用户名: 密码: 验证码:
ZnE(E=S,Se,Te)和Mn掺杂AIN纳米结构的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带隙半导体纳米材料由于其特殊的理化性质和重要的应用前景引起广泛的关注,其可控制备一直是纳米科学研究的热点。ZnE (E=S,Se,Te)作为重要的宽禁带、直接带隙的II-VI族半导体,具有优异的光电化学性能,在激光器和太阳能电池方面有很多潜在的应用价值。稀磁半导体兼备磁性和半导体特性,在光、电、磁功能集成等新型器件方面具有重要的应用。宽带隙半导体AlN具有良好的光学性质和广泛的潜在用途,基于A1N纳米结构的稀磁半导体具有相当重要的研究意义。
     本论文的主要内容归纳如下:
     1.以ZnO为锌源,Na_2S_2O_3·5H_2O为硫源,通过乙醇胺(EA)辅助的溶剂热法一步合成了直径约为6 nm的纤锌矿型ZnS细纳米棒。合成的ZnS为单晶,沿[001]方向择优生长。根据实验结果,提出了ZnS纳米棒可能的形成机制:EA辅助形核与一维生长。
     2.以乙酸锌为锌源,Na_2EO_3 (E=Se,Te)或E粉为E源,采用溶剂热技术在乙醇胺(EA)体系中一步合成ZnE纳米材料。测试结果表明以Na_2EO_3为E源,产物为立方相闪锌矿结构的ZnE纳米颗粒;以E粉为源,产物为ZnE纳米片,厚度约60 nm。分析表明合适配位能力溶剂EA对ZnE纳米结构的形成至关重要,E源的选取则对ZnE的物相和形貌有很大影响。
     3.采用无催化化学气相沉积法,以高纯Al粉、无水AlCl_3、高纯Mn粉、MnCl_2和NH3气为源,在陶瓷和硅衬底上得到Mn掺杂AlN单晶纳米棒、纳米带和超长纳米线等。EDS和XPS测试证实了Mn成功掺入AlN纳米结构中。采用超导量子磁通计(SQUID)在5 K和300 K都观察到Mn掺杂AlN单晶纳米棒的铁磁有序。
     4.采用无催化化学气相沉积法,以无水AlCl_3、无水MnCl_2和NH_3气为源,在硅片和石墨片衬底上成功制备了Mn掺杂AlN纳米棒阵列和纳米晶薄膜。分析结果显示,合成的纳米棒阵列和纳米晶薄膜为纤锌矿结构的AlN,沿[001]方向生长。采用SQUID纳米棒阵列的磁性测试显示其具有室温铁磁性。
Wide band gap semiconductor nanomaterials have drawn universal attention due to their unique physicochemical properties and important applications, while controlled synthesis of nanomaterials is still the research hotspot in nanoscience. As wide and direct band gap II-VI semiconductor, ZnE (E=S, Se, Te) materials show great potential applications in laser and solar cell with the excellent optoelectronic and chemical performance. Diluted magnetic semiconductors (DMSs), combining the properties of both magnetic materials and semiconductors, have many potential applications for optical, electronic and magnetic devices. With a series of excellent optical properties and wide potential use, AlN nanostructure-based DMSs have important value in scientific research.
     The main work completed in this thesis can be summarized as following:
     1. This paper describes a novel ethanol amine (EA)-directed solvothermal approach for one-step synthesis of wurtzite-structured ZnS thin nanorods with mean diameters of about 6 nm adopting ZnO and Na_2S_2O_3·5H_2O as starting reagents. The as-prepared ZnS nanorods are well-crystallized single crystals with growth direction along [001] of wurtzite. The possible growth mechanism of the as prepared ZnS nanorods involving EA-mediated nucleation and one-dimensional (1D) growth has been discussed referring to the experimental results.
     2. Sphalerite or wurtzite ZnE (E=Se, Te) nanomaterials were synthesized by one-step solvothermal technique by using EA as solvent, zinc acetate as zinc source and Na_2EO_3 or E powder as E source. The test results show that sphalerite ZnE nanoparticles were obtained by adopting Na_2EO_3 as E source, and ZnE nanoplates with thickness of 60 nm by employing E powder as E source. Analysis indicates that EA solvent with appropriate coordination ability has played an important role in the formation of ZnE nanostructures, while the structure and morphology of ZnE nanomaterials are determined by the choice of E source.
