用户名: 密码: 验证码:
芸薹属植物对砷胁迫的反应及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是广泛存在于自然界的一种微量元素,有剧毒并且有致癌作用。进入环境系统的砷,通过植物积累进入动物和人的体内,给粮食安全生产、人们生活和健康带来了威胁。油菜是我国南方广泛种植的大田作物,在砷污染地区有不同程度的种植。本文在总结了国内外砷对植物生物有效性研究的基础上,通过水培和土壤培养试验相结合的方式,以不同耐性芸薹属植物品种为材料,应用生理生化研究法并结合砷的形态分析技术、根系分泌物收集,深入研究了不同耐性油菜品种对砷胁迫的反应和初步机理。主要研究结果如下:
     1.应用水培试验对73个甘蓝型油菜品种和197个芥菜型油菜品种进行筛选。试验结果表明,砷排异型品种有J176、J296、J286、J110、J085、J245、J148、J200、J062、J039、J045、J208、J059、071、041、097,特点是地上部和地下部生物量均较对照增大,砷的冠根比很小,砷主要集中在根系;砷排异敏感型品种有J008、J010、J069、J022、J214、J282、001、025,具有生物量较对照小、砷主要集中在地下部的特点;砷低吸收型品种主要有J179、J135、J098、J237、007、075、091,其生物量较对照增加,但植株砷累积量较少。从这31个品种中选出有代表性的砷排异型品种和砷排异敏感型品种6个,分别为排异型品种J200、J062、071、041和排异敏感型品种J022、025用于进一步进行模拟砷污染土壤盆栽试验的机理研究。
     2.在土壤盆栽条件下,研究了砷胁迫对不同耐性油菜生长及产量的影响。结果表明,砷排异型品种(J200、J062、071、041,其中前2个为芥菜型,后两个为甘蓝型)的生物量均出现砷处理高于空白处理的趋势;而排异敏感型品种(J022、025)的生物量及产量则呈现砷处理低于空白处理的趋势。砷排异型品种(J200、J062、071、041)的产量和荚果数均出现上升趋势,其中J200砷处理的产量较空白出现显著性增加,J062单株荚果数增加了47.2%,而砷排异敏感型品种(J022、025)的产量和荚果数均出现下降趋势;同时,砷处理下所有品种的千粒重均有所上升,其中品种J200较对照提高了30.6%。比较不同耐性品种的反应和砷累积情况,可知在土壤砷浓度约100mg/kg时,适合种植排异型油菜。
     3.采用水培试验研究了不同耐砷性油菜根系对砷的吸收动力学和根系分泌物反应。试验结果表明,对三价砷来说,敏感型品种的Imax大、Cmin和Km小,而排异型品种的Imax小、Cmin和Km大,均达到显著性差异,敏感型品种表现出较排异型品种更强的三价砷吸附亲和力,而对五价砷的离子亲和力则差异不显著。油菜根系分泌的有机酸主要是草酸和苹果酸。砷胁迫下,排异型品种较敏感型品种分泌的有机酸增加趋势较明显,J062分泌的草酸和苹果酸较对照分别增加了44.5%和30.5%;071分泌的草酸和苹果酸较对照分别增加了45.0%和15.5%。
     4.采用砷价态分离技术研究了不同耐砷性油菜体内砷含量和砷价态的变化。结果表明:进入植物体内的砷,主要存在于根系,转移到地上部分的砷含量很低。砷主要以无机三价态和五价态存在于油菜的根系和叶片中,且三价态的砷含量高于五价态砷的含量,其在叶片和根系中的含量分别达到70%和80%以上。敏感型品种(J022、025)中的As(V)显著高于排异型品种,受到的毒害性较大。
     5.不同耐砷性油菜酶系统、非酶系统和光合系统对砷污染的反应。结果表明,砷胁迫下,两类不同耐性油菜品种通过酶系统(SOD和CAT)和非酶系统(AsA、GSH和MDA)的反应抵抗或降低砷对作物体本身的伤害。砷处理下,排异型油菜的酶系统和非酶系统均非常活跃,共同作用抵抗砷的毒害;而敏感型的自我调节功能较差,受害严重,025的SOD、MDA含量差异显著,分别出现51.7%的下降和43.61%的增加。
     砷胁迫下6个品种的叶绿素含量都有所增加,其中薹期排异型品种的叶绿素a/b出现上升,而敏感型的叶绿素a/b出现下降。砷胁迫提高了排异型品种叶片的光合速率,促进其光合作用,敏感型品种则出现光合速率的下降。
Arsenic is a highly toxic and carcinogenic microelement widely existed in nature. After consuming plants with certain accumulation of arsenic, the health of the animals and human being will be at stake, which could be of hidden threat to food safety and living conditions. Rape, a kind of field crop widely planted in southern China, has been affected by arsenic pollution in different degrees. Based on the reviews of arsenic bioavailability to plants, solution culture and soil culture experiments were conducted to investigate the different physiological responses and mechanisms between different rapes which are planted in arsenic polluted soil. The main results were as follows:
