用户名: 密码: 验证码:
落叶松和水曲柳人工林土壤动物群落生态以及施氮肥的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤动物是土壤养分的主要制造者,数量众多的土壤动物通过土壤食物网控制土壤养分释放和碳(C)的积累,在森林生态系统能量流动和物质循环过程中发挥重要作用。本研究在中国北方落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林采用土钻法研究施氮(N)肥对土壤动物数量、类群数、食性和多样性的影响;通过施杀虫剂处理以及内生长法研究土壤动物对总根长和根长密度的影响。得到如下结论:
     (1)落叶松人工林土壤动物密度平均26.1个×103/m2,隶属8纲13目34科;水曲柳人工林为31.6个×103/m2,隶属8纲15目43科。两林地土壤动物数量季节分布均为秋季(10月)>春季(5月)>夏季(7月),类群的季节分布均为秋季(10月)>夏季(7月)>春季(5月)。土壤动物密度和类群数随着土层深度的增加显著降低(P<0.05)。两林地中腐食性土壤动物均处于主导地位(占80%以上),植食性土壤动物次之(10%左右),捕食性土壤动物所占的比例最低(5%以下)。
     (2)两林地中土壤动物密度与土壤温度显著负相关(P<0.05),而与土壤pH值和有机质含量呈显著正相关性(P<0.01)。施N肥导致土壤动物密度与土壤温度、pH值和有机质含量的相关性均下降。两林地中土壤湿度与土壤动物密度均不相关,施N肥后仅在水曲柳样地土壤10-20cm层显著相关(P<0.05)。
     (3)施N肥使落叶松林地土壤动物多样性指数和均匀度指数增加,而水曲柳林地降低。施N肥使落叶松林地土壤动物优势度指数降低,而水曲柳林地增加。施N肥导致土壤动物的各项多样性指数的季节分布规律发生显著变化,且三个指数在两林地中的变化不一致(P<0.05)。
     (4)在四个取样期和不同土层间,施N肥导致土壤动物的数量和类群数呈先增加后降低的趋势。施N肥导致落叶松和水曲柳样地腐食性土壤动物数量显著降低,植食性土壤动物数量显著增多,捕食性土壤动物数量变化不明显。
     (5)施杀虫剂处理使落叶松林地土壤0.10 cm层和10-20 cm层土壤动物数量分别降低97%和100%,水曲柳林地分别降低94%和84%。土壤动物数量的减少导致落叶松和水曲柳林地总根长和各根序根长密度显著增加(P<0.05),说明土壤动物影响根系的生产量,从而影响森林生态系统C循环。
Soil fauna, which are main soil nutrition contributors, play an important role in soil carbon (C) and nutrient cycling in forest ecosystems. Soil fauna are sensitive to soil nutrients availability, but few studies focused on the interrelations between soil fauna density and nitrogen (N) availability in Northern forests. In this study, we used soil cores to study the effects of N addition on soil fauna densities, feeding habits and groups diversities in larch (Larix gmelinii) and ash (Fraxinus mandshurica) plantations, and used insecticide together with ingrowth cores to study the effects of soil fauna on root length density. The main results were below:
     (1) Soil fauna density in larch plantation was 26.1×103 ind m-2, which was belong to 8 classes,13 orders and 34 families. The corresponding values in ash plantation were 31.6×103 ind m-2,8 classes,15 orders and 43 families, respectively. In both plantations, seasonal peak of soil fauna density was October>May>July, but fauna species was October>July>May. There were higher density and number of groups in topsoil layer (0-10 cm) than that in subsoil layer (10-20 cm). Among the three feeding habits, the magnitude of soil saprophagous was accounted for over 80%, then the soil herbivores and predators were accounted for 10%and less than 5%, respectively.
     (2) The density of soil fauna had negative correlation with soil temperature (P<0.05), but positive correlation with soil pH and organic matte (P<0.01) in both plantations. However, N addition reduced these correlations. In contrast to other soil factors, soil moisture did not affect soil fauna densities, excepting in subsoil layer under the N treatment plots in ash plantation.
     (3) Diversity of soil fauna differed in plantations and treatments. Diversity index and evenness index in the N-addition plots were increased in larch plantation, but decreased in ash plantation comparing with the control plots. N addition also decreased the dominant index in larch plantation, but increased in ash plantation. These three indexes did change in seasonal patterns between the control and N-addition plots.