     3. Mn-doped AlN single-crystalline nanorods, nanobelts and ultralong nanowires were grown on alumina and silicon substrates by doping Mn using a chemical catalyst-free vapor deposition method employing Al powder, anhydrous AlCl3, Mn powder, MnCl2 and NH3 as sources. Energy dispersive spectroscopy (EDS) and X-ray photoemission spectroscopy (XPS) demonstrate that Mn is successfully doped into the nanostructures. Ferromagnetic ordering of the AlN:Mn nanorods was observed both at 5 K and 300 K by a superconducting quantum interference device magnetometer (SQUID).
     4. Mn-doped AlN nanorod arrays and nanocrystalline films were synthesized on silicon plates and graphite sheets by adopting anhydrous AlCl_3, anhydrous MnCl_2 and NH3 as sources via a catalyst-free chemical vapor deposition method. Analysis shows that the as-prepared nanorods and nanocrystalline grow on the substrates with the alignment along [001] orientation of hexagonal AlN and ferromagnetic ordering of the Mn-doped AlN nanorod arrays was observed at 300 K by a SQUID.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社. 2001. 2-15.
    [2] Klabunde K J, Satark J, Koper O, Cathy M, Park D G, Decker S, Jiang Y, Lagadic I, Zhang D. Nanocrystals as stoichiometric reagents with unique surface chemistry [J]. J. Phys. Chem. 1996, 100: 12142-12153.
    [3] Bell P, Garwin L. Science at the atomic scale [J]. Nature. 1992, 355: 761-766.
    [4] Halperin W P. Quantum size effects in metal particles [J]. Rev. Mod. Phys. 1986, 58: 533-606.
    [5]施尔畏,陈之战,元如林,郑燕青,水热结晶学[M].北京:科学出版社, 2004. 34-45.
    [6] Sheldrick W S, Wachold M. Solventothermal synthesis of solid-state chalcogenidometalates [J]. Angew. Chem. Int. Ed. 1997, 36: 206-224.
    [7]倪星元,姚兰芳,沈军,周斌.纳米材料制备技术[M].北京:化学工业出版社, 2008. 56-76.
    [8] Tran T K, Park W, Tong W, Kyi M M, Wagner B K, Summers C J. Photoluminescence properties of ZnS epilayers [J]. J. Appl. Phys. 1997, 81: 2803-2809.
    [9] Ong H C, Chang R P H. Optical constants of wurzite ZnS thin films determined by spectroscopic ellipsometry [J]. Appl. Phys. Lett. 2001, 79: 3612-3614.
    [10] Jiang Y, Meng X M, Yiu W C, Liu J, Ding X, Lee C S, Lee S T. Zinc selenide nanoribbons and nanowires [J]. Phys. Chem. B. 2004, 108: 2784-2787.
    [11] Ma C, Moore D, Li J, Wang Z L. Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS [J]. Adv. Mater. 2003, 15: 228-231.
    [12] Yin L W, Bando Y, Zhan J H, Li M S, Golberg D. Self-assembled highly faceted wurzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections [J]. Adv. Mater. 2005, 17: 1972-1977.
    [13] Barrelet C J, Wu Y, Bell D C, Lieber C M. Synthesis of CdS and ZnS nanowires usingsingle-source molecular precursors [J]. J. Am. Chem. Soc. 2003, 125: 11498-11499.
    [14] Yao W T, Yu S H, Jiang J, Zhang L. Complex wurtzite ZnSe microspheres with high hierarchy [J]. Chem. Eur. J. 2006, 12: 2066-2072.
    [15] Xiong S L, Xi B J, Wang C M, Xu D C, Feng X M, Zhu Z C, Qian Y T. Tunable synthesis of various wurzite ZnS architectural structures, and their photocatalytic properties [J]. Adv. Funct. Mater. 2007, 17: 2728-2738.