     1. Some rape varieties tolerant to arsenic were selected via hydroponic culture added with arsenic. The results indicated that there were 16 varieties selected as As tolerant, namely J176, J296, J286, J110, J085, J245, J148, J200, J062, J039, J045, J208, J059,071,041,097, featuring as higher aerial and underground biomass ratio, smaller root cap, and larger amount accumulation of As in root system; sensitive varieties were J008, J010, J069, J022, J214, J282,001,025, with the characterization of lower biomass and higher accumulation of As in underground part; seven low-absorption varieties were J179, J135, J098, J237,007,075,091, with higher biomass than control but lower As accumulation. For further As pot experiment, six typical As tolerant- and sensitive-varieties were selected from these 31 varieties, which were J200, J062,071,041, J022,025.
     2. The effects on growth and yields of different rape cultivars were investigated under arsenic stress. The results indicated that the biomass, yield and fruitage of J200, J062,071,041 were higher than that of the control and J022 and 025 were not. Fruitage of J062 increased by 47.2% and thousand grain weight of J200 increased by 30.6% compared with the controls. The results concluded that As tolerant rapes were better choices to plant when arsenic concentration in the soil is up to 100 mg/kg.
     3. The effects on kinetics of As uptake and root exudates of rapes under arsenic stress were analyzed. The results indicated that, for As3+, sensitive rapes had higher Imax, lower Cmin and Km and tolerant ones showed the opposite trend. The main organic acids exuded from different rapes were oxalic acid and malic acid. Compared with the control, oxalic acid and malic acid exuded from J062 decreased by 44.5% and 30.5% respectively,45.0% and 15.5% as for 071.
     4. Concentration and form of arsenic in rape tissues were investigated. The results indicated that most arsenic was accumulated in rape roots but difficult to transfer upward. Arsenic in roots and shoots of rapes exsited as As3+ and As5+, but As3+ was the main species, its content in leaves and roots were more than 70% and 80%. The content of As5+ of J022,025 is higher than the others.
     5. The responses of enzymatic antioxidant, non-enzymatic antioxidant and photosynthesis systems of rape tissues were investigated. The results indicated that the activities of enzymatic antioxidants (superoxide dismatase-SOD, and catalase-CAT) and the contents of non-enzymatic antioxidants (glutathione-GSH, ascorbic acid-AsA, and malondialdehyde-MDA) in tolerant rapes increased and sensitive rapes did not. They played an important role in decreasing arsenic toxicity.
     Chlorophyll content in the six selected varieties was elevated in the pot experiment, but chlorophyll a/b ratio was increased in tolerant varieties and decreased in sensitive ones at bolting stage. As stress improved the photosynthetic rate in tolerant varieties, but reverse phenomenon was observed in the sensitive ones.
