用户名: 密码: 验证码:
甘肃鼢鼠(Myospalax Cansus)视觉系统感光性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感觉系统的适应机制一直是动物行为学研究的焦点。生活在特殊环境中的动物其感觉系统在进化过程中表现出的显著差异更是引人注目。由于适应地下黑暗的生活环境,这些啮齿动物视觉系统的形态特征、功能等在进化中表现出高度的趋同现象,如视器变小,视觉退化乃至消失等。因此,这为地下啮齿动物视觉系统进化提供了理想的研究材料,将对地下啮齿动物视觉系统适应进化机制的研究起积极促进作用。本研究以甘肃鼢鼠(Myospalax cansus)为材料,运用组织学方法和免疫组织化学研究方法,对甘肃鼢鼠不同暗适应期、不同时间光照刺激后视觉系统各核团中Fos表达进行测定,探讨甘肃鼢鼠视觉系统对光的敏感性。结果如下:
     1.光刺激引起甘肃鼢鼠外侧膝状体背侧核强烈的Fos表达,充分表明甘肃鼢鼠外侧膝状体背侧核神经元强烈的光诱导活动,说明甘肃鼢鼠存在从视网膜发出,经过外侧膝状体背侧核,投射到初级视觉皮层的经典通路,其外侧膝状体背侧核承担成像视觉系统中结构的功能,具有对视觉信息加工处理的作用。在外侧膝状体腹侧核,光刺激后只有少量的Fos表达,这表明甘肃鼢鼠外侧膝状体腹侧核在参与视觉信息传递活动中作用甚小。
     2.光刺激后,甘肃鼢鼠上丘中Fos表达无明显增加,表明甘肃鼢鼠虽存在微小的眼,但其上丘已不再是视眼反射主要的协调中枢了。
     3.连续光照后,甘肃鼢鼠橄榄顶盖前核和视束核强烈的Fos表达,表明甘肃鼢鼠橄榄顶盖前核和视束核除了具有对视觉运动和瞳孔反射进行整合的功能外,还可能参与光、暗环境识别。
     4.暗适应一定时间后,照光组甘肃鼢鼠视交叉上核中出现强烈的Fos表达,表明甘肃鼢鼠视觉系统具有感光能力,其退化的眼和视网膜—下丘脑神经束能有效地将光信息传递到视交叉上核,该部分视觉通路结构在功能上是完整的。
     5.虽然甘肃鼢鼠是严格营地下生活的鼠类,由于长期适应地下黑暗的生活环境,其眼已退化变小,已失去视物能力,但其视觉系统对光仍然敏感,其视觉通路仍然存在,仍然能够将光信息传递到视觉系统各个核团。
     6.甘肃鼢鼠视觉系统感光性存在性别差异,雄鼠比雌鼠对光更敏感。
     7.未照光情况下,雌、雄鼠视觉系统脑区仅视交叉上核中有Fos表达,其它视觉核团都无Fos表达,表明除视交叉上核外其他视觉核团中本身没有感受外界光
Adaptive evolutionary mechanisms of sensory system are the focal points of the animal behavior research, and especially the conspicuously different features that those animals residing in special ecotope show during the evolution of their sensory system are more attractive. Owning to adapting to subterranean dark ecotope, morphologic structure and functional of visual system in subterranean rodents show high convergence, such as small ocular system, regressive visual ability and even no such ability, which provide ideal materials for the study on visual system evolution of these animal. And it will assist in revealing the adaptive evolutionary mechanism of visual system of subterranean rodents. Using histological and immunohistochemistry method to measure Fos expression content of every visual nucleus in different light stimulation time and different dark adaptation period, and to explore the photo-sensitivity of visual system. The results are as follows:1. Strong Fos expression in dorsal lateral geniculate nucleus after light exposure, which is a strong indication for the light-induced reactivity of neurons within the dorsal lateral geniculate nucleus in Myospalax cansus. And show that Myospalax cansus has the typical pathway from retina, relaying through the dorsal lateral geniculate to primary visual cortex, and the dorsal lateral geniculate nucleus play the role of processing light signal as a part of the image-forming visual system. Little Fos expression in ventral lateral geniculate nucleus after light exposure, which indicate that the ventral lateral geniculate nucleus has little function in transmitting visual signal action in Myospalax cansus.2. No obvious increase in Fos expression in superior colliculus of Myospalax cansus during exposure to light, which indicates in Myospalax cansus with its minute eyes the superior colliculus is no longer needed as a major center of coordination for visuo-ocular reflexes.3. Strong Fos expression in olivary pretectal nucleus and optic tract nucleus after exposure to light in Myospalax cansus, which indicate they involve not only in the integration of visuomotor functions and the pupillary light reflex, but also in dark/light discriminatioin.4. Strong c-Fos expression in suprachiasmatic nucleus after light exposure after some dark adaptation period, which suggests that the rudimentary eyes and retino-.