    [16] Xiong S L, Xi B J, Wang C M, Xi G C, Liu X Y, Qian Y T. Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts: A general route to 1D semiconductor nanostructured materials [J]. Chem. Eur. J. 2007, 13: 7926-7932.
    [17] Dua J, Xu L Q, Zou G F, Chai L L, Qian Y T. Solvothermal synthesis of single crystalline ZnTe nanorod bundles in a mixed solvent of ethylenediamine and hydrazine hydrate [J]. J. Cryst. Growth. 2006, 291: 183-186.
    [18] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres [J]. Angew. Chem. Int. Ed. 2003, 42: 3027-3030.
    [19] Hu J S, Ren L L, Guo Y G, Liang H P, Cao A M, Wan L J, Bai C L. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles [J]. Angew. Chem. Int. Ed. 2005, 44: 1269-1273.
    [20] Yeh C Y, Lu Z W, Froyen S, Zunger A. Zinc-blende-wurtzite polytypism in semiconductors [J]. Phys. Rev. B. 1992, 46: 10086-10097.
    [21] Huang M H, Mao S, Feick H. Room-temperature ultraviolet nanowire nanolasers [J]. Science. 2001, 292: 1897-1899.
    [22] Deng Z X, Wang C, Sun X M, Li Y D. Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route [J]. Inorg. Chem. 2002, 41: 869-873.
    [23] Xi G C, Wang C, Wang X, Zhang Q, Xiao H Q. From ZnS·en0.5 nanosheets to wurtzite ZnS nanorods under solvothermal conditions [J]. J. Phys. Chem. C. 2008, 112: 1946-1952.
    [24] Panda A B, Acharya S, Efrima S, Golan Y. Synthesis, assembly, and optical properties of shape- and phase-controlled ZnSe nanostructures [J]. Langmuir. 2007, 23: 765-770.
    [25]李军平,徐耀,赵宁,魏伟,吴东,孙予罕. ZnSe纳米片晶的可控合成[J].化学学报. 2006, 64: 2339-2343.
    [26] Guo Y J, Geng B Y, Zhang L, Zhan F M, You J H. Fabrication, characterization, and strong exciton emission of multilayer ZnTe nanowire superstructures [J]. J. Phys. Chem. C. 2008, 112: 20307-20311.
    [27] Mitzi D B. Polymorphic one-dimensional (N2H4)2ZnTe: Soluble precursors for the formation of hexagonal or cubic zinc telluride [J]. Inorg. Chem. 2005, 44: 7078-7086.
    [28] Ohno H. Making nonmagnetic semiconductors ferromagnetic [J]. Science. 1998, 281: 951-956.
    [29] Frazier R, Thaler G, Overberg M, Gila B, Abernathy C R, Pearton S J. Indication of hysteresis in AlMnN [J]. Appl. Phys. Lett. 2003, 83: 1758-1760.
    [30] Zener C. Interaction between the d shells in the transition metals [J]. Phys. Rev. 1951, 81: 440-444.
    [31] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Ferromagnetism in zinc-blende magnetic semiconductors [J]. Science. 2000, 287: 1019-1022.
    [32] Kazunori S, Hiroshi K Y. Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO [J]. J. Appl. Phys. 2001, 40: L334-L336.
    [33] Sawicki M, Dietl T, Kossut J, Iqalson J, Wojtowicz T, Plesiewicz W. Influence of s-d exchange interaction on the conductivity of Cd1-xMnxSe: In in the weakly localized regime [J]. Phys. Rev. Lett. 1986, 56: 508-511.
    [34] Warnock J, Wolff P. Spherical model of acceptor-associated bound magnetic polarons [J]. A. Phys. Rev. B. 1985, 31: 6579-6587.
    [35] Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides [J]. Nat. Mater. 2005, 4: 173-179.
    [36]祝斌,宋仁国. AlN薄膜的研究进展[J].材料导报. 2010, 24: 307-309.
    [37] Yang S G, Pakhomov A B, Hung S T, Wong C Y. Room-temperature magnetism in Cr-doped AlN semiconductor films [J]. Appl. Phys Lett. 2002, 81: 2418-2421.
    [38] Frazier R M, Stapleton J, Thaler G T, Abernathy C R, Pearton S J. Properties of Co-, Cr-, or Mn-implanted AlN [J]. J. Appl. Phys. 2003, 94: 1592-1596.