     (4) The effects of N addition on densities of soil fauna in both plantations differed among four sampling times in two soil depths, their densities was increased at the start time and decreased in latter time, so did fauna groups. In three feeding habits, the densities were decreased in soil saprophagous, increased in soil herbivores, and unchanged in soil predators after N fertilization.
     (5) Insecticide application significant reduced the densities of soil herbivores, with reduced by 97%(0-10 cm) and 100%(10-20 cm) in larch plantation, and reduced by 94%(0-10 cm) and 84%(10-20 cm) in ash plantation. The reduction of herbivore densities significant increased root length densities (P<0.05). These suggest that soil fauna, particularly soil herbivores, may be a critical in estimating soil C cycling in forest ecosystems.
引文
[1]尹文英.中国亚热带土壤动物.北京:科学出版社,1992
    [2]尹文英.中国土壤动物.北京:科学出版社,2000
    [3]陈小云,刘满强,胡锋,毛小芳,李辉信.根际微型土壤动物—原生动物和线虫的生态功能.生态学报.2007,27(8):3132~3143
    [4]Powell, R.D., J.H. Myers. The effect of Sphenoptera jugoslavica.Obenb (Col., Buprestidae) on its hostplant.Centaurea diffusa Lam. (Compositae). Journal of Applied Entomology. 1988,106:25~45
    [5]Maron, J.L. Insect herbivory above and belowground:individual and joint effects on plant fitness. Ecology.1998,79:1281~1293
    [6]Masters, G.J., T.H. Jones, Rogers. M. Host-plant-mediated effects of root herbivory on insect seed predators and their parasitoids. Oecologia.2001,127:246~250
    [7]Stevens, G.N., R.H. Jones. Patterns in soil fertility and root herbivory interact to influence fine-root dynamics. Ecology.2006,87:616~624
    [8]Stevens, G.N., R.H. Jones, R.J. Mitchell. Rapid fine root disappearance in a pine wood land:a substantial carbon flux, Canadian Journal of Forest Research.2002,32:2225~2230
    [9]Tian. G., L. Brussaard. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions—decomposition and nutrient release. Soil Biology & Biochemistry.1992,24:1051~1060
    [10]Henegan, L., D.C. Coleman, X. Zou, Jr.D. A. Crossley, B.L. Haines. Soil microarthropod contributions to decomposition dynamics:tropical—temperate comparisons of a single substrate. Ecology.1999,80:1873~1882
    [11]Hale, C. M., L.E. Frelich, P.B. Reich. Exotic European earthworm invasion dynamics in northern hard wood forests of Minnesota. USA. Ecological Applications.2005,15: 848~860
    [12]Hala, I.C., M.Z. Larry, O. Tsutomu. Effects of earthworm cast and compost on soil microbial activity and plant nutrient availability. Soil Biology & Biochemistry.2003,35: 295~302
    [13]Bonkowski, M., W.C. Cheng, B.S. Griffiths, J. Alphei, S. Scheu. Microbial—faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology.2000,36:135~147.
