用户名: 密码: 验证码:
中国北方代表地区黏菌主要类群的个体发育及化学成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻品种遗传改良过程中,不同历史阶段由于育种目标的设定不同,育成品种的产量及株型、农艺性状等特征存在明显差异。关于水稻品种遗传改良的研究已有一些,但关于针对不同历史阶段的品种性状演化的研究还不多见。本研究拟分三个历史时段研究吉林省品种改良过程中农艺性状、产量和各器官特性及其与产量的关系,试图阐明吉林省三段历史时期育成品种的产量形成机制,为吉林省水稻品种改良提供可参考株型模式,同时为吉林省水稻超高产栽培实践提供量化参考依据。
     本研究选择吉林省1931-2009年间育成的53个有代表性的水稻品种,分三个历史时段(1931-1969年,1970-1999年,2000年以来),采用随机区组设计,种植于同一块试验田中,研究其产量及其构成、农艺性状、各器官生育期演进规律和物质生产特性及其与产量的关系。研究结果表明:
     (1)产量及组分的演化特点为,吉林省1931-2009年间育成品种产量不断增加,整个历史时期育成品种产量表现出“低-高-低-高-瓶颈”的特点。即"60年代前低,60年代高,70和80年代低,90年代高,2000年以来进入瓶颈”。1931-1969年间育成的水稻品种产量不断增加,产量的增加主要是由于对穗数和每穗粒数的改良增加引起;1970-1999年间育成的水稻品种不断增加的产量,是由于对穗数、每穗粒数、千粒重和结实率综合增加改良结果;2000年以来育成的品种产量有下滑趋势,这是由于每穗粒数增加而有效穗数逐渐减少的结果。
     (2)农艺性状的演化特点为,1931-1969年间育成的水稻品种,株高显著降低,收获指数显著增加,生物量、穗重不显著增加。收获指数从40年代前的平均0.49提高到60年代的平均0.55。1970-1999年间育成的水稻品种,随育成年代增加,生物量、单穗重和穴草重显著增加,与育成年代的相关系数分别为0.49*、0.5*和0.48*,而收获指数在此期未得到改良,与各指标的相关性也不显著,但保持较高水平。此期育种策略为“保持较高的收获指数,增加生物学产量”。2000年以来育成的品种单穗重随育成年代的增加而显著增加,生物量增加不显著而收获指数有下降趋势。
     (3)抽穗前的植株各器官演化特征为,1931-1969年间育成的水稻品种分蘖能力逐渐增强,倒三叶面积和鲜重显著降低。此期育成品种抽穗前叶片干重与产量呈显著正相关,相关系数为0.54**。1970-1999年间育成的水稻品种随育成年代增加倒三叶面积显著增加,相关系数为0.52*。90年代是育成品种抽穗前的分蘖和群体结构相对合理的育种时期,育成品种抽穗前的分蘖数为28.3个/穴,倒三叶面积为28.5cm2,倒三叶鲜重为0.51g,倒三叶干重为0.16g,与产量为800kg/mu的几个品种的平均值相似。2000-2009年间育成的水稻品种最大分蘖数和叶片干重出现负增长。产量与叶片干重为负相关关系,相关系数为-0.39。本试验综合倒三叶的性状与最大分蘖数的关系,提出一个可判定抽穗前群体是否合理的指标为“穴倒三叶面积”,在30cm×13cm的种植条件下,抽穗前的群体“穴倒三叶面积”应大于850cm2才是高产的合理群体结构。
     (4)抽穗后的植株各器官演化特征为,1931-1969年间育成的水稻品种随着品种的改良,灌浆期植株性状各指标有降低趋势,但茎鞘干重却有增加。剑叶面积和倒三叶面积除与茎鞘为负相关外,与其它植株性状均为正相关或显著正相关。此期育成的品种产量的增加是因为倒三叶和剑叶面积的增加以及叶片干重的增加所致。1970-1999年间育成的水稻品种随育成年代增加除穗鲜重和倒三叶鲜重外,其它各指标均随育成年代增加而增加。植株各器官性状均与产量呈不显著正相关。2000-2009年间育成的水稻品种倒三叶面积、倒三叶鲜重、剑叶面积和剑叶鲜重随育成年代增加而减少,倒三叶鲜重和叶片干重与产量呈显著正相关,相关系数分别为0.61*和0.56*,这说明产量的下滑与倒三叶和叶片的改良不成功有关,可能是株型不明确的原因。
     (5)吉林省超级稻适合选育以中晚熟期为主的品种,综合本试验结论与前大研究结果,提出吉林省超级稻理想株型为:植株高度为110-115cm,叶片数为14-15片,叶片直立、紧凑,半直立穗型,剑叶面积大于35cm2,根系发达,活秆成熟。每亩有效穗数30-33万穗,每穗粒数在140-160粒,千粒重为23-25g,结实率为90%以上,生育期间亩日生产量5.7-6.0kg,收获指数大于0.55,产量指标为800kg/亩以上。
     综上所述,从吉林省水稻育成品种演化过程看,60年代和90年代育成品种是产量综合性状较好的时期,2000年以来育成品种的产量下滑是由于育种目标不清楚造成,吉林省超级稻育种目标应进行细致攻关研究明确,本研究提出了详细的株型及产量性状和生理性状数据,供育种者参考。
The process of genetic improvement of rice varieties in different historical stages due to the different of breeding objectives, the yield of rice varieties released and plant type, agronomic traits and characteristics such as significantly different. Genetic improvement of fice varieties have been researched, little is known about physiological and agronomical of rice varieties released in the different historical stages. In this study,53typical japonica rice cultivars applied in the production in Jilin province during the last78years were used, and classified intothree historical periods (1931-1969,1970-1999, since2000). All the tested cultivars were grown in the same field and the evolution characteristics of grain yield and its components, agronomic traits,morphology,organ characteristics and physiology were investigated and its relationship with yield. In order to clarify the formation mechanism of yield of varieties released in three historical periods, to provide the plant type mode reference for rice variety improvement, and at the same time provide a quantitative reference for the super rice cultivation practice in Jilin province.The results show that:
