用户名: 密码: 验证码:
土壤调理剂(保水剂)对砂土和砂壤土结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以土壤调理剂(营养型抗旱保水剂和沃特保水剂)和冬小麦(品种为矮抗58)为供试材料,系统研究了两种保水剂对砂壤土和砂土的土壤物理性能、土壤团聚体、土壤孔隙分布特征及冬小麦生物量和产量的影响,探讨了不同技术条件下保水剂的保水改土效果,并得出以下结论:
     1、施用45kg.hm-2营养型抗旱保水剂和60kg.hm-2沃特保水剂对保持土壤水分效果最好。砂土拔节期和成熟期施用营养型抗旱保水剂后土壤含水量比砂壤土有更大的提高,但孕穗期两种土壤的含水量均有所降低;同时,施用沃特保水剂仅对砂土水分影响显著。施用保水剂能够提高土壤含水量和饱和含水量,改善土壤持水性能。
     2、通过保水剂对土壤结构性能的影响分析表明,随营养型抗旱保水剂用量增加,砂壤土和砂土容重分别比不施保水剂减小3.4%和4.3%;沃特保水剂则出现砂土容重减小,砂壤土变化不明显的现象。在土壤团聚体方面,营养型抗旱保水剂显著提高了砂土和砂壤土0.25-0.5mm粒径团聚体的含量,拔节期、孕穗期和成熟期均为先增后减的变化趋势。沃特保水剂对砂土>0.25mm粒径团聚体的影响显著,并随用量增加而增大;对砂壤土团聚体含量也有所提高。
     3、通过CT断层扫描分析表明,两种保水剂对土壤孔隙数、孔隙度、成圆率等孔隙参数分布特征具有显著影响,且营养型抗旱保水剂比沃特保水剂效果好。营养型抗旱保水剂在不同生育期内均提高了砂土的孔隙数、孔隙度和成圆率,随着用量的增多提高幅度加大,并以用量45kg.hm-2时效果最好。沃特保水剂15kg.hm-2处理在三个生育期均降低土壤孔隙数和孔隙度外,其它在孕穗期和成熟期则提高砂壤土的0.5-8mm孔隙数和孔隙度。营养型抗旱保水剂在三个生育期都能提高砂土0.5-8mm的孔隙度,沃特保水剂在拔节期和成熟期提高了砂壤土0.5-8mm的土壤孔隙度,在孕穗期(除处理9外)则降低砂壤土的土壤孔隙度。营养型抗旱保水剂在三个生育期都能提高砂壤土的孔隙面积,降低孔隙的成圆率;沃特保水剂只有在高用量情况下提高土壤孔隙面积,低用量却降低土壤孔隙面积。
     4、保水剂作用的优劣最终体现在产量和生物量的变化上,孕穗期和成熟期营养型抗旱保水剂对砂土和砂壤土的冬小麦生物量有明显影响,砂土孕穗期和成熟期分别比不施加保水剂增加了20.5%、17.8%,砂壤土孕穗期和成熟期分别增加了18.1%、11.3%,两种土壤相比对砂土的影响效果较好;沃特保水剂对砂土冬小麦生物量有明显影响,对砂壤土则无规律可循。随着营养型抗旱保水剂用量增加,冬小麦的产量增加,其中,砂土冬小麦产量分别增加了10.2%-60.2%,砂壤土冬小麦产量分别增加了8.9%-47.6%,均以45kg.hm-2用量增产效果最好。沃特保水剂与营养型抗旱保水剂存在系统趋势,冬小麦的产量虽砂土随用量的增加而增加,增幅较营养型抗旱保水剂小,砂壤土则无规律可循。保水剂的施用可不同程度促进冬小麦生物量和产量的增加,但不同生育时期、不同土壤类型增加程度不同;沃特保水剂仅砂土冬小麦生物量和产量有明显影响,对砂壤土则无规律可循。
     综上所述,两种保水剂对砂壤土和砂土都有改良效果,随用量增加效果越好,并以45kg.hm-2时效果最好;对砂土的改良效果比砂壤土效果好。营养型抗旱保水剂的效果比沃特保水剂好。因此,在农业生产中,选用土壤调理剂必须考虑土壤质地和土壤调理剂用量问题,从而实现土壤改良和作物增产增效的预期目标。
Nutritional and drought-resistant water-retaining agent (NDWA), Wote absorbent (WA) and winter wheat (Bainongaikang58) as materials, the effect of different absorbents on soil physics, soil aggregates of sandy loam and sandy, soil pore and biomass and yield of winter wheat are systematically researched, and discuss the impacts of water-retaining agent on water conservation and soil improvement. The main conclusions are suggested as follows:
     1、There is significant effect of 45 kg.ha-1 of NDWA and 60 kg.ha-1 of WA on water conservation. Compared with sandy soil, NDWA increase soil moisture more prominently at jointing and maturity stage, but water moisture of two soil decreases at booting stage. Meanwhile, there is important effect of WA on soil moisture. What’s more, water-retaining agent can increase soil saturated water content and holding water capacity.