    [14]Hodge, A., J. Stewart, D. Robinson, B.S. Griffith, A.H. Fitter. Competition between roots and soil micro-organisms for nutrients from nitrogen rich patches of varying complexity. Journal of Ecology.2000,88:150~164
    [15]Griffiths, B.S. Microbial—feeding nematodes and protozoa in soil:Their effects on microbial activity and nitrogen mineralization in decomposition hotpots and the rhizosphere. Plant and Soil.1994,164:25~33
    [16]Kreuzer, K., M. Bonkowsk, R.L. Langel. Decomposes animals (Lumbricidae, Collembola) and organic matter distribution affect the performance of Lolium perenne (Poaceae) and Trifoliumrepens (Fabaceae). Soil Biology and Biochemistry.2004,36:2005~2011
    [17]梁文举,闻大中.土壤生物及其对土壤生态学发展的影响.应用生态学报.2001,12(1):137~140
    [18]Nageeb, Rashed.M., M.E. Soltan. Animal Hair as Biological Indicator for Heavy Metal Pollution in Urban and Rural Areas. Environmental Monitoring and Assessment.2005, 110(1~3):41~53
    [19]Sala, O.E., Chap in III FS, O.J.J. Armest, Global biodiversity scenarios for the year 2100. Science.2000,287:1770~1774
    [20]Boxman, A.W., K. Blanck, T.E. Brandrud, B.A. Emmett, P. Gundersen, R.F. Hogervorst, O.J. Kjonaas, H.Persson, V. Timmermann. Vegetation and soil biota response to experimentally changed nitrogen inputs in conifer ous forest ecosystems of the NITREX Project. Forest Ecology and Management.1998,101:65~79
    [21]Xu, G.L., J.M. Mo, G.Y. Zhou. Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests. Pedosphere.2006,16(5):596~601
    [22]Vetal, W. Effects of global changes on above and belowground biodiversity in terrestrial ecosystems:Implications for ecosystem functioning. Bio. Science.2000,50:1089~1098
    [23]Nkem, J.N., L.A. Lobry de Bruyn, N.R. Hulugalle, C.D. Grant. Changes in invertebrate population over the growing cycle of an N fertilized and unfertilized wheat crop in rotation with cotton in a grey Vertosol. Applied Soil Ecology.2002,20(1):69~74
    [24]Copley, J. Ecology goes undergrand. Nature.2000,406:452~454
    [25]Hemerik, L., L. Brussaard. Diversity of soil maro-invertebrates in grasslands under restoration succession. European Journal of Soil Biology.2002,38(2):145~150
    [26]Huhta, V., and M. Raty. Soil animal communities of planted birch stands in central Finland. Silva Fennica.2005,39(1):5-19
    [27]Cole, L., M.Sarah. Buckland. Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biology & Biochemistry.2005, 37(9):1707~1717
    [28]Lindberg, N., Bengtsson. Janne. Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos.2006,114(3):494~506
    [29]Colemana, David.C., William.B. Whitmanb. Linking species richness, biodiversity and ecosystem function in soil systems Pedobiologia.2005,49:479~497
    [30]Eileen, J. K. Tillage systems and soil ecology. Soil & Tillage Research.2001,61:61~76
    [31]Raija, L.S., C.Niko. Hector. Effects of water level and nutrients on spatial distribution of soil mesofauna in peatlands drained for forestry in Finland. Applied Soil Ecology.2001,16: 1-9
    [32]张雪萍,侯威岭,陈鹏.东北森林土壤动物同功能种团及其生态分布.应用与环境生物学报.2001,7(4):370~374
    [33]廖崇惠,李健雄,杨悦屏.海南尖峰岭热带土壤动物群落—群落的组成及其特征.生态学报.2002,22(11):1866~1872
    [34]Silke, Vetter., Fox.Oliver. Ekschmitt, Klemens. Limitations of faunal effects on soil carbon flow:density dependence, biotic regulation and mutual inhibition. Soil Biology & Biochemistry.2004,36(3):387~397
    [35]Bossuyt, H., J. Six, P.F. Hendrix. Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry.2005,37:251~258
    [36]Andersen, D.C. Below—ground herbivory in natural communities:a review emphasizing fossorial animals. Quarterly Review of Biology.1987,62:261~286
    [37]Vogel, K.P. S.D. Kindler. Effects of the subterranean aphid [Geoica utricularia (Passerini)] on forage yield and quality of sand lovegrass. Journal of Range Management.1980,33: 272-274
    [38]Lisa, Cole., M.Dromph. Karsten, Boaglio. Vincent. Effect of density and species richness of soil mesofauna on nutrient mineralisation and plant growth. Biology and Fertility of Soils.2004,39(5):337~343
    [39]Coleman, D.C., D.A. Crossley. Fundamentals of Soil Ecology. Academic Press. San Diego, 1996
    [40]陈华癸,李阜棣,陈文新.土壤微生物学.上海:上海科学技术出版社,1979
    [41]Ingham, R.E. Interactions between nematodes and vesiculararbuscular mycorrhizae. Agriculture. Ecosystems & Environment.1988,24:169~182
    [42]Gange, A.C., V. K. Brown. Actions and interactions of soil invertebrates and arbuscular mycorrhizal fungi affecting the structure of plant communities. In:Mycorrhizal Ecology Eds. vander Heijden & I. R. Sanders. Springer Verlag.2002,321~344
    [43]Jongmans, A.G., P.M. Mulleman, J.C.Y. Marinissen. Soil structure and earthworm activity in a marine silt loam under pasture versusarable land. Biology and Fertility of Soils.2001, 33(4):279~285
    [44]Wilcox, C., J. Domnguez, R. Parmelee, D. McCartney. Soil carbon and nitrogen dynamics in Lumbricus terrestris. Lmiddens in four arable, a pastureand a forest ecosystems. Biology and Fertility of Soils.2002,33(1)26~34
    [45]Michael, McInerney., J.Declan. Effects of earthworm cast formation on thestabilization of organic matter in fine soil fractions. European Journal of Soil Biology.2001,37(4): 251~254.