     (1) The evolution characteristics of the yield and its composition, grain yield were progressively increased with the evolution of the cultivars from1931to2009, the entire historical period of "low-high-low-high-bottleneck" characteristics, before1960s is low,1960s is high,1970s and1980s is low,1990is high and into the bottleneck since2000. Grain yield were progressively increased from1931to1969, the increase in yield was mainly due to the increase in the panicles and grains per panicle improved; Increasing the yield of rice varieties bred between1970-1999, because of the panicles, grains per panicle, grain weight and seed setting rate increase improved the results of comprehensive; A downward trend in the yield of varieties released since2000, decrease in grain yield was attributed mainly to in the number of panicle gradually reduced.
     (2) The evolution characteristics of agronomic traits, with the improvement of rice cultivars from1931to1969, plant height was significantly degraded, a significant increase in harvest index, biomass, panicle weight was not significantly increased. Harvest index increased from an average of0.49of the1940s to the1960s an average of0.55. There were extremely significant increases in biomass, single panicle weight and grass weight per hole of rice varieties released between the years1970to1999with year of release increased and the correlation coefficients were0.49*,0.5*and0.48*, and harvest index has not been improved in this period, the correlation with the index was not significant, but to maintain a high level. Breeding strategy of rice is to maintain a high harvest index. increased biomass yield in this period. Since2000, Single panicle weight were increased significantly, biomass increase was not significant, while harvest index was reduced with year of release increased.
     (3) The evolution characteristics of the various organs of the plants before heading. Rice tillering ability is gradually increased, top3rd leaf area and fresh weight of rice varieties released was significantly reduced from1931to1969. Leaf dry weight of varieties released before heading and yield was significant positive correlation in this period, and correlation coefficient is0.54*. Top3rd leaf area of rice varieties released were th increased from1970to1999. the correlation coefficient was0.52*for years of released. Heading tiller and population structure of rice varieties were relativey reasonable in the1090s. the number of tillers before heading varieties bred was28.3per hole, top3rd leaf area was28.5cm2. top3rd leaf fresh weight was0.5lg. top3rd leaf dry weight was0.16g. similar to the average of several varieties of the output of800kg/mn. Since2000, tiller number and leaf dry weight were negative decreased. Yield and leaf dry weight was negatively correlated, and a correlation coefficient of-0.39. This experiment integrated top3rd leaf traits and the relationship of the maximum number of tillers, and proposed one can determine whether a reasonable population structure before heading groups as " top3rd leaf area per hole", the30cmxl3cm planting conditions before heading groups the " top3rd leaf area per hole " should be greater than850cm" is a reasonable population structure of super-high-yield.