     2、The analysis of the impact of water-retaining agent on soil structure property shows that: with the increase of the NDWA, the bulk weight of sandy loam and sandy soil decrease by 3.4% and 4.3% than no water-retaining agent respectively; the bulk weight of sandy soil with the WA decrease, but there is no obvious change with sandy loam. On soil aggregate, the NDWA remarkably increases the content of sandy loam and sandy soil of 0.25-0.5mm particle size aggregate. The trend of the content of 0.25-0.5mm particle size aggregate at jointing stage, booting stage and maturity stage increases firstly and then decreases. The WA remarkably influences the sandy soil of 0.25-0.5mm particle size aggregate and enlarges along with the increase of dosage. Also the content of sandy soil aggregate rises.
     3、Through the CT scanning analysis showing that there are significant impacts of two absorbent agent on characteristics of soil pore distribution such as soil pore number, porosity, pore round rate and so on, and there is better effect of NDWA compared with WA. During all stages of winter wheat, NDWA improve soil pore number, porosity and pore round rate and with the increase of NDWA, they improving evidently, best one is 45kg.ha-1 of NDWA. The treatment with 15kg.ha-1 of WA decrease soil pore number and porosity in three stages, but increasing soil pore number and porosity of 0.5-8mm to sandy soil. The NDWA increase soil porosity of 0.5-8mm to sandy loam in three stages, while there is same result for WA in jointing and maturity stage, but soil porosity is decreased by the WA at booting stage except treatment 9. Meanwhile, the NDWA can improve soil pore area and decrease pore round rate in three stages, while high dosage of the WA promote soil pore area and it is reverse in the lower dosage of the WA.
     4、The role of the ultimate merits of absorbent agent is reflected in changes in production and biomass on, during the booting and maturity stages NDWA affected biomass of wheat grown in both soil types, increased by 20.5%, 17.8% of sandy soil, increased by 18.1%, 11.3% of silty loam, the effects on wheat grown in sandy soil were more pronounced; WA affects on biomass of wheat in sandy soil were more pronounced, but the effects on biomass of wheat in silty loam showed no discernible patterns. NDWA application boosted wheat yield of both soil, wheat yield of sandy soil increased 10.2%-60.2%, wheat yield of silty loam increased 8.9%-47.6%, the effects were positively correlated with dosage, peaking at 45 kg. ha-1. WA on saving absorbent and nutrition there is a systematic trend, With the increased use of winter wheat yield of sandy soil increased, more nutrition saving Agent small, silty loam no rules to follow.
     To sum up , both water-retaining agent products can improve silty loam and sandy soil, the effects are generally positively correlated with dosage, best one was achieved at 45kg. ha-1. Sandy soil was improved more markedly than silty loam. NDWA was more effective than WA.
引文
[1]李法云,曲向荣,吴龙华等.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社, 2006: 22-49.
    [2]武继承,王生厚,袁中富.黄泛沙区农业资源高效利用种植模式研究[J].河南农业科学, 2000(12): 18-22.
    [3] Vestberg M, Saar i K, Kukko nen S, et al. Mycotrophy of crops in rotation and soil amendment with peatinf luence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field so il[J]. Mycorr hiza, 2005, 15(6) : 447-458.
    [4]易杰祥,吕亮雪,刘国道.土壤酸化和酸性土壤改良研究[J] .华南热带农业大学学报, 2006, 12(1): 23-28.
    [5] Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health[J]. Advances in Agronomy, 1993, 51: 173-212.
