, Davies R, et al. Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type la growth hormone secretagogues receptor [J]. Endocrinology, 2004, 145(1): 234-242.
    36. Riediger T, Traebert M, Schmid HA, et al. Site-specific effects of ghrelin on the neuronal activity in the hypothalamic arcuate nucleus [J]. Neurosci Lett, 2003,341(2):151-155.
    37. Adeghate E, Ponery AS. Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats [J]. J Neuroendocrinol, 2002, 14(7):555-560.
    38. Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural GH secretagogues produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans [J]. J Clin Endocrinol Metab, 2001, 86(10):5083-5086.
    39. Reimer MK, Pacini G, Ahren B. Dose-dependent inhibition by ghrelin of insulin secretion in the mouse [J]. Endocrinology, 2003. 144(3):916-921.
    1. Tritos NA, Kokkotou EG. The physiology and potential clinical applications of ghrelin,a novel peptide hormone [J]. Mayo Clin Proc, 2006, 81(5):653-660.
    2. Couce ME, Cottam D, Esplen J, et al. Is ghrelin the culprit for weight loss after gastric bypass surgery? A negative answer [J]. Obes Surg, 2006, 16(7):870-878.
    3. 张自然,李良平.Ghrelin与消化系统疾病的研究进展[J].临床消化病杂志 2007,19(4):267-268。
    4. Mottershead M, Karteris E, Barclay JY, et al. Immunohistochemical and quantitative mRNA assessment of ghrelin expression in gastric and oesophageal adenocarcinoma [J]. J Clin Pathol, 2007, 60(4):405-409.
    5. Cassoni P, Allia E, Marrocco T, et al. Ghrelin and cortistatin in lung cancer: expression of peptides and related receptors in human primary tumors and in vitro effect on H345 small cell carcinoma cell line [J]. J Endocrinol Invest, 2006, 29(9):781-790.
    6. Baldelli R, Bellone S, Castellino N, et al. Oral glucose load inhibits circulating ghrelin levels to the same extent in normal and obese children [J]. Clin Endocrinol(Oxf), 2006,64(3):255-259.
    7. Sun Y. Butte NF, Garcia JM, et al. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance [J].Endocrinology,2008, 149(2):843-850.
    8. Lengyel AM. From growth hormone-releasing peptides to ghrelin: discovery of new modulators of GH secretion [J]. Arq Bras Endocrinol Metabol, 2006, 50(1): 17-24.
    9. Arvat E, Maccario M, Di Vito L, et al. Endocrine activities of ghrelin, a natural growth hormone secretagogues (GHS), in humans: comparison and interactions with hexarelin,a nonnatural peptidyl GHS, and GH-releasing hormone [J]. J Clin Endocrinol Metab, 2001. 86(3):I169-1174.
    10. Hashizume T, Horiuchi M, Tate N, et al. Effects of ghrelin on growth hormone secretion from cultured adenohypophysial cells in pigs[J]. Domest Anim Endocrinol, 2003, 24(3):209-218.
    11. Popovic V, Miljic D, Micic D, et al. Ghrelin main action on the regulation of growth hormone release is exerted at hypothalamic level[J]. J Clin Endocrinol Metab, 2003, 88(7):3450-3453.
    12. Mondal MS, Date Y. Yamaguchi H, et al. Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus[J]. Regul Pept, 2005, 126(1-2):55-59.
    13. Chanoine JP, Wong AC. Ghrelin gene expression is markedly higher in fetal pancreas compared with fetal stomach: effect of maternal fasting[J]. Endocrinology, 2004, 145(8):3813-3820.
    14. Kitamura S, Yokota I, Hosoda H, et al. Ghrelin concentration in cord and neonatal blood: relation to fetal growth and energy balance[J]. J Endocrinol Metabolism, 2003, 88(11):5473-5477.
    15. Whatmore AJ, Hall CM, Jones J, et al. Ghrelin concentrations in healthy children and adolescents[J]. Clin Endocrinol(Oxf), 2003, 59(5):649-654.
    16.沈振宇,杜敏联,苏喆,等.小于胎龄儿新生儿期ghrelin水平与生长轴关系的研究[J].临床儿科杂志,2007,25(12):999-1001.
    17. Iniguez G, Ong K, Pena V, et al. Fasting and post-glucose ghrelin levels in SGA infants: relationships with size and weight gain at one year of age[J]. J Clin Endocrinol Metab, 2002, 87(12):5830-5833.
    18. Pomerants T, Tillmann V, Jurimae J, et al. Relationship between ghrelin and anthropometrical, body composition parameters and testosterone levels in boys at different stages of puberty[J]. J Endocrinol Invest, 2006, 29(11):962-967.
    19. Maffeis C, Franceschi R, Moghetti P. et al. Circulating ghrelin levels in girls with central precocious puberty are reduced during treatment with LHRH analog[J]. Eur J Endocrinol, 2007, 156(1):99-103.
    20. Jung CH, Lee WY, Rhee EJ, et al. Serum ghrelin and leptin levels in adult growth hormone deficiency syndrome [J]. Arch Med Res, 2006,37(5):612-618.
    21. Janssen JA, van der Toorn FM. Hofland LJ, et al. Systemic ghrelin levels in subjects with growth hormone deficiency are not modified by one year of growth hormone replacement therapy [J]. Eur J Endocrinol, 2001, 145(6):711-716.
    22. Camurdan MO, Bideci A, Demirel F, et al. Serum ghrelin, IGF-1 and IGFBP-3 levels in children with normal variant short stature [J]. Endocr J, 2006, 53(4):479-484.
    23. Barkan AL, Dimaraki EV, Jessup SK, et al. Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels [J]. J Clin Endocrinol Metab, 2003, 88(5):2180-2184.
    24. Kamegai J, Tamura H, Shimizu T, et al. Insulin-like growth factor-I down-regulates ghrelin receptor(growth hormone secretagogue receptor) expression in the rat pituitary [J]. Regul Pept, 2005, 127(l-3):203-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700