    [46]Morgan, J.E., J. Morgan. The distribution and intracellular compartmentation of metals in the endogeic earthworm Apporectodea caligrcosa ampled form an unpolluted and a metal-contaminated site. Environ. Pollut.1998,99:167~175
    [47]Kopeszki, H. An active biondication method for the diagnosis of soil properties using Collembola. Pedobiologia.1997,41:159~166
    [48]Bartnicki, J., J. Alcamo. Caculating nitrogen deposition in Europe.Water Air Soil Pollut. 1989,47:101~123
    [49]Brimblecombe, P., D.H. Stedman. Historical evidence for a dramatic increase in the nitrate component of acid rain. Nature.1982,298:460~462
    [50]Aber, J.D., K.J. Nadelhoffer, P. Steudler. Nitrogen saturation in northern forest ecosystems. Bio Science.1989,39:378~386
    [51]Kazda, M. Indications of unbalanced nitrogen of Norway spruce status. Plant & Soil.1990, 128:97~101
    [52]Bergkvist, B., L. Folkeson. Soil acidification and element fluxes of a Fagussylvatica forest as in fluenced by simulated nitrogen deposition. Water Air Sois Pollut.1992,65:111~133
    [53]Sarathchandra, S.U., A. Ghani, G.W. Yeates, G. Burch, N.R. Cox. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils. Soil Biology & Biochemistry.2001,33:953~964
    [54]BE lter, M. Soil:an extreme habitat for micro organisms. Pedosphere.2004,14 (2):137-144
    [55]Gill, R.A., R.B. Jackson. Global patterns of root turnover for terrestrial ecosystems. New Phytologist.2000,147:13~31
    [56]Bazzaz, F.A. Plant in Changing Environments:Linking Physiological, Population, and Community Ecology. Cambridge:Cambridge University Press,1996
    [57]Wells, C.E., D.M. Glenn, D.M. Eissenstat. Soil insects alter fine root demography in peach (Prunus persica). Plant, Cell and Environment.2002,25:431~439
    [58]Leuschner, C., D. Hertel, I. Schmid, O. Koch, A. Muhs and D. Holscher. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant and Soil.2004,258(1):43~56
    [59]Eissenstat, D.M., R.D. Yanai. The ecology of root lifespan. Advances in Ecological Research,1997,27:1-59
    [60]Hishi, T. H. Takeda. Soil microarthropods alter the growth and morphology of fungi and fine roots of Chamaecyparis obtusa. Pedobiologia,2008,2:97~110
    [61]张荣祖,杨明宪,陈鹏.长白山北坡森林生态系统土壤动物初步调查.森林生态系统研究.1980,(1):133~152
    [62]尹文英.中国土壤动物检素图鉴.北京:科学出版社,1998
    [63]尹文英.中国土壤动物的回顾与展望.生物学通报.2001,36(8):1~3
    [64]孙帆,陈鹏,刘震.吉林省土壤动物组成与生态分布的初步研究.地理学报.1991,46(3):310~318
    [65]刘红,袁兴中.泰山土壤动物群的生态分布.生态学杂志.1999,18(2):13~16
    [66]傅必谦,陈卫,董晓晖.北京松山四种大型土壤动物群落组成和结构.生态学报.2002,22(2):215~223
    [67]汪权方,王宗英.庐山土壤动物群落结构研究.安徽师范大学学报(自然科学版.2003,26(2):180~185
    [68]王振中,张友梅,邢协加.土壤环境变化对土壤动物群落影响的研究.土壤学报.2002,39(6):892~897
    [69]贾淑霞,赵妍丽,孙玥,陈利,王政权.施肥对落叶松和水曲柳人工林土壤微生物生物量碳和氮季节变化的影响.应用生态学报.2009,20(9):2063~2071
    [70]史吉平,张夫道.长期施用氮磷钾化肥和有机肥对土壤氮磷钾养分的影响.土壤肥料.1998,(1):7~10
    [71]林英华,张夫道,杨学云.农田土壤动物与土壤理化性质关系的研究.中国农业科学.2004,37(6):871~877
    [72]郑长英,胡敦孝,李维炯.农田土壤螨群落变化与环境因素关系的研究.中国生态农业学报.2001,9(2):52~53