引文
1.白建峰,林先贵,尹睿,张华勇.砷污染土壤的生物修复研究进展.土壤,2007,39(5):692-700
    2.蔡宝松,雷梅,陈同斌.植物鳌合肽及其在抗重金属胁迫中的作用.生态学报,2003,23(10):2125-2132
    3. 曹慧,兰彦平,刘会超.水分胁迫下短枝型苹果幼树活性氧代谢失调对光合作用的影响.内蒙古农业大学学报,2000,21(3):22-25
    4.常二华,杨建昌.根系分泌物及其在植物生长中的作用.耕作与栽培,2006(5):13-16
    5.陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1992,27(2):84-89
    6.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物娱蛤草及其对砷的富集特征.科学通报,2002,47(3):207-210
    7.陈静生.我国东部冲积平原区水成土壤元素背景值地域分异规律.环境科学学报,1994,14(1):11-17
    8.龚月桦,王俊儒,高俊凤.植物修复技术及其在环境保护中的应用.农业环境保护,1998,17(6):268-270
    9.何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社,1998:35-39
    10.胡鹏杰,周小勇,仇荣亮,汤叶涛,应蓉蓉.Zn超富集植物长柔毛萎陵菜对Cd的耐性与富集特征.农业环境科学学报,2007,26(6):2221-2224
    11.蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤,2004,36:264-270
    12.蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景.农业环境保护,2000,19(3):179-183
    13.李典友,陈亦农.土壤中砷污染的危害和防治对策研究.2005,24:89-91
    14.李合生,孙群,赵世杰,章文华.植物生理生化试验原理合技术.北京:高等教育出版社,2000
    15.李建宏,邰子厚,曾召琪.Cu2+对蓝藻光合作用的抑制.植物生理学报,1997,23(1):77-82
    16.李强,莫大伦.土壤环境中砷污染的危害及其研究进展.热带亚热带土壤科 学,1997,6(4):291-295
    17.李荣春.Cd, Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响.植物生态学报,2000,24(2):238-242
    18.李文学,陈同斌.超富集植物吸收富集重金属的机理和分子生物学机制.应用生态学报,2003,14(4):627-631
    19.李玉双,孙丽娜,孙铁星,王洪.超富集植物叶用红恭菜(Beta vulgaris var.ciclaL.)及其对Cd的富集特征.农业环境科学学报,2007,26(4):1386-1389
    20.廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1992
    21.刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展.农业环境科学学报,2003,22:636-640
    22.骆永明.金属污染土壤的植物修复.土壤,1999,31(5):261-265
    23.尚琪,任修勤,李晋蓉.环境砷污染区人群健康危害经济损失分析.环境健康杂志,2003,20(2):72-74
    24.沈振国,刘友良.重金属超量积累植物研究进展.植物生理通讯,1998,34(2):133-139
    25.水富县环保信息,2008.http://ztsf.xxgk.yn.gov.cn/canton_model2/news view.aspx
    26.谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理.植物生态学报,2006,30(4):703-712
    27.汤叶涛,仇荣亮,曾晓雯,方晓航.一种新的多金属超富集植物—圆锥南芥(Arabis paniculata L.).中山大学学报(自然科学版),2005,44(4):135-136
    28.涂书新,韦朝阳.我国生物修复技术的现状与展望.地理科学进展,2004,23(6):20-29
    29.王彗忠,何翠屏.铅对草坪植物生物量与叶绿素水平的影响.草业科学,2003,6:73-75
    30.王新,吴燕玉.重金属在土壤-水稻系统中的行业特性.生态学杂志,16(4):10-14
    31.王真辉,林位夫.农田土壤重金属污染及其生物修复技术.海南大学学报(自然科学版),2002,20(4):383-393
    32.韦朝阳,陈同斌,黄泽春,张学青.大叶井口边草一种新发现的富集砷的植 物.生态学报,2002,22(5):777-778
    33.韦朝阳,陈同斌.高砷区植物的生态与化学特征.植物生态学报,2002,26(6):695-700
    34.魏夏盛.中国土壤环境背景值研究.环境科学,1991,14(4):12-19
    35.杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1):8-15
    36.张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应.土壤,1996,(2):64-68
    37.张晓红.印度西孟加拉州发生世界上最严重的砷污染环境.环境科学动态,1998,(3):31-32
    38.张学洪,罗亚平,黄海涛,刘杰,朱义年,曾全方.一种新发现的湿生铬超积累植物—李氏禾(Leersia hexandra Swartz).生态学报,2006,24(3):950-953
    39.张义贤.重金属对大麦毒性的研究.环境科学学报,1997,17(2):199-204
    40.张玉秀,柴团耀.植物耐重金属机理研究进展.植物学报,1999,41(5):453-457
    41.周启,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应.应用生态学报,5(4):438-441
    42.周启星,魏树和,刁春燕.污染土壤生态修复基本原理及研究进展.农业环境科学学报,2007,26(2):419-424
    43.周启星.健康土壤学:土壤健康质量与农产品安全.北京:科学出版社,2005
    44.朱永官.土壤-植物系统中的微界面过程以及其生态环境效应.环境科学学报,2003,23(2):205-210
    45.朱永官,陈保冬,林爱军,叶志鸿,黄铭洪.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考.环境科学学报,2005,25(12):1575-1579
    46.朱云集,王晨阳,马元喜.砷胁迫对小麦根系生长及活性氧代谢的影响.生态学报,2000,20(4):707-710
    47. Abedin M J, Cotter-Howells J, Meharg A A. Arsenic uptake and accumulation in rice (Oryza stativa L.) irrigated with contaminated water. Plant Soil,2002,240: 311-319