    [6] Petrovic A M, Siebert J E, Rieke P E. Soil bulk density analysis in three dimensions by computed tomographic scanning[J]. Soil Sci. Soc. Am. J., 1982, 46 (3): 445-450.
    [7] Perret A, Capowiez Y, etal. X-ray computed tomography to quantify tree rooting spatial distributions[J]. Geoderma, 1999, 90 (3-4): 307-326.
    [8] Sureshraja Neethirajan, Digvir S, Jaya. Analysis of Pore Network in Three-dimensional (3D)Grain Bulks Using X-ray CT Images[J]. Transport in Porous Media, 2008, 73(3): 319-332.
    [9] Warner G s, Nieber J L, Moore I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Sci Am J, 1989, 53: 653-660.
    [10] Anderson S H, Peyton R L, Gantzer CJ . Evaluation of constructed and natural soil macropores using X-ray computed tomography[J]. Geoderma. 1990, 46: 13-29.
    [11] Peyton R L, Andersons H, Gantzer C J. Applying X-ray CT to measure macropore diameters in undisturbed soil cores[J]. Geoderma. 1992, 53: 329-340.
    [12] S. De Gryze, L. Jassogne, J. Six, et al. Pore structure changes during decomposition of fresh residue: X-ray tomography analyses[J]. Geoderma, 2006, 134(1-2): 82-96.
    [13] Dierick, Manuel, Jacobs, Patric. 3D quantification of mineral components and porosity distribution in Westphalian C sandstone by microfocus X-ray computed tomography [J]. Journal of sedimentary geology, 2002, 220(1-2):116-125.
    [14] S. Sleutel,V. Cnudde, B. Masschaele, et al. Comparison of different nano- and micro-focus X-ray computed tomography set-ups for the visualization of the soil microstructure and soil organic matter[J]. Computers & Geosciences, 2008, 34(8): 931-938.
    [15] J.K. Torrance, T. Elliot, R. Martin, et al. X-ray computed tomography of frozen soil[J]. Cold Regions Science and Technology, 2008, 53(1): 75-82.
    [16]李德成,张桃林, B.Velde. CT分析技术在土壤科学研究中的应用[J].土壤, 2002(6): 328-332.
    [17]冯杰,郝振纯.CT扫描确定土壤大孔隙分布[J].水科学进展, 2002, 13(5): 611-617.
    [18] Peyton R L, Gantzer C J, et al. Fractal dimension to describe soil macropore structure using X-ray computed tomography[J]. Water Resour. Res., 1994, 30 (3): 691~700.
    [19]吴华山,陈效民,陈粲.利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J].水土保学报, 2007, 21(2): 175-178.
    [20]吕菲,刘建立,何娟.利用CT数字图像和网络模型预测近饱和土壤水力学性质[J].农业工程学报, 2008, 24(5): 10-14.
    [21]冯杰,郝振纯. CT在土壤大孔隙研究中的应用评述[J].灌溉排水, 2000, 19(3): 71-76.
    [22]巫东堂,王久志.土壤结构改良剂及其应用[ J].土壤通报, 1990, 21( 3) : 140-143.
    [23]武继承.营养型抗旱保水剂研制及增产效应研究[ J].中国农村科技, 2006(7): 59.
    [24]王德汉,彭俊杰,戴苗.造纸污泥堆肥作为土壤改良剂的肥效研究[J].中国造纸学报, 2003, 18( 1): 141-144.
    [25] Mamata M, Rajani K, Sahu S K, et al . Growth yield and elements content of wheat ( Triticum aestivum )grown in composted municipal solid wastes amendedsoil [J]. Environment, Development and Sustainability, 2009, 11: 115-126.
    [26] Fernandez J M, Cesar P, Juan C, et al . Biochemical properties and barley yield in a semiarid Mediterranean soil amended with two kinds o f sewage sludge[J]. Appied Soil Ecology, 2009, 42: 18-24.
    [27] Contreras Ramos S M, Alvar ez Bernal D, Dendoov enL. Characteristics of earth worms ( Eisenia f etida) in PAHs contaminated soil amended with sewage sludge or vermicompost [J]. Applied Soil Ecology, 2009, 41: 269 -276.
    [28]王奇.泥炭-土壤改良剂[J].腐殖酸, 1991(3): 58-64.