    [73]林英华,杨学云,张夫道.陕西黄土区不同施肥条件下农田土壤动物的群落组成和结构.生物多样性.2005,13(3):188~196
    [74]徐国良,莫江明,周国逸.氮沉降对三种林型土壤动物群落生物量的影响.动物学研究.2005,26(6):609~615
    [75]Kros. J., De.V.W, P.H.M. Janssen, C.I. Bak The uncertainty in forecasting trends of forest soil acidification. Water Air Soil Pollunt,1993,66:29~58
    [76]Xu, G.L., X.Y. Zhou, G.Y. Zhou. Responses of Aboveground Soil Fauna Community to Simulated N Deposition Addition in Forest Ecosystems. Acta Scientiarum Naturalium Universitatis Sunyatseni.2005,44:21~32
    [77]鲁显楷,莫江明,李德军.鼎湖山季风常绿阔叶林林下层主要植物光合生理特性对氮沉降的响应.北京林业大学学报.2007,29(6):1~9
    [78]朱永恒,赵春雨,王宗英,濮励杰.我国土壤动物群落生态学研究综述.生态学杂志.2005,24(12):1477~1481
    [79]张一,陈鹏.吉林省东部山地主要土壤类型及土壤动物.东北师范大学学报(自然科学版).1984,(2):82~92
    [80]孙儒泳.动物生态学原理.北京:北京师范大学出版社,2001
    [81]张雪萍.土壤动物与环境质量关系探讨.哈尔滨师范大学学报.1995,11(4):95~99
    [82]邱军,傅荣恕.土壤温湿度对甲螨和跳虫数量的影响.山东师范大学学报(自然科学版).2004,19(4):72~74
    [83]张俊霞,刘闲谦.太谷县枣园土壤动物与土壤养分的关系.山西农业大学学报.2005,25(1):8~11
    [84]王宗英,朱永恒,路有成.九华山土壤跳虫的生态分布.生态学报.2001,21(7):1142~1147
    [85]陈国孝,宋大祥.暖温带北京小龙门林区土壤动物的研究.生物多样性.2000,8(1):88~95
    [86]付必谦.我国土壤动物群落学研究进展.生物学通报.1996,31(12):8~9
    [87]Committee of Handbook of Soil Fauna Research Methods(土壤动物研究方法手册编写组).Handbook of Soil Fauna Research Methods. Beijing:China Forestry Publishing House,1998:2~421
    [88]Pregitzer, K.S., J. DeForest, A.J. Burton, M.E. Allen, R.W. Ruess and R.L. Hendrick. Fine root architecture of nine North American trees. Ecological Monographs.2002,72(2): 293~309
    [89]Fitter, A.H. T.R. Stickland. Architectural analysis of plant root systems.Ⅲ. Studies on plants under field conditions. New Phytologist.1992,121(2):243~248
    [90]陈立新.土壤实验实习教程.哈尔滨:东北林业大学出版社,2005
    [91]Volkmar, W. Biodiversity of soil animals and its function. European Journal of Soil Biology.2001,37:221~227
    [92]武海涛,吕宪国,杨青,姜明.土壤动物主要生态特征与生态功能研究进展.土壤学报.2006,43(2):314~322
    [93]殷秀琴,仲伟彦,王海霞,陈鹏.小兴安岭森林落叶分解与土壤动物的作用.地理研究.2002,21(6):689~699
    [94]廖崇惠,李健雄.南亚热带森林土壤动物群落多样性研究.生态学报.1997,17(5):549~555
    [95]陈鹏.土壤动物的采集和调查方法.生态学杂志.1983,(3):40-51
    [96]Jennifer, D.K., C.C. David, D.A. Crossley Jr. Biological indices of soil quality:An ecosystem case study of their use. Forest Ecology and Management.2000,138:357~368
    [97]陈国定,朱文,黎明达等.应用甲螨监测土壤污染的研究.中国环境科学.1991,11(2):100-103
    [98]林英华,孙家宝,刘海良,张夫道,孙龙,金森.黑龙江帽儿山土壤动物群落组成与多样性分析.林业科学.2006,42:71-77
    [99]Ludwig, D. The effects of temperature on the development of an insect.Physiol Zool.1928, 358~389
    [100]于立忠,丁国泉,史建伟,于水强,朱教君,赵连富.施肥对日本落叶松人工林细根直径、根长和比根长的影响.应用生态学报.2007,18(5):957~962
    [101]张一,陈鹏.吉林省东部山地主要土壤类型及土壤动物.东北师范大学学报.1984,(2):82~92
    [102]Brown, V.K., A.C. Gange. Insect Herbivory Below Ground. Advances in Ecological Research.1990,20:1-58
    [103]邵元虎,傅声雷.试论土壤线虫多样性在生态系统中的作用.生物多样性.2007,15(2):116~123
    [104]Boag, B., G.W. Yeates. Soil Nematode Biodiversity in Terrestrial Ecosystems. Biodiversity and Conservation.1998,7(5):617~630
    [105]吴保国,王晓水,刘广平.落叶松水曲柳混交林挥发物和根分泌物的作用.北京:中国林业出版社.1997,159~163