    [39] Wu S Y, Liu H X, Gu L, Singh R K, Budd L, Schilfgaarde M, Cartney M R, Smith D J, Newman N. Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films [J]. Appl. Phys. Lett. 2003, 82: 3047-3049.
    [40] Kumar D, Antifakos J, Blamire M G, Barber Z H. High Curie temperatures in ferromagnetic Cr-doped AlN thin films [J]. Appl. Phys Lett. 2004, 84: 5004-5007.
    [41] Polyakov A Y, Smirnov N B, Govorkov A V, Frazier R M, Liefer J Y, Thaler G T, Abernathy C R, Pearton S J, Zavada J M. Properties of highly Cr-doped AlN [J]. Appl. Phys Lett. 2004, 85: 4067-4069.
    [42] Liu H X, Wu S Y, Singh R K, Gu L, Smith D J, Newman N, Dilley N R, Montes L, Simmonds M B. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN [J]. Appl. Phys Lett. 2004, 85: 4076-4079.
    [43] Frazier R M, Thaler G T, Leifer J Y, Hite J K, Gila B P, Abernathy C R, Pearton S J. Role of growth conditions on magnetic properties of AlCrN grown by molecular beam epitaxy [J]. Appl. Phys. Lett. 2005, 86: 052101-052104.
    [44] Zhang J, Li X Z, Xu B, Sellmyer D J. Influence of nitrogen growth pressure on the ferromagnetic properties of Cr-doped AlN thin films [J]. Appl. Phys Lett. 2005, 86: 212504-212507.
    [45] Szekeres A, Bakalova S, Grigorescu S, CzirakiA, Socol G, Ristoscu C, Mihailescu I N. AlN:Cr thin films synthesized by pulsed laser deposition: Studies by X-ray diffraction and spectroscopic ellipsometry [J]. Appl. Phys. A. 2009, 96: 769-774.
    [46] Li M K, Li C B, Liu C S, Fan X J, Fu D J, Shon Y, Kang T W. Cathodoluminescence and magnetic properties of Mn~+ implanted AlN [J]. Chin. Phys. Lett. 2004, 21:393-396.
    [47] Ham M H,Yoon S, Park Y, Myoung J M. Observation of room-temperature ferromagnetism in (Al, Mn)N thin films [J]. Journal of Crystal Growth. 2004, 271: 420-424.
    [48] Song Y Y, Quang P H, Pham V T, Lee K W, Yu S S. Change of optical band gap and magnetization with Mn concentration in Mn-doped AlN films [J]. J. Magn. Magn. Mater. 2005, 290-291: 1375-1378.
    [49] Hama M H, Yoon S, Park Y, Myoung J M. Role of manganese in ferromagnetic (Al, Mn)N films [J]. Solid State Commun. 2006, 137: 11-15.
    [50] Li H, Bao H Q, Song B, Wang W J, Chen X L, He L J, Yuan W X. Ferromagnetic properties of Mn-doped AlN [J]. Physica B. 2008, 403: 4096-4099.
    [51] Sato T, Endo Y, Kirino F, Nakatani R. Differences in structure and magnetic behavior of Mn-AlN films due to substrate material [J]. Journal of Physics: Conference Series. 2009, 165: 012032-012036.
    [52] Sato T, Endo Y, Shiratsuchi Y, Yamamoto M. Magnetic behaviour of Co-AlN thin films with various Co concentrations [J]. J. Magn. Magn. Mater. 2007, 310: e735-e737.
    [53] Jadwisienczak W M, Tanaka H, Kordesch M E, Khan A, Kaya S, Vuppuluri R. Studies of Ni and Co doped amorphous AlN for magneto-optical applications [J]. Mater. Res. Soc. Symp. Proc. 2010, 1202: I05-06.
    [54] Ko K Y, Barber Z H, Blamire M B. Structural and magnetic properties of V-doped AlN thin films [J]. J. Appl. Phys. 2006, 100: 083905-3.