     (4) The characteristics of plant organ evolution after heading, from1931to1969, value of plant traits index of rice varieties released were decreased at the grain filling stage, but there is an increasing stem and sheath dry weight. The flag leaf area and top3rd leaf area were negatively correlated with the stem and sheath, with other plant traits were significantly positively correlated, increase in grain yield was attributed mainly to the increase in flag leaf and top3rd leaf area, leaf dry weight. From1970to1999, values of traits were increased with years of release beside panicle and top3rd leaf fresh weight; various organ traits in plants and the yield were not significantly positively correlated. Top3rd leaf are and fresh weight, flag leaf area and fresh weight of rice varieties released were decreased with years of release from2000to2009, and top3rd leaf fresh weight and leaf dry weight was significant positive relation with yield, the correlation coefficient of0.61*and0.56*, which shows the decline in yield and improvement of the top3rd leaf and leaf unsuccessful, maybe the plant type is not clear.
     (5) The fundamental strategy of super high-yield breeding wound been breeding in the late-maturing of varieties in Jilin province, and the ideal plant type of super high-yield rice varieties were proposed from this study also concluded with the results of previous studies put forward in Jilin province. Plant height is110-115cm, leaves numbers is14-15piece, upright leaves, compact and semi-erect panicle type, the flag leaf area is greater than35cm2, well-developed root system, and live mature stalk. Effective panicles are30×l04-33×l04/mu. grains per panicle in the140-160grain.1000-grain weight for23-25g, setting rate above90%,85.5-90.0kg/hm2per day production of the reproductive period, harvest index is greater than0.55, yield is more than800kg/mu.
     In summary, yield integrative traits of rice varieties released in the1960s and1990s, which were better than other historical periods in Jilin province from evolution of varieties bred. The yield of varieties released were declined since2000, the breeding objectives unclear cause. Jilin Province super high-yield breeding objectives detailed research should be carried out explicitly, this study proposes a detailed plant type and yield traits and physiological traits data for breeder's reference.
引文
[1]Maclean J L, Dawe D C, Hardy B, et al. Rice Almanac. Philippines:International Rice Research Institute, 2002.
    [2]FAOSTAT. http://faostat. fao. org/faostat.
    [3]Yuan L P. Hybrid rice technology for food security in the world//International Conference on Sustainable Rice Systems. FAO, Rome, Italy,2004.
    [4]van Nguyen N, Ferrero A. Meeting the challenges of global rice production. Paddy Water Environment, 2006,4:1-9.
    [5]陈温福,徐正进.水稻超高产育种理论与方法.科学出版社,2007.
    [6]朱德峰,程式华,张玉屏,等,全球水稻生产现状与制约因素分析.中国农业科学,2010,43(3):474-479.
    [7]Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Production Science,2009,12(1):3-8.
    [8]Peng S, Khush G S, Virk P V, et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research,2008,108(1):32-38.
    [9]陈温福,徐正进,张步龙.北方粳型超级稻育种的理论与方法.沈阳农业大学学报,2005,36(1):3-8.
    [10]程式华,李健主编.现代中国水稻科学.金盾出版社(北京):2007.
    [11]Peng S, Laza R C, Visperas R M, et al. Grain yield of rice cultivars and lines developed in the Philippines since 1996. Crop science,2000,40(2):307-314.
    [12]杨守仁,张龙步,陈温福,等.水稻超高产育种的理论与方法.中国水稻科学,1996,10(2):115-120.
    [13]徐正进,张龙步,陈温福,等.从日本超高产品种(系)的选育看粳稻高产的方向.沈阳农业大学学报,1991,22(增刊):27-33.
    [14]马均.不同重穗型水稻形态、生理生化特性及产量潜力的研究[博士论文].成都:四川农业大学,2002.
    [15]朱德峰.水稻超高产途径与株型的研究[博士论文].南京:南京农业大学,2000.
    [16]International Rice Research Institute. Atlas of Rice (World Rice Statistics. Available online at http://www.irri.org/science/ricestat/index.asp,2007.
    [17]Yuan L. Breeding of super hybrid rice In Rice Research for Food Security and Poverty Alleviation. Proc. Int. Rice Res Conf.,31 March-3 April 2000, Los Banos, Philippines,2001,143-149.
    [18]赵国臣主编.吉林省农业科学院水稻研究所所志.中国农业科技出版社,2008.