    [106]Gorres, J.H., M.J. Dichiaro, J.B. Lyons, J.A. Amador. Spatial and Temporal Patterns of Soil Biological Activity in a Forest and an Old Field. Soil Biology and Biochemistry.1998, 30(2):219~230
    [107]刘长海.陕北枣林土壤动物群落的结构及其季节动态(硕士论文).北京林业大学.2008
    [108]Anne, P., W. Volkmar. Influence of drought and litter age on Collembolan communities. European Journal of Soil Biology.2001,37:305~308
    [109]殷秀琴.东北森林土壤动物研究长春:东北师范大学出版社.2001,133~138
    [110]张雪萍,李春艳,殷秀琴,陈鹏.不同使用方式林地的土壤动物与土壤营养元素的关系.应用与环境生物学报.1999,5(1):26~31
    [111]Bergkvist, B., L. Folkeson. Soil acidification and element fluxes of a Fagussylvatica forest as in fluenced by simulated nitrogen deposition.Water Air Sois Pollut.1992,65: 111-133
    [112]殷秀琴,李健东.羊草草原土壤动物群落多样性的研究.应用生态学报.1998,9(2):186~188
    [113]胡春华,郑玲哲.酸性沉降物对土壤动物的影响.湖北林业科技.1999,(2):41
    [114]Edwards, C.A., P.J. Bohlen. Biology and Ecology of Earthworms. London Chapman and Hall,1996
    [115]Brussaard, L., V.M. Behan Pelletier, D. Bignell. Biodiversity and ecosystem functioning in soil. Ambio.1997,26:563~570
    [116]Brussaard, L. Soil fauna, guilds, functional groups and ecosystem processes. Applied Soil Ecology.1998,9:127~139
    [117]Folgarait, P.J. Ant biodiversity and its relationship to ecosystem functioning:a review Biodiver Conser.1998,7:1221~1244
    [118]Lavelle, P. Faunal activities and soil process:adaptive strategiesthat determine ecosystem function. A dv Ecol Res.1997,27:93~132
    [119]Yeates, G.W., P.C.D. Newton, D.J. Ross. Response of soil nematode fauna to naturally elevated CO2 levels influenced by soil pattern. Nematol.1999,1:285~293
    [120]朱永恒,赵春雨,王宗英,濮励杰.我国土壤动物群落生态学研究综述.生态学杂志.2005,24(12):1477~1481
    [121]Ekschmitt, K., B.S. Griffiths. Soil biodiversity and its implications for ecosystem functioning in a heterogeneous and variable environment. Applied Soil Ecology.1998,10: 201-215
    [122]王宗英,路有成.长江南岸(安徽段)农业生态系统土壤动物群落结构的初步研究.生态学杂志.1988,7(3):12~17
    [123]梅莉,韩有志,于水强,史建伟,王政权.水曲柳人工林细根季节动态及其影响因素.林业科学.2006,42(9):7~12
    [124]吴保国,王晓水,刘广平.落叶松水曲柳混交林挥发物和根分泌物的作用.北京:中国林业出版社.1997,159~163
    [125]Kuperman, R.G. Relationships between soil properties and community structure of soil macroinvertebrates in oak-hichory forests along an acidic deposition gradient. Applied Soil Ecology.1996,4:125~137
    [126]Tian, G, L. Brussaard, B.T. Kang. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions:effects on soil fauna. Soil Biology & Biochemistry.1993,25:731~737
    [127]Whalen, J.K., R.W. Parmelee, C.A. Edwards. Population dynamics of earthworm communities in corn agroecosystems receiving organic or inorganic fertilizer amendments. Bio Fertil Soils.1998,27:400~407
    [128]Scheu, S. M. Schaefer. Bottomup control of the soil macrofauna community in a beechwood on limestone:manipulation of food resources. Ecology.1998,79:1573~1585
    [129]徐国良,莫江明,Brown Sandra,李德军.土壤动物对模拟N沉降的响.应用生态学报.2004,24(10):2245~2251