引文
[1] 柏华,胡国刚,魏慧娟,罗贤懋,c-fos基因表达调空与细胞增殖分化和癌变的关系,中国实验动物学杂志,1997,7(1),38-41.
    [2] 胡松林,神经细胞的某些信使物质—一氧化氮及c-fos原癌基因,咸宁医学院学报,1997,11(1),45-48.
    [3] 寿天德主编,神经生物学,高等教育出版社,2001,173.
    [4] 宋天保,邱曙东,免疫组织化学技术,西安医科大学出版社,1994,89.
    [5] 孙儒泳,动物生态学原理(第三版),北京师范大学出版社,2001,98.
    [6] 岳凤鸣,高福禄,庞小静,杜心欣,db/db自发性糖尿病小鼠睾丸表达变化与凋亡的关系,生殖与避孕,2001,21(5):282-288.
    [7] 张遐,鞠躬,c-fos癌基因的诱导和显示,生理科学进展,1991,22(4),299.
    [8] 张堰铭,刘季科,鼠生地下物学特征及其在生态系统中的作用[J],兽类学报,2002,22(2):144-154.
    [9] 张育辉,刘加坤,七种啮齿动物视觉器官形态结构的比较研究[J],兽类学报,1994,14(3):189-194.
    [10] Andersen D C., Below-ground herbivory in natural communities: a review emphasizing fossorial animals [J], Q Rev Biol, 1987, 62: 261-286.
    [11] Aronin N., Sagar S M., Sharp F R., Schwartz W., Light regulates expression of a Fos-related protein in the rat SCN [J], Proc Natl Acad Sci USA, 1990, 87: 5959-5962.
    [12] Avivi A., Albrecht U., Oster H., Joel A., Beiles A., Nevo E., Biological clock in total darkness: The Clock/MOP3 circadian system of the blind subterranean mole rat [J], PNAS, 2001b, 98 (24): 13751-13756.
    [13] Avivi A., Joel A., Nevo E., The lens protein α B-crystallin of the blind subterranean mole-rat: high homology with sighted mammals [J], Gene, 2001a, 264: 45-49.
    [14] Avivi A., Oster H., Joel A., Beiles A., Albrecht U., Nevo E., Circadian genes in a blind subterranean mammals: conservation and uniqueness of the three period homologs in the blind subterranean mole rat, Spalax ehrenbergi superspecies [J], PNAS, 2002, 99 (18): 11718-11723.
    [15] Balemans MG., Pevet P., Legerstee WC., Nevo E., Preliminary investigations of melatonin and 5-methoxy-tryptophol synthesis in the pineal, retina, and harderian gland of the mole rat and in the pineal of the mouse "eyeless" [J]. J Neural Transm, 1980, 49 (4): 247-55.
    [16] Beltramino C, Taleisnik S., Dual action of electrochemical stimulation of the bed nucleus of the stria terminalis on the release of LH [J], Neuroendocrinoligy, 1980, 30: 238-242.
    [17] Bovolenta P., Mallamaci A., Puelles L. and Boncinelli E., Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors, Mech. Dev. 1998, 70:201-203.
    [18] Brecha N., Karten H J., Hunt S P., Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study [J], J CompNeurol, 1980, 189:615-670.