    [19]耿文良,冯瑞英主编.中国北方粳稻品种志.河北科学技术出版社,1995,第1版.
    [20]朴春实,王宝兴,王忠富.吉林省水稻育种现状与问题.吉林农业科学,1990,1:23-26.
    [21]马景勇,杨福,凌凤楼等.吉林农业大学水稻育种的成就、进展与前进.吉林农业大学学报,2001,23(4):1-5.
    [22]武志海.吉林省水稻品种遗传改良过程中农艺性状生理特及性变化的研究:[博士论文].长春:吉林农业大学,2008.
    [23]Donmez E, Sears R G, shroyer J P,et al. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop science,2001,41:1412-1419.
    [24]Brancourt M H, Doussinault G, Lecomte C et al. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop science,2003,43:37-45.
    [25]Shearman V J, Sylvester R. B, Scott R K et al. Physiological Processes Associated with Wheat Yield Progress in the UK. Crop science,2005,45:175-185.
    [26]赵洪祥,徐克章,李大勇,等.吉林省不同年代育成大豆品种硝酸还原酶活性变化及其与产量的关系.南京农业大学学报,2007,30(2):13-17.
    [27]Elroy R C, Malcolm J M, Ma B L et al.Genetic Improvement Rates of Short-Season Soybean Increase with Plant Population. Crop science,2005,45:1029-1034.
    [28]Saratha K, David J H, Godfrey C. Genetic Improvement in Short Season Soybeans:Ⅰ. Dry Matter Accumulation, Partitioning, and Leaf Area Duration. Crop science,2001,41:391-398.
    [29]Saratha K, David J H, Godfrey C. Genetic Improvement in Short-Season Soybeans:Ⅱ. Nitrogen Accumulation, Remobilization, and Partitioning. Crop science,2002,42:141-145.
    [30]胡昌浩,董树亭,王空军,等.我国不同年代玉米品种生育特性演进规律研究.Ⅱ物质生产特性的演进.玉米科学,1998,6(3):49-53.
    [31]Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci,1989,29:1365-1371.
    [31]Peng S B, Laza R C, Visperas R M, et al. Grain yield of rice cultivars and lines developed in the Philippines since 1996. Crop Sci,2000,40:307-314.
    [32]程式华主编.中国超级稻育种.科学出版社,2010.
    [33]杨建昌,王朋,刘立军,等.中籼水稻品种产量与株型演进特征研究.作物学报,2006,32(7):945-955.
    [34]黄育民,陈启锋,李义珍,等.我国水稻品种改良过程库源特征的变化.福建农业大学学报,1998,27(3):271-278.
    [35]程式华,黄超武.华南地区水稻品种发展中产量及有关性状的演变研究.华南农业大学学报,1988,9(1):17-29.
    [36]Yang J C and Zhang J H. Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany.2010,61(12):3177-3189.
    [37]Yang J, Zhang J, Huang Z, et al. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Science,2000,40,1645-1655.
    [38]Guo Q F, Wang Q C, Wang L M. Maize production in China. Shanghai:Shanghai Science & Technology Press,2004,117-167.
    [39]Kemanian A R, Stockle C O, Huggins D R et al. A simple method to estimate harvest index in grain crops. Field Crops Research,2007,103,208-216.
    [40]D'Andrea K E, Otegui M E, de la Vega A J. Multi-attribute responses of maize inbred lines across managed environments. Euphytica,2008,162,381-394.
    [41]Peltonen-Sainio P, Muurinen S, Rajala A, et al. Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions. Journal ofAgricultural Science,2008,146, 35-47.
    [42]Xue Q W, Zhu Z X, Musick J T, et al. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. Journal of Plant. Physiology,2006,163,154-164.
    [43]Zhang X Y, Chen S Y, Sun H Y, et al. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrigation Science,2008b,27,1-10.
    [44]Bueno C S, Lafarge T. Higher crop performance of rice hybrids than of elite inbreds in the tropics.1. Hybrids accumulate more biomass during each phenological phase. Field Crops Research,2009,112, 229-237.
    [45]Fletcher A L, Jamieson P D. Causes of variation in the rate of increase of wheat harvest index. Field Crops Research,2009,113,268-273.
    [46]Ju J, Yamamoto Y, Wang Y L, et al. Genotypic differences in dry matter accumulation, nitrogen use efficiency and harvest index in recombinant inbred lines of rice under hydroponic culture. Plant Production Science,2009,12,208-216.