    [130]黄伦先,沈世华.紫色水稻土不同耕作生境中土壤动物群落变化及影响效应的初步研究.土壤农化通报.1996,11(1):10~15
    [131]Quinn, M.A., A.A. Hower. Effects of root nodules and taproots on survival and abundance of Sitona hispidulus (Coleoptera:Curculionidae) on Medicago sativa. Ecological Entomology.1986,11:391~400
    [132]Gill, R.A., R.B. Jackson. Global patterns of root turnover for terrestrial ecosystems. New Phytologist.2000,147:13~31
    [133]Mackie-Dawson, L.A., D. Atkinson. Methodology for the study of roots in field experiments and the interpretaion of results. In D. Atkinson, (ed.), Plant Root Growth, and Ecological Perspective. Blackwell Scientific Publications. London.1991,25-47
    [134]Hendricks, J.J., K.J. Nadelhoffer J.D. Aber. Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology and Evolution.1993,8:174~178
    [135]Publicover, D.A., K.A. Vogt. A comparison of methods for estimating forest fine root production with respect to sources of error. Canadian Journal of Forest Research.1993,23: 1179~1186
    [136]Nadelhoffer, K.J. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist.2000,147(1):131~139
    [137]Robinson, D., A. Hodge, A. Fitter. Constraints on the form and function of root systems. In:Kroon H D, eds. Root Ecology. Heidelberg:Springer Verlag.2003,1-26
    [138]Endlweber, K, S. Scheu. Interactions between mycorrhizal fungi and Collembola:effects on root structure of competing plant species. Biology and Fertility of Soils.2007,43: 741~749
    [139]Dawson, L.A., S.J. Grayston, P.J. Murray, R. Cook, A.C. Gange, J.M. Ross, S.M. Pratt, E.I. Duff and A. Treonis. Influence of pasture management (nitrogen and lime addition and insecticide treatment) on soil organisms and pasture root system dynamics in the field. Plant and Soil.2003,255:121~130
    [140]Fransen, B., H.D. Kroon, F. Berendse. Root morphological plasticity and nut rient acquisition of perennial grass species from habitats of different nut rient availability. Oecologia.1998,115(3):351~358
    [141]Wells, C.E., D.M. Glenn. D.M. Eissenstat. Soil insects alter fine root demography in peach (Prunus persica). Plant, Cell and Environment.2002,25:431~439
    [142]Hishi, T., H. Takeda. Soil microarthropods alter the growth and morphology of fungi and fine roots of Chamaecyparis obtusa. Pedobiologia.2008,2:97-110
    [143]Stevens, G.N., R.H. Jones. Influence of root herbivory on plant communities in heterogeneous nutrient environments. New Phytologist. (2006-a),171:127~136
    [144]Pregitzer, K.S., M.J. Laskowski, A.J. Burton, V.C. Lessard, D. Zak. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology.1998,18: 665~670
    [145]Guo, D.L., M.X. Xia, X. Wei, W.J. Chang, Y. Liu, Z.Q. Wang. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist.2008,180(3):673~683
    [146]Guo, D.L., R.J. Mitchell, J.J. Hendricks. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia.2004,140: 450~457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700