    [19] Bronchti G, Heil P., Scheich H., Wollberg Z., Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): A 2-deoxyglucose study of subcortical centers [J]. J Comp Neurol, 1989, 284: 253-274.
    [20] Bronchti G, Rado R., Terkel J., Wollberg Z., Retinal projections in the blind mole rat: A WGA-HPR tracing study of a natural degeneration [J], Dev Brain Res, 51991, 8: 159-170.
    [21] Card J P., Moore R W., Organization of lateral geniculate-hypothalamic connections in the rat [J], J Comp Neurol, 1989, 284: 135-147
    [22] Cei G., L'occhio di heterocephalus glaber ruppell. Note anatomo-descrittive istologiche [J], Monit Zool Ital, 1946, 55: 89-96.
    [23] Cernuda-Cernuda R., De Grip W J., Cooper H M., Nevo E., Garcia-Fernandez J M.., The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role [J], Investigative Ophthalmology & visual science, 2002, 43:2374-2383.
    [24] Cernuda-Cernuda R., Garcia-Fernandez J M., Gordijn MCM., Bovee-Geurts P H M., De Grip W J., The eye of the African mole-rat Cryptomys anselli: to see or not to see [J], Eur J Neurosci, 2003, 17 (4): 709-720.
    [25] Changqi C Z., Dyer M A., Uchikawa M., Kondoh H., Lagutin O V., Oliver G. Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors, Development, 2002, 129: 2835-2849.
    [26] Clarke R J., Ikeda H., Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat[J], Exp. Brain Res., 1985, 57:224-232.
    [27] Colwell C S., Foster R G, photic regulation of Fos-like immunoreactivity in the suprachiasmatic nucleus of the mouse. J Comp Neurol, 1992, 328:313-350.
    [28] Cooper H M, Baleydier C, Magnin M., Macaque accessory optic system: I . Definition of the medial terminal nucleus [J], J Comp Neurol, 1990,302: 384-404.
    [29] Cooper H M., Herbin M., and Nevo E. , Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi [J], J Comp Neurol, 1993, 328:313-350.
    [30] Cooper H M., Herbin M, Nevo E., Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal [J], Nature, 1993b, 361:156-159.
    [31 ] Cooper H M., Magnin M., A common mammalian plan of accessory optic system organization revealed in all primates [J], Nature, 1986, 324: 457-459.
    [32] Cooper H M, Magnin M., Accessory optic system of an anthropoid primate, the gibbon (Hylobates concolor): Evidence for a direct retinal input to the medial terminal nucleus [J], J Comp Neurol, 1987, 259: 467-482.
    [33] Cooper H M., The accessory optic system in a prosimian primate (Microcebus murinus): Evidence for a direct retinal projection to the medial terminal nucleus [J], J Comp Neurol, 1986, 249:28-47.
    [34] David-Gray Z K., Cooper H M., Janssen J W H., Nevo E., Foster R G., Spectral tuning of a circadian photopigment in a subterranean blind mammal (Spalax ehrenbergi) [J], FEBS Lett, 1999, 61:343-347.
    [35] David-Gray Z K., Janssen J W H., De Grip W J., Nevo E., Foster R G., Light detection in a blind mammal [J], Nat. Neurosci, 1998, : 655-656.
    [36] De Jong W W., Hendriks W., Sanyal S., Nevo E., The eye of the blind mole rat (Spalax ehrenbergi): Regressive evolution at the molecular levels [A]. In: Nevo E & Reig O A eds. Evolution of subterranean mammals at the organismal and molecular levels [C], New York: Wiley-Liss, 1990, 383-395.
    [37] Doron N., Wollberg Z., Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: A WGA-HRP tracing study [J], Neuroreport, 1994, 5 (18): 2697-2701.
    [38] Edelstein K., Amir S., Constant light induces persistent Fos expression in rat intergeniculateleaflet [J], Brain Res., 1996, 731: 221-225.
    [39] Ellerman J R., The subterranean mammals of the world [J], Trans R Soc S Afr, 1956, 35: 11-20.
    [40] Eloff G.., The functional and structural degeneration of the eye of the South African rodent moles, Cryptomys bigalkei and Bathyergus maritimus [J], S Afr J Sci, 1958, 54:293-302.