    [29] Grandy A S,Porter G A, Er ich M S. Organic amendment and rotation crop effects on there covery of soil organic matter and aggregation in potato cropping systems[J]. Soil Sci Soc Am J, 2002(66): 1311-1319.
    [30]陈义群,董元华.土壤改良剂的研究与应用进展[ J].生态环境, 2008, 17( 3): 1282-1289.
    [31]陈之群,孙治强,张慧梅.土壤调理剂对辣椒田土壤理化性质的影响[J].河南农业科学, 2005( 7) : 84 -85.
    [32]Vepsalainen M, Erkomaa K, Kukko nen S, et al. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure[J]. Plant &Soil, 2004, 264( 1/ 2): 273-286.
    [33] B-runetti G,Plaza C,Clapp C E, et al . Compositional and functio nal features of humic acids from organic amendments and amended soils in Minnesota, USA[J] . Soil Biology and Biochemistry, 2007( 391): 1355-1365.
    [34] Gopinath K A, Supradip S, Mina B L, etal. Influence of organic amendments on g rowth, yield and quality of wheat and on soil properties during transition to organic production[J]. Nutr CyclAgroecosyst, 2008(82): 51-60.
    [35]武继承,郑惠玲,史福刚等.不同水分条件下保水剂对小麦产量和水分利用的影响[J].华北农学报, 2007, 22(5): 40-42.
    [36] Pathan S M, Aylmo re L A, Co lmer1 T D. Turf cultureunder declining volume and frequency of irrigation onasandy soil amended wit h fly ash [J]. Plant and Soil, 2004(266): 355-369.
    [37] Sheppard S K, M cCar thy A J, Loug hnane J P. et al. The impact of sludge amendment on methanog encommunity structure in an upland soil[J]. Applied Soil Ecology, 2005, 28(2): 147-162.
    [38]吴淑芳,吴普特,冯浩.高分子聚合物对土壤物理性质的影响研究[J].水土保持通报, 2003, 23(1): 42-45.
    [39] Daniel S, Alfred F, Kun X, et al. Resource amendments influence density and dompetitive phenotypes of streptomyces in soil [J]. Microbial Ecology, 2009(57): 413-420.
    [40] Vestberg M, Saari K, Kukkonen S, et al. Mycotrophy of crops in rotation and soil amendment with peat in fluence the abundance and effectiveness of indige no usarbuscular mycorrhizal fungi in field soil[J] . Mycorrhiza, 2009(15): 447-458.
    [41] Escuadra E G M, Amem iya Y. Suppr ession of Fusarium wilt of spinach with compost amendments [J]. Journal of General Plant Pathology, 2008 (74): 267-274.
    [42] Liu M Q, Hu F, Chen X Y, et al. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and applicatin time of organic amendments [J]. Applied Soil Ecology, 2009(42): 166-175.
    [43] Yunusa I M, Braun M, Lawrie R. Amendment of soil with coal fly ash modified the burrowing habits of two earth worm species [J]. Applied Soil Ecology, 2009 (42): 63-68.
    [44] Garbeva P, van Veen J A, van Elsas J D. Microbialdiversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annu Rev Phyto pathol, 2004(42): 243-270.
    [45] Antizar Ladislao B, Lopez Real J, Beck A J, et al. In vessel composting bioremediation of aged coal tarsoil: effect of temperature and soil/ green waste amendment ratio[J]. Environment Inter national,2005, 31(2): 173-178.
    [46] Bailey K L, Lazarovits G. Suppressing soil borne diseases with residue management and organic amendments[J]. Soil & Tillage Research, 2003 (72): 169-180.
    [47] Zhou X G, Ever ts K L. Suppression of fusarium wilt of water melon by soil amendment with hairy vetch[J]. Plant Disease, 2004, 88(12): 1357-1365.
    [48] Fernandez J M, Plaza C, Garcia-Gil J C, et al. Biochemical properties barley yield in asemiarid Mediterranean soil amended with two kinds of sewage sludge[J]. Applied Soil Ecology, 2009(42): 18-24.
    [49] Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods Areview[J]. Renew able and Sustainable Energy Reviews, 2008(121): 136-140.
    [50] Gopinath K A, Supradip S, Mina H P, et al. Influence of organic amendments on growth, yield andquality of wheat and on soil properties during transition to organic production[J]. Nutr Cycl Agroecosyst, 2008(82): 51-60.