    [55] Sato T, Endo Y, Kawamura Y, Nakatani R, Yamamoto M. Study on magnetic behavior and structure of V-doped AlN films [J]. Journal of Physics: Conference Series. 2008, 106: 012005-012010.
    [56] Gao X D, Jiang E Y, Liu H H, Mi W B, Li Z Q, Wu P, Bai H L. Structure and RT ferromagnetism of Fe-doped AlN films [J]. Applied Surface Science. 2007, 253: 5431-5435.
    [57] Li H, Bao H Q, Song B, Wang W J, Chen X L. Observation of ferromagnetic ordering in Ni-doped AlN polycrystalline powders [J]. Solid State Communications. 2008, 148: 406-409.
    [58] Xu C, Chun J, Lee H J, Jeong H J, Han S E, Kim J J, Kim D E. Ferromagnetic and electrical characteristics of in situ manganese-doped GaN nanowires [J]. J. Phys. Chem. C. 2007, 111: 1180-1185.
    [69] Ji X H, Lau S P, Yu S F, Yang H Y, Herng S T, Chen J S. Ferromagnetic Cu-doped AlN nanorods [J]. Nanotechnology. 2007, 18: 105601-4.
    [60] Ji X H, Lau S P, Yu S F, Yang H Y, Herng T S, Sedhain A, Lin J Y, Jiang H X, Teng K S, Chen J S. Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods [J]. Appl. Phys. Lett. 2007, 90: 193118-3.
    [61] Yang Y, Zhao Q, Zhang X Z, Liu Z G, Zou C X, Shen B, Yu D P. Mn-doped AlN nanowireswith room temperature ferromagnetic ordering [J]. Appl. Phys. Lett. 2007, 90: 092118-3.
    [62] Yang S L, Gao R S, Niu P L, Yu R H. Room-temperature ferromagnetic behavior of cobalt-doped AlN nanorod arrays [J]. Appl. Phys. A. 2009, 96: 769-774.
    [63] Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T. Ferromagnetic Sc-doped AlN sixfold-symmetrical hierarchical nanostructures [J]. Appl. Phys. Lett. 2009, 95: 162501-3.
    [64] Bohnen T, Yazdi G R, Yakimova R, Dreumel G W G V, Hageman P R, Vlieg E, Algra R E, Verheijen M A, Edgar J H. ScAlN nanowires: A cathodoluminescence study [J]. Journal of Crystal Growth. 2009, 311: 3147-3151.
    [65] Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T. Ferromagnetic properties of Y-doped AlN nanorods [J]. J. Phys. Chem. C. 2010, 114: 15574-15577.
    [66] Lehtinen P O, Foster A S, Ma Y C, Krasheninnikov A V, Nieminen R M. Irradiation-induced magnetism in graphite: A density functional study [J]. Phys. Rev. Lett. 2004, 93: 187202-4.
    [67] Chanier T, Opahle I, Sargolzaei M, Hayn R, Lannoo M. Magnetic state around cation vacancies inⅡ-Ⅵsemiconductors [J]. Phys. Rev. Lett. 2008, 100: 026405-4.
    [68] Hang N H, Sakai J, Poirot N, Brize V. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films [J]. Phys. Rev. B, 2006, 73: 132404-4.
    [69] Xu Q Y, Schmidt H, Zhou S Q, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M. Room temperature ferromagnetism in ZnO films due to defects [J]. Appl. Phys. Lett. 2008, 92: 082508-3.
    [70] Nisar J, Peng X, Ahuja R. Origin of ferromagnetism in molybdenum dioxide from ab initio calculations [J]. Phys. Rev. B, 2010, 81: 012402-4.
    [71] Zhao M, Pan F, Mei L. Ferromagnetic ordering of silicon vacancies in N-doped silicon carbide [J]. Appl. Phys. Lett. 2010, 96: 012508-3.
    [72] Gohda Y, Oshiyama A. Intrinsic ferromagnetism due to cation vacancies in Gd-doped GaN: First-principles calculations [J]. Phys. Rev. B, 2008, 78: 161201-4.
    [73] Nisar J, Peng X, Kang T W, Ahuja R. Stabilizing the defect-induced dilute magnetic semiconductors: Li-doping in GaN with Ga vacancies [J]. EPL. 2011, 93: 57006-6.