    [47]Zhang Z H, Li P, WangL X, et al. Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Science,2004,167(1):1-8.
    [48]徐正进,陈温福,张步龙,等.水稻高产生理研究的现状与展望.沈阳农业大学学报,1991,22(增刊):115-123.
    [49]徐正进,陈温福,张龙步.水稻直立穗型的遗传与其他性状的关系.沈阳农业大学学报,1995,26(1):1-5.
    [50]凌启鸿主编.作物群体质量.上海科学技术出版社,2000.
    [51]袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-3.
    [52]周开达,马玉清,刘清,等.杂交水稻亚种间重穗型组合的选育一杂交水稻超高产育种的理论与实践.四川农业大学学报,1995,13(4):403-407.
    [53]袁平荣,孙传清,杨从党,等.云南籼稻每公顷15吨高产的产量及其结构分析.作物学报,2000,26(6):756-762.
    [54]张耗,谈桂露,薛亚光,等.江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化.作物学报,2010,36(1):133-140.
    [55]张耗,黄钻华,王静超,等.江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系.作物学报,2011,37(6):1020-1030.
    [56]刘传光,张桂权,周汉钦,等.华南地区常规籼稻品种产量和株型性状的遗传改良.中国农业科学,2010,43(19):3901-3911.
    [57]袁江,王丹英,廖西元,等.早籼稻品种更替过程中农艺性状的演变特征.作物学报,2008,34(11):2041-2045.
    [58]袁江,王丹英,徐春梅,等.早籼稻品种遗传改良进程中群体质量的演变特征.中国生态农业学报,2010,]8(6):1228-1232.
    [59]袁江,王丹英,丁艳锋,等.早籼稻品几种遗传改良进程中株型的演变特征.中国水稻科学,2009,23(3):277-281.
    [60]关欣,陈温福,徐正进,等.不同年代水稻品种穗部性状比较研究.沈阳农业大学学报,2004, 35(2):81-84.
    [61]姚立生,高恒广,杨立彬,等.江苏省五十年代以来中籼稻品种产量及有关性状的演变.江苏农业学报,1990,6(3):38-44.
    [62]王丹英.水稻品种演替过程中植株形态与氮肥利用效率的变化[博十论文].中国农业科学院,2008.
    [63]张耗,谈桂露,孙小淋,等.江苏省中籼水稻品种演进过程中米质的变化.作物学报,2009,35(11):2037-2044.
    [64]张祖建,张洪熙,杨建昌,等.江苏近50年粳稻安全齐穗期的变化.作物学报,2011,37(1):146-151.
    [65]中国水稻研究所,国家水稻产业技术研发中心.2008年中国水稻产业发展报告.北京:中国农业出版社,2008.
    [66]徐正进.我国水稻超高产育种若干问题讨论.沈阳农业大学学报,2010,41(4):387-392.
    [67]中国水稻研究所,国家水稻产业技术研发中心.2011年中国水稻产业发展报告.北京:中国农业出版社,2011.
    [68]顾铭洪.水稻高产育种中一些问题的讨论.作物学报,2010,36(9):1431-1439.
    [69]杨建昌,杜永,刘辉.长江下游稻麦周年超高产栽培途径与技术.中国农业科学,2008,41(6):1611-1621.
    [70]赵成国,徐海港,李刚华,等.超高产单季粳稻抽穗期群体构成研究.南京农业大学学报,2011,34(2):23-28.
    [71]吴桂成,张洪程,钱银飞,等.粳型超级稻产量构成因素协同规律及超高产特征的研究.中国农业科学,2010,43(2):266-276.
    [72]张洪程,吴桂成,李德剑,等.杂交粳稻13.5 t/hm2超高产群体动态特征及形成机制的探讨.作物学报,2010,36(9):1547-1558.
    [73]张洪程,吴桂成,吴文革,等.水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式.中国农业科学,2010,43(13):2645-2660.
    [74]龚金龙,张洪程,李杰,等.水稻超高产栽培模式及系统理论的研究进展.中国水稻科学,2010,24(4):417-424.
    [75]许德海,王晓燕,马荣荣,等.重穗型籼粳杂交稻甬优6号超高产生理特性.中国农业科学,2010,43(23):4796-4804.