    [51] Mishra M, Sahu R K, Sahu S K, et al . Influence of organic amendments on growth, yield and quality of wheat and on soil properties during t ransition to organic production [J]. Nutr Cycl Agroecosyst, 2008(82): 51-60.
    [52]顾国平,章明奎.重金属污染农地土壤治理的改良剂选择[J].现代农业科技, 2008(17): 193-195.
    [53]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报, 2004, 41(4): 618-623.
    [54]耿瑞霖,郁红艳,丁维新.有机无机肥长期施用对潮土团聚体及其有机碳含量的影响[J].土壤, 2010, 42 (6): 908-914.
    [55] Germann P, Beven K . Water flow in soil macropores .Ⅰ. An experimental approach[J]. Journal of Soil Science, 1981, 32: 1- 13
    [56]Germann P F, Edwards W M, Owens L B. Profiles of bromide and increaseds oilmoisture after infiltration into soils with macropores[J]. Soil Sci . Soc . Am , 1984, 48: 237-244.
    [57]German D F, Beven K. Ki mematic wave approximation to infiltration into soils with sorbing macropores [J]. Water Resource Res, 1985, 21: 990-9941.
    [58]赫振纯,冯杰.水及溶质在大孔隙土壤中运移的实验研究进展[J].灌溉排水, 2002, 21(1):67-71.
    [59]冯杰,赫振纯,陈启慧.分析理论在土壤大孔隙研究中的应用及其展望[J].土壤,2001(3):123-130.
    [60]李伟莉,金昌杰,王安志等.土壤大孔隙流研究进展[J].应用生态学报, 2007, 18 (4): 888- 894.
    [61]Luxmoore RJ. Micro-,meso-,and macroporosity of soil[J] . Soil Science Society of America Journal,1981(45): 671- 672.
    [62]Skopp J. Comment on“Micro-, meso- , and macroporosity of soil”[J]. Soil Science Society of America Journal, 1981, 45: 1246
    [63] Beven K, Germann P. Macropores and water flows in soils[J] . Water Resources Research, 1982, 18 (5): 1311- 1325.
    [64] Bouma J, Wsten JHM.. Characterizing ponded infiltration in a dry cracked clay soil[J]. J Hydrol, 1984, 69: 297-304.
    [65] Singh P. Ramesh war KS, Thompson ML. Measurement and characterization of macropores by using AUTOCAD and automatic image analysis[J]. J Env iron Qual, 1991, 20: 289-294.
    [66]Feng Jie, Zhang Jia-Bao, Zhu An-Ning. Soil macropore stracterized by X-Ray computed tomography[J]. Pedosphere, 2003, 13(4): 289-298.
    [67] Czapar GF, Hort on R, Faw cett RS. Herbicide and tracer movement in soil columns containing an artificial macropore [J]. J Env iron Qual, 1992, 21: 110-115.
    [68] Phogat V K, Aylmore L A G. Evaluation of soil structure by using computer assisted tomography. Aust. J.Soil Res., 1989, 27 (2): 313-323.
    [69] Jegou D, Hallaire V, et al. Characterization of the burrow system of the earthworms Lumbricusterrestris and Aporrectodea giardi using X-ray computed tomograpHy and image analysis[J]. Biol. Fert. Soils, 1999, 29 (3): 314-318.
    [70] Jegou D, Cluzeau D, et al. Burrowing activity of the earthworms Lumbricus terrestris and Aporrectodeagiardi and consequences on C transfers in soil[J]. Euro. J. Soil Biol., 2000, 36 (1): 27-34.
    [71] Moran C J, Pierret A, et al. X-ray absorption and pHase contrast imaging to study the interplay between plant roots and soil structure[J]. Plant and Soil, 2000, 223 (1-2): 99-115.
    [72] Harrison R D, Gardner W A, et al. X-ray computed tomograpHy studies of the burrowing behavior of fourth-instar pecan weevil (Coleoptera: Curculionidae) [J]. J. Econ. Ento., 1993, 86 (6): 1714-1719.
    [73] Sawada Y, Aylmore L A G, et al. Development of a soil water dispersion index (SOWADIN) for testing the effectiveness of soil-wetting agents[J]. Aust. J. Soil. Res., 1989, 27(1): 17-26.