    48. Abedin M J, Cresser M S, Meharg A A, Feldmann J, Cotter-Howells J. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol, 2002,36:962-968
    49. Ahsan D A, Delvalls T A, Blaseo J. Distribution of arsenic and trace metals in the flood plain agricultural soil of Bangladesh. Bull Environ Contam Toxicol,2009, 82:11-15
    50. Baker A J M, McGrath S P, Reeves R D, Smith J A C. Metal hyperaceumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal-contaminated soil. In:Phytoremediation of Contaminated soil and water:Terry N eds., Lewis Publishers:Boca Raton, Florida, USA,2000,85-107
    51. Balasoiu C F, Zagury G J, Deschnes L. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils:influence of soil composition. Sci total Environ,2001,280:239-255
    52. Basak M, Shama M, Chakraborty U. Biochemical responses of Camellia sinensis (L.) O. Kuntze to heavy metal stress. Enwiron Biol,2001,22(1):37-41
    53. Beretka J, Nelson P. The current state of utilisation of fly ash in Australia. In "Ash-A Valuable Resource". South African Coal Ash Association,1994,1:51-63
    54. Bose P, Sharma A. Role of iron in controlling speciation and mobilization of arsenic in subsurfaceenvironment. Water Research,2002,36:4916-4926
    55. Brooks R R, Lee, Reeves R D, Jaffre T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Geochem Explor,1977,7: 49-57
    56. Cao X, Ma L Q, Tu C. Antioxidative responses to arsenic in the Arsenic-hyperaccumulator Chinese brake ferm(Pteris vittata L). Environmental Pollution,2004,128:317-325
    57. Cappuyns V, Van Herreweghe S, Swennen R, Ottenburgs R and Deckers J. Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Sci Total Environ,2000,295:217-240
    58. Carbonell A A, Aarabi M A, DeLaune R D, Gambrell R P and Patrick Jr W H, Arsenic in wetland vegetation:Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ,1998,217:189-199
    59. Carbonell-Barrachina A A, Burlo F, Lopez E, Mataix J. Tomato plant nutrition as affected by arsenite concentration. Jplant Nutr,1998,21:235-244
    60. Carlson C L, Adriano D C, Sajwan K S, Abels S L, Thoma D P and Driver J T. Effects of selected trace metals on germinating seeds of six plant species. Water, Air, Soil Pollut,1991,59:231-240
    61. Chaney R L, Malik M, Li Y M, Brown S L, Brewer J S. Phytoremediation of soil metals. Curr opin biotech,1997,8:279-284
    62. Chen J, Zhou J and Goldsbrough P B. Characterization of phytochelatin synthase from tomato. Physiologia Plantarum,1997,101:165-172
    63. Chen T B, Liu G L, Xie K Y, Gan S W. Soil and crop arsenic contents in arsenic-toxic area in Southern China's Hunan Province and the critical contents of soil arsenic to crop safety. Soil Fertilizer,1992,2:1-4
    64. Chen T B. Arsenate adsorption in soil and its mechanism. Chin Environ Sci,1994, 5(1):85-91
    65. China National Environmental Monito ring Center (CNEMC). The backg round values of soil elements in China. Beijing:Chinese Environment Science Press, 1990
    66. Choder W P, Arellano J B, Bitter R. Flash induced absoption spectroscopy studies of copper interaction of with photosystem in higher plants. J Biol chem,1994, 269:32865-32870
    67. Chrenekova Z. Uptake and distribution of arsenate ions bymustard under conditions of varying phosphorus nutrition. Environmental pollution,1975,21(9): 752-758