    [76]邸玉婷,赵国臣,徐克章,等.吉林省47年来水稻品种遗传改良过程中植株各器官生物量的变化.中国水稻科学,2010,24,(3):251-256.
    [77]赵国臣,姜楠,徐克章,等.吉林省1958-2005年间育成推广水稻品种部分叶片特征的变化.作物学报,2011,37(6)1101-1108.
    [78]姜楠,邸玉婷,徐克章,等.吉林省不同年代育成水稻品种上三叶光合特性的变化.作物学报,2011,37(4):703-710.
    [79]武志海,赵国臣,徐克章,等.吉林省过去47年来水稻品种遗传改良过程中叶片光合指标的变化.中国水稻科学,2009,23(2):165-171.
    [80]武志海,徐克章,赵颖君,等.吉林省47年来粳稻品种遗传改良过程中某些农艺性状的变化.中国水稻科学,2007,21(5):507-512.
    [81]杨守仁.水稻超高产育种的新动向--理想株形与有利优势相结合.沈阳农业大学学报,1987,18(1):1-5.
    [82]戚吕瀚.水稻品种的库源关系与调节对策简论.江西农业大学学报,1993,15(1):1-5.
    [83]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析.福建农业学报,2000,15(3):1-8.
    [84]陈温福,徐正进.水稻超高产育种生理基础.沈阳:辽宁科学技术出版社,1995.
    [85]程式华,翟虎渠.水稻亚种间超高产杂交组合若干株型因子的比较.作物学报,2000,26(6):713-718.
    [86]周开达,汪旭东,李仕贵,等.亚种间重穗型杂交稻研究.中国农业科学,1997,30(5):91-93.
    [87]袁隆平.杂交水稻超高产育种.杂交水稻,2000,15(2):31-33.
    [88]Sheehy J E, Dionora M J A, Mitchell P L. Spikelet numbers, sink size and potential yield in rice. Field Crops Research,2001,7:77-85.
    [89]吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究.中国农业科学,2007,40(2):250-257.
    [90]谢华安,王乌齐,杨惠杰,等.杂交水稻超高产特性研究.福建农业学报,2003,18(4):201-204.
    [91]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究.中国农业科学,2006,39(7):1336-1 345.
    [92]杨惠杰,杨仁崔,李义珍,等.水稻超高产的决定因素.福建农业学报,2002,17(4):199-203.
    [93]Ying J, Peng S, He Q et al. Comparison of high-yield rice in tropical and subtropical environments. Ⅰ. Determinants of grain and dry matter yields. Field Crop. Res,1998,57:71-84.
    [94]Campbell C S, Heilman J L, Mclnnes K J, et al. Seasonal variation in radiation use efficiency of irrigated rice. Agricultural and Forest Meteorology,2001,110:45-54.
    [95]Zhang L, van der Werf W, Bastiaans L, et al. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research,2008,107:29-42.
    [96]Ruiz R A, Bertero H D. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. European Journal of Agronomy,2008,29:144-152.
    [97]Acreche M M, Briceno-Felix G, Martin Sanchez J A, et al. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Research,2009,110:91-97.
    [98]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系.作物学报,2003,29(5):730-734.
    [99]李艳大,汤亮,张玉屏,等.水稻冠层光截获与叶面积和产量的关系.中国农业科学,2010,43(16):3 296-3305.
    [100]潘学彪,韩月澎,陈宗祥,等.水稻植株形态遗传改良的研究进展.扬州大学学报(农业与生命科学版).2004,25(1):36-40.
    [101]Keisuke K, Shuhei M, Takeshi H, et al. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Research,2007,103 (3):170-177.
    [102]石利娟,邓启云,刘国华.水稻理想株型育种研究进展.杂交水稻,2006,21(4):1-6.
    [103]Bell M A, Fischer R A, Byerlee D et al. Genetic and agronomic contributions to yield gains:A case study for wheat. Field Crops Res,1995,44(2):55-65.
    [104]Takeda T, Oka M, Agata W. Studies on the dry matter and grain production of rice cultivars in the warm area of Japan. I. Comparison of the dry matter production between old and newtypes of rice cultivars. Jpn. J. Crop Sci,1983,52:299-306.
    [105]Evans L T, Visperas R M, Vergara B S. Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years. Field Crops Res,1984,8:105-125.