    [74] Mandang T, Ai F, et al. Studies on the over turning properties of soil by rotary blade using CT image analyzer[J]. Am. Soc. Agri. Eng., 1993, 93: 3035-3047.
    [75] Bakker D M, Bronswijk J J B. Heterogeneous oxygen concentrations in a structured clay soil[J]. Soil Sci., 1993, 155 (5): 309-315 .
    [76]Wachinger G, Fiedler S, et al. Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations[J]. Soil Bio. Biochem., 2000, 32 (8-9): 1121-1130.
    [77]武继承,杨稚娟,何方,等.试论河南省旱地节水农业发展的有效途径[J].河南农业科学, 2006, (1): 5-8.
    [78]王栓庄.河北省半干旱区不同类型区冬小麦的节水灌溉制度[J].干旱地区农业研究, 1991, 9(2): 85-93.
    [79]王树安.作物栽培学各论(北方本) [M].中国农业出版社, 1995, 52-57.
    [80]李继成,张富仓,孙亚联,等.施肥条件下保水剂对土壤蒸发和土壤团聚性状的影响[J].水土保持通报, 2008(2): 35-42.
    [81]汪亚峰,李茂松,宋吉青,等.保水剂对土壤体积膨胀率及土壤团聚体影响研究[J].土壤通报, 2009(5): 17-21.
    [82]刘瑞凤,杨红善,李安,等. PAA-atta复合保水剂对土壤物理性质的影响[J].土壤通报, 2006(2): 57-61
    [83]杨永辉,武继承,吴普特,等.秸秆覆盖与保水剂对土壤结构、蒸发及入渗过程的作用机制[J].中国水土保持科学, 2009(5): 70-75.
    [84]黄震,黄占斌,李文颖,等.不同保水剂对土壤水分和氮素保持的比较研究[J].中国生态农业学报, 2010(2): 70-74.
    [85]白文波,宋吉青,李茂松,等.保水剂对土壤水分垂直入渗特征的影响[J].农业工程学报, 2009(2): 96-99.
    [86]陈宝玉,王洪君,滕轶,等.保水剂对土壤温度和水分动态的影响[J].中国水土保持科学, 2008(6): 77-81.
    [87]谢勇,杜建军,李永胜.保水剂对基质栽培菜心生长及水分利用效率的影响[J].水土保持研究, 2008(4): 76-79.
    [89]苟春林,杜建军,曲东,等.氮肥对保水剂吸水保肥性能的影响[J].干旱地区农业研究, 2006(6): 56-60.
    [90]杨红善,刘瑞凤,张俊平,等. PAAM-atta复合保水剂对土壤持水性及其物理性能的影响[J].水土保持学报, 2005, (3): 75-79.
    [91]曹丽花,赵世伟,赵勇钢,等.土壤结构改良剂对风沙土水稳性团聚体改良效果及机理的研究[J].水土保持学报, 2007, 21(2): 66-69.
    [92]安韶山,张玄,张扬,等.黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征[J].水土保持学报, 2007, 21(6): 72-85.
    [92]李伟莉,金昌杰,王安志等.土壤大孔隙流研究进展[J].应用生态学报, 2007, 18 (4): 888-894.
    [93] Abramoff M D, Magelhaes P J, Ram S J. Image processing with Image J[J]. Biophotonics Int, 2004, 11: 36-42.
    [94] Rachman A, Anderson S H, Gantzer C J. Computed-tomographic measurement of soil macroporosity parameters as affected by stiff-stemmed grass hedges[J]. Soi Sci Soc Am J, 2005, 69: 1609-1616.
    [95]赵世伟,赵勇钢,吴金水.黄土高原植被演替下土壤孔隙的定量分析[J].中国科学:地球科学, 2010, 40(2): 223-231.
    [96] Udawatta R R, Anderson S H, Gantzer C J, etal. Influence of prairie restoration on CT-measured soil pore characteristics[J]. J Environ Qual, 2008, 37: 219-228.
    [97] Udawatta R P, Anderson S H. CT-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers[J]. Geoderma, 2008, 145: 381-389.
    [98] Udawatta R P, Anderson S H, Gantzer C J, et al. Agroforestry and grass buffer influence on macropore characteristics: A computed tomography analysis[J]. Soi Sci Soc Am J, 2006, 70: 1763-1773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700