    [1] Calandra P, Goffredi M, Liveri V T. Study of the growth of ZnS nanoparticles in water /AOT/n-heptane micromulsions by UV-absorption spectroscopy [J]. Colloids Surf. A. 1999, 160: 9-13.
    [2] Bredol M, Merikhi J. ZnS precipitation: Morphology control [J]. J. Mater. Sci. 1998, 33: 471-476.
    [3] Yamamoto T, Kishimoto S, Iida S. Control of valence states for ZnS by triple-codoping method [J]. Phys. B. 2001, 308: 916-919.
    [4] Jiang Y, Meng X M, Liu J, Xie Z Y, Lee C S, Lee S T. Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale [J]. Adv. Mater. 2003, 15: 323-327.
    [5] Zach M P, Ng K H, Penner R M. Molybdenum nanowires by electrodeposition [J]. Science. 2000, 290: 2120-2123.
    [6] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science. 2001, 291: 1947-1949.
    [7] Iijima S. Helical microtubules of graphitic carbon [J]. Nature. 1991, 354: 56-58.
    [8] Zhang X H, Zhang Y, Song Y P, Wang Z, Yu D P. Optical properties of ZnS nanowires synthesized via simple physical evaporation [J]. Physica E. 2005, 28: 1-6.
    [9] Chang Y Q, Wang M W, Chen X H, Ni S L. Qiang W J. Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth [J]. Solid State Communications. 2007, 142: 295-298.
    [10] Wang J, Wang W J, Song B, Wu R, Li J, Sun Y F, Zheng Y F, Jian J K. One-step route to wurzite-structured ZnS thin nanorods in pure ethylenediamine or mixed solvent [J]. Journal of nanoscience and nanotechnology. 2010, 10: 3131-3137.
    [11] Zhao Y W, Zhang Y, Zhu H, Hadjipanayis G C, Xiao J Q. Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals [J]. J. Am. Chem. Soc. 2004, 126: 6874-6875.
    [12] Dawood F, Schaak R E. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles [J]. J. Am. Chem. Soc. 2009, 131: 424-425.
    [13] Deng Z X, Wang C, Sun X M, Li Y D. Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route [J]. Inorg. Chem. 2002, 41: 869-873.
    [14] Xi G C, Wang C, Wang X, Zhang Q, Xiao H Q. From ZnS·en0.5 nanosheets to wurtzite ZnS nanorods under solvothermal conditions [J]. J. Phys. Chem. C. 2008, 112: 1946-1952.
    [15] Chen X J, Xu H F, Xu N S, Zhao F H, Lin W J, Lin G, Fu Y L, Huang Z L, Wang H Z, Wu M M. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network [J]. Inorg. Chem. 2003, 42: 3100-3106.
    [16] Yao H B, Gao M R, Yu S H. Small organic molecule templating synthesis of organic-inorganic hybrid materials: Their nanostructures and properties [J]. Nanoscale. 2010, 2: 323-334.
    [17] Xiong S L, Xi B J, Wang C M, Xu D C, Feng X M, Zhu Z C, Qian Y T. Tunable synthesis of various wurzite ZnS architectural structures, and their photocatalytic properties [J]. Adv. Funct. Mater. 2007, 17: 2728-2738.
    [18] Chen M H, Gao L. Synthesis and characterization of wurtzite ZnSe one-dimensional nanocrystals through molecular precursor decomposition by solvothermal method [J]. Mater. Chem.Phys. 2005, 91: 437-441.
    [19] Dua J, Xu L Q, Zou G F, Chai L L, Qian Y T. Solvothermal synthesis of single crystalline ZnTe nanorod bundles in a mixed solvent of ethylenediamine and hydrazine hydrate [J]. J. Cryst. Growth. 2006, 291: 183-186.
    [20] Zhao P T, Zeng Q M, He X L, Tang H, Huang K X. Preparation of gamma-MnS hollow spheres consisting of cones by a hydrothermal method [J]. J. Cryst. Growth. 2008, 310: 4268-4272.
    [21] Xiong S L, Xi B J, Wang C M, Xi G C, Liu X Y, Qian Y T. Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts: A general route to 1D semiconductor nanostructured materials [J]. Chem. Eur. J. 2007, 13: 7926-7932.