    [41] Emery D E., Sachs B D., Copulatory behavior in male rats with lesions in the bed nucleus of the stria terminalis [J], Physiol Behav, 1976, 17: 803-806.
    [42] Fite K V., Pretectal and accessory optic visual nuclei offish, amphibia and reptiles: Theme and variations [J], Brain Behav. Evol., 1985, 26: 71-90.
    [43] Freedman M S., Lucas R J., Soni B., Von Schantz M., Munoz M., David-Gray Z., Foster R G.., Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors [J], Science, 1999, 284:502-504.
    [44] Gilad E., Shanas U., Terkel J., Zisapel N., Putative melatonin receptors in the blind mole rat harderian gland [J], J Exp Zool, 1997, 277 (6): 435-441.
    [45] Graybiel A M., Visuo-cerebellar and cerebellllo-visual connections involving the ventral lateral geniculate nucleus [J], Exp. Brain Res., 1974, 20:303-306.
    [46] Haim A., Heth G, Pratt H, Nevo E., Photoperiodic effects on thermoregulation in a"blind"subterranean mammal [J], J Exp Biol, 1983, 107: 59-64.
    [47] Hannibal J., Hindersson P., Nevo E, Fahrenkrug J., The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax [J], Neuroreport. 2002, 13 (11): 1411-1414.
    [48] Hayhow W R., The accessory optic system in the marsupial phalanger, Trichosurus vulpecula. An experimental degeneration study [J], J CompNeurol, 1966, 126:653-672.
    [49] Heil P., Bronchti G, Wollberg Z., Scheich H., Auditory invasion of visual "centers in the mole rat (Spalax ehrenbergi): Evidence from 2-deoxyglucose [J], Soc Neurosci, Abstr, 1987, 13:327.
    [50] Heil P., Bronchti G, Wollberg Z., Scheich H., Invasion of visual cortex by the auditory system in the naturally blind mole rat [J], Neuro Report, 1991, 2 (12), 735-738.
    [51] Hendriks W., Leunissen J., Nevo E., Bloemendal H., De Jong W W., The lens protein α A-crystallin of the blind rat, Spalax ehrenbergi: Evolutionary change and functional constraints [J], Proc Natl Acad Sci USA, 1987, 84 (15): 5320-5324.
    [52] Herbin M, Rio J P, Reperant J, Cooper H M, Lemire M., Ultrastructural analysis of the optic nerve in microphthalmic rodents (Spalax leucodon) [J], C R. Acad Sci Serie, 1993, 316:251-258.
    [53] Herbin M., Rio J P., Reperant J., Cooper H M, Nevo E., Lemire M., Ultrastructural study of the optic nerve in blind mole-rats (Spalacidae, Spalax) [J], Vis. Neurosci, 1995, 12:253-261.
    [54] Heth G, Pevet P., Nevo E., Beiles A., The effect of melatonin administration and short exposures to cold on body temperature of the blind subterranean mole rat (Rodentia, Spalax ehrenbergi, Nehring) [J], J. Exp. Biol., 1986, 238: 1-9.
    [55] Hough R B., Avivi A., Davis J., Joel A., Nevo E, Piatigorsky J., Adaptive evolution of small heat shock protein/ α B-crystalllin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi [J]. Evolution, 2002a, 99 (12): 8145-8150.
    [56] Hough R B., Avivi A., Davis J., Joel A., Nevo E., Piatigorsky J., Adaptive changes of small heat shock protein/ α B-crystalllin promoter activity of the blind subterranean mole rat to subterranean life [J], Invest Ophthalmol Vis Sci, 2002b, 43 (12): 3598.
    [57] Huntly N, Lnouye R S., Pocket gophers in ecosystem: patterns and mechanisms [J], Bioscience, 1988, 38:786-793.
    [58] Janssen J W H., Bovee-Geurts P H M, Peeters Z P A., Bowmaker J K., Cooper H M., David-Gray Z K., Nevo E, DeGrip W J., A fully functional rod visual pigment in a blind mammal. A case for adaptive functional recognization [J]? The Journal of Biological Chemistry, 2000, 275 (49): 38674-38679.