    68. Clijsters H and Assche F. Inhibition of photosynthesis by heavy metals. Photosynthesis Research,1985,7:31-40.
    69. Cullen W R and Reimer K J. Arsenic speciation in the environment. Chemical Reviews,1989,89:713-764
    70. Dahmani-Muller H, Van O F, Gelia B, Balabane M. Strategies of heavy metal uptake by three plants pecies growing near a metal smelter. Environmental pollution,2000,109:231-238
    71. De Knecht J A, Koevoets P L M, Verkleij J A C and Ernst W H O. Evidence Against a Role for Phytochelatins in Naturally Selected Increased Cadmium Tolerance in Silene vulgaris (Moench) Garcke. New Phytologist,1992,122: 681-688
    72. Elizabeth Willians, Mark O, Barnett,/timothy A, Kramer, and joel G, Melville. Adsorption and transport of arsenic (V) in experimental subsurface systems. J Environ Qual,2003,32:841-850
    73. Ellman G L. Tissue sulfhydryl groups. Arch Biochem Biophys,1959,82:70-77
    74. Emst W H O. Bioavailability of heavy metals and decontamination of soil by plants. Application Geochemistey,1996,11:163-167
    75. Farquhar G D, Sharkey T D. Stomatal conductance and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology,1982,33:317-345
    76. Fitz W J, Wenzel W W. Arsenic transformation in the soil-rhizosphere-plant system:fundamentals and potential application to phytoremediation. J Biotechnology,2002,99:259-278
    77. Francesconi K, Visoottiviseth P, Sridokchan W,Goessler W. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos:a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ,2002,248: 27-35
    78. Galli U, Sch H and Brunold C. Thiols in cadmium-and copper-treated maize (Zea mays L.). Planta,1996,198:139-143
    79. Geng C N, Zhu Y G, Hu Y, Williams P, Meharg A A. Arsenate causes dierential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil,2006,279:297-306
    80. Grill E, Winnacker E L and Zenk M H. Phytochelatins:The Principal Heavy-Metal Complexing Peptides of Higher Plants. Science,1985,230:674
    81. Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten bookum W, Schat H, Meharg A A. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant physiology,2001,126:299-306
    82. He B, Fang Y, Jiang G, Ni Z. Optimization of the extraction for the determination of arsenic species in plant materials by high-performance liquid chromatography coupled with hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57:1705-1711
    83. He Y, Zheng Y, Ramnaraine M.Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples. Analytica Chimica Acta,2004,511:55-61
    84. Hingston F J, Posner A M, Quirk J P. Competitive adsorption of negatively charged ligands on hyperaccumulator Pteris Vittata L. and its arsenic accumulation. Chin Sci Bull,2002,47(11):902-905
    85. Hoagland D R and Arnon D I. The water-culture method for growing plants without soil.1938
    86. Hopper J L, Parker D R. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil,1999,210:199-207
    87. Huang Z C, Chen T B, Lei M, Hu T D. Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Botanica Sinica,2004, 46(1):46-50
    88. Jackson B P, Miller W P.Effectiveness of phosphate and hydroide for desorption of arsenic and selenium species from iron oxides.Soil Sci Soc Amer J,2000,64: 1616-1622
    89. Joint F A O. WHO Expert committee on food additives. Toxicological evaluation of certain food aAdditives. WHO food additives series 22,1998
    90. Khattak R, Page A L, Parker D R, Baker D. Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus in alfalfa. J Environ Qual,1991, 20:165-168
    91. Knudson J A, Meikle T, DeLuca T H. Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of basin wildrye. J Environ Qual,2003,32:2001-2006
    92. Koch I, Wang L, Ollson C, Cullen W R, Reimer K J. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ Sci Tech,2000,34:22-26
    93. Koricheva J, Roy S, Vranjic J A, Haukioja E, Hughes P R and Hanninen O. Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ Pollut,1997,95:249-258