    [22] Yin Y D, Alivisators A P. Colloidal nanocrystal synthesis and the organic-inorganic interface [J]. Nature. 2005, 437: 664-670.
    [23] Puzder A, Williamson A J, Zaitseva N, Galli G, Manna L, Alivisatos A P. The effect of organic ligand binding on the growth of CdSe nanoparticles probed by ab initio calculations [J]. Nano. Lett. 2004, 4: 2361-2365.
    [24] Manna L, Wang L W, Cingolani R, Alivisatos A P. First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: A model system for studying the anisotropic growth of CdSe nanocrystals [J]. J. Phys. Chem. B. 2005, 109: 6183-6192.
    [25] Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals [J]. J. Am. Chem. Soc. 2001, 123: 1389-1395.
    [26] Sigman M B, Ghezelbash A, Hanrath T, Saunders A E, Lee F, Korgel B A. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets [J]. J. Am. Chem. Soc. 2003, 125: 16050-16057.
    [27] Yao W T, Yu S H, Wu Q S. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: A mild-solution chemistry approach [J]. Adv. Funct. Mater. 2007, 17: 623-631.
    [28] Zhou J, Dai J, Bian G Q. Solvothermal synthesis of group 13–15 chalcogenidometalates with chelating organic amines [J]. Coord. Chem. Rev. 2009, 253: 1221-1247.
    [29] Xu D, Liu Z P, Liang J B, Qian Y T. Solvothermal synthesis of CdS nanowires in a mixedsolvent of ethylenediamine and dodecanethiol [J]. J. Phys. Chem. B. 2005, 109: 14344-14349.
    [30] Yao W T, Yu S H. Synthesis of semiconducting functional materials in solution: FromⅡ-Ⅵsemiconductor to inorganic-organic hybrid semiconductor nanomaterials [J]. Adv. Funct. Mater. 2008, 18: 3357-3366.
    [31] Tang H, Xu G Y, Weng L Q, Pan L J, Wang L. Luminescence and photophysical properties of colloidal ZnS nanoparticles [J]. Acta Materrialia. 2004, 52: 1489-1494.
    [32] Manzoor K, Vadera S R, Kumar N, Kutty T R N. Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen [J]. Mater. Chem. Phys. 2003, 82: 718-725.
    [33] Becker W G, Bard A J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions [J]. J. Phys. Chem. 1983, 87: 4888-4893.
    [34] Hu P A, Liu Y Q, Fu L, Cao L C, Zhu D B. Self-assembled growth of ZnS nanobelt networks [J]. J. Phys. Chem. B. 2004, 108: 936-938.
    [35] Chai L L, Du J, Xiong S L, Li H B, Zhu Y C, Qian Y T. Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique [J]. J. Phys. Chem. C. 2007, 111: 12658-12662.
    [1]李焕勇,胡荣祖,张红,介万奇.线性条件下纳米ZnSe的生成动力学[J].物理化学学报. 2003, 19: 315-319.
    [2]吕冉,高涛,李喜波,罗江山,唐永建.闪锌矿ZnTe高温高压下的弹性及热力学性质[J].物理化学学报. 2010, 26: 13-17.
    [3] Jin L, Wang J B, Jia S F, Jiang Q K, Yan X, Lu P, Cai Y, Deng L Z, Choy W C H. ZnSeheterocrystalline junctions based on zinc blende-wurtzite polytypism [J]. J. Phys. Chem. C. 2010, 114: 1411-1415.
    [4] Li S Y, Jiang Y, Wu D, Wang L, Zhong H H, Wu B, Lan X Z, Yu Y Q, Wang Z B, Jie J S. Enhanced p-type conductivity of ZnTe nanoribbons by nitrogen doping [J]. J. Phys. Chem. C. 2010, 114: 7980-7985.
    [5] Meng Q F, Jiang C B, Mao S X. Temperature-dependent growth of zinc-blende-structured ZnTe nanostructures [J]. Journal of Crystal Growth. 2008, 310: 4481-4486.