    [106]Song X F, Agata W, Kawamitsu Y. Studiesondrymatter and grain production of F1 hybrid rice in China. I. Characteristic of dry matter production. Jpn. J.Crop Sci.,1990,59:19-28.
    [107]Yamauchi M. Physiological bases of higher yield potential in Fl hybrids. In S.S. Virmani (ed.) Hybrid rice technology:New developments and future prospects. International Rice Research Institute, Los Banos, Philippines,1994,71-80.
    [108]Akita S. Improving yield potential in tropical rice. In Progress in irrigated rice research. International Rice Research Institute, Los Banos, Philippines,1989,41-73.
    [109]AmanoT, Zhu Q, Wang Y et al. Case studies on high yields of paddy rice in Jiangsu Province, China. Ⅰ. Characteristicsofgrainproduction. Jpn. J. CropSci,1993,62(2):267-274.
    [110]Mann C C. Crop scientists seek a new evolution. Science,1999,283:310-314.
    [111]Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J. Exp. Bot,2000,51:475-485.
    [112]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究.中国农业科学,2005,38(2):258-264.
    [113]Jiang C, Hirasawa T, Ishihara K. Physiological and ecological characteristics of high yielding varieties in rice plants. I. Yield and dry matter production. Jpn.J.Crop Sci,1988,57:132-138.
    [114]Saitoh K, Shimoda H, Ishihara K. Characteristics of dry matter production process in high-yield rice varieties. Ⅵ. Comparisons between new and oldricevarieties.Jpn.J. Crop Sci,1993,62:509-517.
    [115]Murchie E, Yang J, Hubbart S et al. Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? J. Exp. Bot,2002,53:2217-2224.
    [116]Weng J, Takeda T, Agata W et al. Studies on dry matter and grain production of rice plants. I. Influence of the reserved carbohydrate until heading stage and the assimilation products during the ripening period on grain production. Jpn. J. Crop Sci,1982,51:500-509.
    [117]Weng J, Takeda T, Agata W et al. Studies on dry matter and grain production of rice plants. I. Influence of the reserved carbohydrate until heading stage and the assimilation products during the ripening period on grain production. Jpn. J. Crop Sci,1982,51,500-509.
    [118]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crop. Res,2002,74:93-101.
    [119]Yoshida S. Physiological aspects of grain yield. Annu. Rev. Plant Physiol,1972,23:437-464.
    [120]Slafer G A, Andrade F H, Satorre E H. Genetic-improvement effects on pre-anthesis physiological attributes related to wheat grain yield. Field Crop. Res,1990,23:255-263.
    [121]Kropff M J, Cassman K G, Peng S, et al. Quantitative understanding of yield potential. In:Cassman, K.G. (Ed.), Breaking the Yield Barrier. IRRI, Los Banos, Philippines,1994,21-38.
    [122]Horie, T, Lubis I, Takai T et al. Physiological traits associated with high yield potential in rice.IRRI, Los Banos, Philippines,2003,117-145.
    [123]Takai T, Matsuura S, Nishio T, et al. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res,2006,96:328-335.
    [124]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系.中国科学(C辑),2002,3(32):211-217.
    [125]史鸿儒,张文忠,解文孝,等.不同氮肥施用模式下北方粳型超级稻物质生产特性分析.作物学报,2008,34(11):]985-1993.
    [126]Yoshida S. Physiological analysis of rice yield. In:Fundamentals of rice crop science. Makita City (Philippines):International Rice Research Institute,1981,231-251.
    [126]Watanabe Y, Nakamura Y, Ishii R. Relationship between starch accumulation and activities of the related enaymes in the leaf sheat as a temporary sink organ in rice(Oryza sativa). Australian Journal of Plant Physiology,1997,24:563-569.
    [127]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义.中国水稻科学,2005,19(3):280-284.
    [128]吴桂成,张洪程,戴其根,等.南方粳型超级稻物质生产积累及超高产特征的研究.作物学报,2010,36(11):1921-1930.
    [129]曹静明,李学谌,赵国臣,等.吉林省水稻进一步高产若干问题的讨论.吉林农业科学,1998,23(3):9-14.
    [130]张三元,李彻,石玉海,等.吉林省水稻超高产育种研究Ⅰ.不同类型水稻品种产量构成与超高产育种目标.吉林农业科学,1999,24(1):4-7.
    [131]孙强,张三元,张俊国.吉林省超级稻育种研究现状与展望.中国稻米,2009,5:26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700