    94. Koricheva J, Roy S, Vranjic J A, Haukioja E, Hughes P R and Hanninen O Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ Pollut,1997,95:249-258
    95. Kumar P B A N, Dushenkov V, Motto H and Raskin I. Phytoextration-the use of plant to remove heavy metals from soils. Environ Sci Tech,1995,29:1232-1238
    96. Lagrimini L M. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol,1991,96:577-583
    97. Le X C, Yalcin S, Ma M. Speciation of submicrogram per liter levels of arsenic in water:on-site species separation integrated with sample collection. Environ Sci Technol,2000,34:2342-2347
    98. Lee D A, Chen A, Schroeder J I. Arsl, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. The Plant Journal,2003,35:637-646
    99. Lester I H. Australia's Food & Nutrition. Australian Govt. Pub. Service.1994
    100.Liao X Y, Chen T B, Lei M, Huang Z C, Xiao L Y. An Z Z. Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant soil,2004,261:109-116
    101.Ma L Q, Komar K M M, Tu C, Zhang W, Cai Y, Kennelley E D. A fern that hyperaccumulates arsenic. Nature,2001:409-510
    102.Mandal B K, Suzuki K T. Arsenic round the world:A review. Talanta,2002,58: 201-235
    103.Marcelle R. Effects of stress on photosynthesis. Martinis Nijhoff, The Hague. 1983,317-382
    104.Marchiol L, Sacco P, Assolari S, Zerbi G. Reclamation of Polluted Soil: Phytoremediation Potential of Crop-Related BRASSICA Species. Water, Air, Soil Pollut,2004,1518:345-356
    105.Marin A R, Masscheleyn P H, Patrick W H. The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil,1992,139:175-183
    106.Marin A R, Pezeshki S R, Masschelen P H and Choi H S, Effect of dimethylarsenic acid(DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. Plant Nutr,1993,16:865-880
    107.Mascher R, Lippmann B, Holzinger S and Bergmann H. Arsenate toxicity:effects on oxidative stress response molecules and enzymes in red clover plants. Plant Science,2002,163,961-969
    108.Mattysch J, Wennrich R, Schmidt A C, Reisser W. Determination of arsenic species in water, soil and plants. Fresenius'JAnal Chem,2000,366:200-203
    109.Meharg A A, Macnair M R. An altered phosphate uptake systemin arsenate tolerant Holcus lanatus L. New Phytologist,1990,116:29-35
    110.Meharg A A, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species.New Phytologist,2002,154:29-43
    111.Meharg A A, Jardine L. Arsenite transport into paddy rice(Oryza sativa) roots. New Phytologist,2003,157:39-44
    112.Meharg A A, Macnair M R. Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatusL. New Phytologist,1991, 117:225-231
    113.Meharg A A. Arsenic in rice-understanding a new disaster for South-East Asia.Trends in Plant Science,2004,9(9):415-417
    114.Meharg A A. Integrated tolerance mechanisms:constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant cell Environ, 1994,17:989-993
    115.Monni S, Uhlig C, Junttila O, Hansen E, Hynynen J. Chemical composition and ecophysiological responses of Empetrum nigrum to aboveground element application. Environmental Pollution,2001,112:417-426
    116.Mylona P V, Polidoros A N, Scandalios J G. Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med,1998,25:576-585
    117.National Food Authorty. Australian Food Standard Code:March. Australian Govt. Pub. Service Canberra.1993
    118.Nelson D W, Sommers L E and Page A L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph,1982,9: 181-197
    119.Nicholson F A, Chambers B J, Williams J R and Unwin R J. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Techno,1999,70:23-31
    120.Norra S, Bemer Z A, Agarwala P. Impact of irrigation with As rich groundwater on soil and crops:a geochemical case study in West Bengal Delta Plain, India. Apply Geochem,2005,20:1890-1906
    121.Nriagu J O, Pacyna J M. Quantitative assessment of world wide contamination of air, water and soils by trace metals. Nature,1988,333:134-139