    [59] Leder M L., Zur mikroskopischen Anatomiedes Gehirns eines blinden Nagers (Spalax leucodon, Nordmann 1840) mit besonderer Berucksichtigung des visuellen systems. Teil 2: Das Visuelle system, 2001, Jb, Anat., 1975, 94:74-100.
    [60] Leichnitz G R., Preoccipital cortex receives a differential input from the frontal eye field and projects to the pretectal olivary nucleus and other visuomotor related structures in the rhesus monkey [J], Vis. Neurosci, 1990, 5: 123-133.
    [61] Levine J D., Weiss, M L., Rosenwasser A M, Miselis R R., Retinohypothalamic tract in the female albino rat: A study using horseradish peroxidase conjugated to cholera toxin [J], J Comp Neurol, 1991, 306: 344-360.
    [62] Lund R D., Lund J S., The visual system of the mole, Talpa europaea [J], Exp. Neurol, 1965, 13:303-316.
    [63] Meijer, J H., Reitveld W J., Retinohypothalamic. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents [J], Physiol Rev, 1989, 69: 671-707.
    [64] Mielke H W., Mound building by pocket gophers (Geomyidae): their impact on soil and vegetation in North America [J], J Biogeogr, 1977, 4:171-180.
    [65] Muller R, Verma IM. Expression of cellular oncogenes. Curr Top Microbiol Immunl, 1984,112:73-115.
    [66] Necker R., Rehkamper G, Nevo E., Electrophysiological mapping of body representation in the cortex of the blind mole rat [J], Neuroreport, 1992, 3: 505-508.
    [67] Negroni J., Bennett N C, Cooper H M., Organization of the circadian system in the subterranean mole rat, Cryptomys hottentotus (Bathyergidae) [J], Brain Research, 2003, 967: 48-62.
    [68] Negroni J., Nevo E., Cooper H M., Neuropeptidergic organization of the suprachiasmatic nucleus in the blind mole rat (Spalax ehrenbergi) [J], Brain Research Bulletin, 44 (5): 1997, 633-639.
    [69] Nevo E., Guttman R., Haber M., Erez E., Activity patterns of evolving mole rat [J], J. Mammal, 1982, 63:453-463.
    [70] Nevo E., Adaptive convergence and divergence of subterranean mammals [J], Annu. Rev. Ecol. Syst, 1979, 10: 269-308.
    [71] Novotny G E K., A ventral tract from the bed nucleus of the stria terminalis to the amagdaloid complex in the monkey Macaca fascicularis: A possible pathway in the regulation of ovulation [J], J. physiol, 1977, 225:13-14.
    [72] Oelschlager H H A., Nakamura M, Herzog M, Burda H., Visual system labeled by c-Fos immunohistochemistry after light exposure in the 'blind' subterranean Zambian mole-rat (Cryptomys anselli) [J], Brain Behav. Evo.l, 2000, 55: 209-220.
    [73] Omlin F X., Optic disc and optic nerve of the blind Cape mole-rat (Georychus capensis): A proposed model for naturally occurring reactive gliosis [J], Brain Research Bulletin, 1997, 44 (5): 627-632.
    [74] Oliver G, Mailhos A., Wehr R., Copeland N G, Jenkins N A and Gruss P. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development, Development, 1995a, 121,4045-4055.
    [75] Peichl Leo, Nemec Pavel, Burda Hynek., Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae) [J], European Journal of Neuroscience, 2004, 19(6): 1545-1558.
    [76] Peter R V., Aronin N., Schwartz W J., C-Fos expression in the rat intergeniculate leaflet: photic regulation, co-localization with Fos-B, and cellular identification [J], Brain Res, 1996, 728:231-241.
    [77] Pevet P., Heth G, Haim A., Nevo E., Photoperiod perception in the blind mole rat (Spalax ehrenbergi). Involvement of the Harderian gland, atrophied eyes and melatonin [J], J. Exp Zool, 1984, 232:41-50.