    122.Ohno K, Yanase T, Matsuo Y, Kimura T, Hamidur M, Magara Y, Mastui Y. Arsenic intake via water and food by a Population living in an arsenic-affected area of Bangladesh. Sci Total Environ,2007,381:68-76
    123.Onken B M and Hossner L R. Plant uptake and determination of arsenic species in soil solution under flooded conditions. J Environ Qual,1995,24:373-381
    124.Paivkoe A E A and Simola L K. Arsenate Toxicity to Pisum sativum:Mineral Nutrients, Chlorophyll Content, and Phytase Activity. Ecotoxicology Environ Safety,2001,49:111-121
    125.Pavel Tlustos. Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid. Applied Organometallic Chemistry,2002,16:216-220
    126.Pershagen G. The Carcinogenicity of Arsenic. Environ Health Perspectives,1981, 40:93-100
    127.Peryea F J. Phosphate induced release of arsenic from soils contaminated with lead arsenate. Soil Science Society of America Journal,1991,55:1301-1306
    128.Peryea F J. Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions. Hortscience,1998,33:826-829
    129.Pickering I J, Prince P C, George M J, Smith R D, George G N, Salt D E. Redction and coordination of arsenic in Indian Mustard. Plant physiology,2000, 122:1171-1177
    130.Pickering I J, Prince R C, George M J. Reduction and coordination of arsenic in Indian mustard. Plant Physiology,2000,122 (4):1171-1177
    131.Pongratz R. Arsenic speciation in environmental samples of contaminated soil. Sci total Environ,1998,224:133-141
    132.Qafoku N P, Kukier U, Sumner M E. Arsenate displacement from fly ash in amended soils. Water Air Soil Pollut,1999,114(1-2):185-198
    133.Quaghebeur M, Rengel Z. The distribution of arsenate and arsenic in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphatesupply.Plant Physiol,2003,132:1600-1609
    134.Quartacci M F, Pinzino C, Cristina L M. Growth in excess copper induces changes in the lipid composition and fluidity pf PS Ⅱ-enriched membranes in wheat. Physiol Plant,2000,108:87-93
    135.Raab A, Feldmann J, Meharg A A. The Nature of Arsenic-Phytochelatin Complexes in Holcus lanatus and Pteris cretica 1. Physiol Plant,2004,134: 1113-1122
    136.Rumberg C B, Engel R E, Meggitt W F. Effect of phosphorus concentration on the absorption of arsenate by oatfrom nutrient solution. Agron J,1960,52 452-453
    137.Sali M.Effects of root and foliar treatments with lead, cadmium and copper on the uptake distribution and growth of radish plants. Environ int,19(4):440-445
    138.Salin M L. Toxic oxygen species and protective systems of the chloroplast. Physiol Plant,1987,72:681-689
    139.Schat H and Kalff M M A. Are Phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain. Plant Physiol,1992,99: 1475-1480
    140.Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker P M. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes.J Exper Bot,2000, 53:2381-2392
    141.Schmoger M E V, Oven M, Grill E, Detoxification of arsenic by phytochlatins in plant. Plant Physiology,2000,122(3):793-801
    142.Shariatpanahi M and Anderson A C. Distribution and toxicity of monosodium methane arsonate following oral administration of the herbicide to dairy sheep and goats. Environ Sci Health B,1984,19:427-439
    143.Smith A H, Goycolea M, Haque R, Biggs M L. Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. American Journal of Epidemiology,1998,147:660-669
    144.Smith E, Naidu R, Alston A M. Arsenic in the soil environment:A review. Advance in Agronomy,1998,64:149-195
    145.Sneller F E C, Van Heerwaarden L M, Kraaijeveld-Smit F J L, Ten Bookum W M, Koevoets P L M, Schat H, Verkleij J A C. Toxicity of arsenate in Silen vulgaris, accumulation and deradation of arsenate-induced phytochelatins. New Phytol, 1999,144:223-232
    146.Song J H, Shin S H, Ross G M. Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system. Brain Research,2001,895:66-72
    147.Stobark A K, Grifiths W T. The effect of Cd2+on the biosynthesis of chlorophyll in pleases of bar ley. Plant physiol,1985,63:293-298