    [78] Quax-Jeuken Y., Bruisten S., Bloemendal H, De Jong W W, Nevo E., Evolution of crystallins: expression of lens-specific proteins in the blind mammals mole (Talpa europaea) and mole rat (Spalax ehrenbergi) [J], Molecular Biology and Evolution, 1985, 2:279-288.
    [79] Rado R, Bronchti G, Wollberg Z., Terkel J., Sensitivity to light of the blind mole rat: Behavioral and neuroanatomical study [J], Israel Journal of Zoology, 1992, 38 (3-4): 323-331.
    [80] Rado R, Gev H, Terkel J., The role of light in entraining mole rats'circadian rhythms [J], Israel J. Zool, 1988, 35: 105-106.
    [81] Rehkaemper G, Necker R, Nevo E., Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi: An architectonic and electrophysiologically controlled tracing study [J], J. Comp Neurol, 1994, 347 (4): 570-584.
    [82] Rusak B, Robertson H A., Wisden W, Hunt S P., Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus [J], Science, 1990, 248: 1237-1240.
    [83] Sanyal S, Jansen H G, De Grip W J., Nevo E., De Jong W W., The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function [J]? Invest Ophthalmol Vis Sci, 1969, 1990, 31: 1398-1404.
    [84] Schneider G E. 1969. Two visual system [J]. Science, 163: 895-902.
    [85] Shanas U., Gozlan I., Murawski U., Terkel J., Identification of main lipid components of mole rat Harderian gland [J], Journal of Chemical Ecology, 1998, 24 (12): 2181-2194.
    [86] Shanas U, Terkel J., Mole-rat harderian gland secretions inhibit aggression [J], Animal Behaviour, 1997, 54 (5): 1255-1263.
    [87] Simpson J I, Leonard C S, Soodak R E., The accessory optic system of rabbit. spatial organization of direction selectivity [J], J Neurophysiol, 1988b, 60: 2055-2072.
    [88] Simpson J I, The accessory optic system [J], Annu. Rev. Neurosci, 1984,7: 13-41.
    [89] Slamon DJ., Cline MJ., Expression of cellular oncogenes during embryonic and fetal development of mouse, Proc. Natl. Acad. Sci. USA. 1984, 81(22): 1741-7145.
    [90] Smulders R P H., Van Dijk M A M., Hoevenaars S, Lindner R A., Carver J A., De Jong W W., The eye lens protein α A-crystallin of the blind mole rat Spalax ehrenbergi: Effeects of altered functional constraints [J], Exp. Eye Res., 2002, 74:285-291.
    [91] Soodak R E., Simpson J I.., The accessory optic system of rabbit. I . Basic visual response properties [J], J Neurophysiol, 1988, 60:2037-2054.
    [92] Thompson R, Rich I., A discrete diencephalic pretectal area critical for retention of visual habits in the rat [J], Exp Neurol, 1961, 4: 436-443.
    [93] Trejo L J., Cicerone C M., Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat [J], Brain Res., 1984, 300: 49-62.
    [94] Urbaitis J C, T H Meikle Jr., Releaming a dark-light discrimination by cats after cortical and collicular lesions [J], Exp. Neurol, 1968, 20: 295-311.
    [95] Valcourt R J, Sanchs B D., Penile reflexes and copulatory behavior in male rats following lesions in the bed nucleus of the stria terminalis [J], Brain Res. Bull, 1979, 4: 131-133.
    [96] Vuillez P, Herbin M, Cooper H M., Nevo E., Pevet P., Photic induction of Fos immunoreactivity in the suprachiasmatic nuclei of the blind mole rat (Spalax ehrenbergi) [J], Brain Res., 1994, 654:81-84.
    [97] Youngstrom T G, Weiss M L, Nunez A A., Retinofugal projections to the hypothalamus, anterior thalamus and basal forebrain in hamsters [J], Brain Res. Bull, 1991, 26:403-411.
    [98] Zhang D X, Rusak B., Photic sensitivity of geniculate neurons that project to the suprachiasmatic nucleus or the contralateral geniculate [J], Brain Res., 1989, 504: 161-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700