    148.Sun R L, Zhou Q X, Jin C X. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly-found cadmium hyperaccumulator. Plant Soil,2006,285:125-134
    149.Tang T and Miller D M.1991 Growth and tissue composition of rice grown in soil treated with inorganic copper, nickel, and arsenic. Commun in soil sci and plant anal,1991,22:2037-2045
    150.Taylor G J, Foy C D. Mechanisms of aluminum tolerance in Trilicum aestivum L.(wheat) I. Differential pH induced by winter cultivars in nutrient solutions. American Journal of Biology,1985,7:695-701
    151.Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere,2002,46:31-38
    152.Tu C and Ma L Q. Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant Soil,2003,249:373-382
    153.Tu C and Ma L Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environmental Pollution,2005,135:333-340
    154.Tu S and Ma L Q. Comparison of Arsenic and Phosphate Uptake and Distribution in Arsenic Hyperaccumulating and Nonhyperaccumulating Fern. J Plant Nutr,2004,27:1227-1242
    155.Tu S and Ma L Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot,2003b,50:243-251
    156.Tu S, Ma L Q, Luongo T. Root exudates and arsenic accumulation in arsenic hyeraccumulating Pteris vittata and nonhyeraccumulating Nehrolepis exaltala. Plant Soil,2004a,258(1):9-19
    157.Tu S, Ma L Q, MacDonald G E, Bondada B. Effect of arsenic species and phosphorus on arsenic absorption, arsenic reduction and thiol formation in excised parts of pteris vittata L. EnvironExp Bot,2004b,51(2):121-131
    158.Ullrich-Eberius C I, Sanz A, Novacky A J. Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. Exp Bot,1989,40:119-128
    159.Vazquez Reina S, Esteban E, Goldsbrough P. Arsenate-induced phytochelatins in white lupin:influence of phosphate status. Physiologia Plantarum (enhavn.1948), 2005,124:41-49
    160.Visoottiviseth P, Francesconi K, Sridokchan W. the potential of Thai indigenous plant species for the phytommediation of Arsenic contaminated land. Environ Pollut,2002,118:453-461
    161.Wallace A, Mueller R T, Wood R A. Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture. J Plant Nutr,1980,2:111-113
    162.Wang J, Zhao F J, Meharg A A, Raab A, Feldmann J, McGrath S P. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation. Plant Physiol,2002,130:1552-1561
    163.Weckx J E J, Clijsters H M M, Foyer C H. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant,1996,96:506-512
    164.Wei S H, Zhou Q X, Kovl P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci total Environ,2006,369:441-446.
    165.WHO. Toxicological Evaluation of Certain Food Additives and Contamination. World Health Organization, Geneva.1989
    166.Williams L E, Barnett M O, Kramer T A, Melville J G. Adsorption and Transport of Arsenic (V) in Experimental Subsurface Systems. J Environ Qual,2003,32: 841-850
    167.Xie Z and Huang C Y. Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Conunum. Soil Sci. Plant Anal,1998,29:2471-2477
    168.Yanai J, Zhao F J, McGrath S P, Kosaki T. Effects of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environmental Pollution, 2006,139:167-175
    169.Yuan C, Jiang G, He B. Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. J. Anal. At. Spectrom,2005,20:103-110
    170.Zhang J and Kirkham M B. Drought-Stress-Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species. Plant Cell Physiol,1994,35:785
    171.Zhang W H, Cai Y, Tu C, Ma L Q. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ,2002,300:161-177
    172.Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyeraccumulator Thlaspi caerulescen. Plant soil,2003, 249:37-43
    173.Zhu Y G, Christie P, Laidlaw A S. Uptake of Zn by arbuscular mycorrhizal white clover from Zn contaminated soil. Chemosphere,2001,42:193-199
    174.Zu Y, Chen J, Chen H, Qin L, Christian S. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int, 2006,31:755-762

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700