    [6] Rizzo A, Tagliente M A, Caneve L, Scaglione S. The influence of the momentum transfer on the structural and optical properties of ZnSe thin films prepared by r.f. magnetron sputtering [J]. Thin Solid Films. 2000, 368: 8-14.
    [7] Pal R, Bhattacharyya D, Maity A B, Chaudhuri S, Pal A K. Nanostructured ZnTe films prepared by D.C. magnetron sputtering [J]. Nanostructured Materials. 1994, 4: 329-336.
    [8] Janik E, Sadowski J, D?u?ewski P, Kret S, Baczewski L T, Petroutchik A, ?usakowska E, Wróbel J, Zaleszczyk W, Karczewski G, Wojtowicz T. ZnTe nanowires grown on GaAs (100) substrates by molecular beam epitaxy [J]. Appl. Phys. Lett. 2006, 89: 133114-3.
    [9] Sou I K, Wong K S, Yang Z Y, Wang H, Wong G K L. Highly efficient light emission from ZnS1?xTex alloys [J]. Appl. Phys. Lett. 1995, 66: 1915-1917.
    [10] Li L, Yang Y W, Huang X H, Li G H, Zhang L D. Fabrication and characterization of single-crystalline ZnTe nanowire arrays [J]. J. Phys. Chem. B. 2005, 109: 12394-12398.
    [11] Kowalik R, ?abiński P, Fitzner K. Electrodeposition of ZnSe [J]. Electrochimica Acta. 2008, 53: 6184-6190.
    [12] Guo Y J, Geng B Y, Zhang L, Zhan F M, You J H. Fabrication, characterization, and strong exciton emission of multilayer ZnTe nanowire superstructures [J]. J. Phys. Chem. C. 2008, 112: 20307-20311.
    [13] Geng B Y, You J H, Zhan F M, Kong M G, Fang C H. Controllable morphology evolution and photoluminescence of ZnSe hollow microspheres [J]. J. Phys. Chem. C. 2008, 112: 11301-11306.
    [14]侯军伟,宋波,张志华,王文军,吴荣,孙言飞,郑毓峰,丁芃,简基康.化学气相沉积法合成高结晶度的三元系Cd1-xZnxS纳米线[J].物理化学学报. 2009, 25: 724-728.
    [15] Xiong S L, Xi B J, Wang C M, Xi G C, Liu X Y, Qian Y T. Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts: A general route to 1D semiconductor nanostructured materials [J]. Chem. Eur. J. 2007, 13: 7926-7932.
    [16]李军平,徐耀,赵宁,魏伟,吴东,孙予罕. ZnSe纳米片晶的可控合成[J].化学学报. 2006, 64: 2339-2343.
    [17] Yang J, Wang G X, Liu H, Park J S, Cheng X N. Controlled synthesis and characterization of ZnSe nanostructures via a solvothermal approach in a mixed solution [J]. Materials Chemistry and Physics. 2009, 115: 204-208.
    [18] Du J, Xu L Q, Zou G F, Chai L L, Qian Y T. Solvothermal synthesis of single crystalline ZnTe nanorod bundles in a mixed solvent of ethylenediamine and hydrazine hydrate [J]. Journal of Crystal Growth. 2006, 291: 183-186.
    [19] Yeh C Y, Lu Z W, Froyen S, Zunger A. Zinc-blende-wurtzite polytypism in semiconductors [J]. Phys. Rev. B. 1992, 46: 10086-10097.
    [20] Deshpande A C, Singh S B, Abyaneh M K, Pasricha R, Kulkarni S K. Low temperature synthesis of ZnSe nanoparticles [J]. Mater. Lett. 2008, 62: 3803-3805.
    [21] Wang J L, Yang Q. One-dimensional angle-shaped ZnSe nanostructures: Synthesis and formation mechanism [J]. Crystal Growth and Design. 2008, 8: 660-664.
    [22] Lee S H, Kim Y J, Park J. Shape evolution of ZnTe nanocrystals: Nanoflowers, nanodots, and nanorods [J]. Chem. Mater. 2007, 19: 4670-4675.
    [23] Liu X D, Ma J M, Peng P, Zheng W J. Ionic liquid-assisted complex-solvothermal synthesis of ZnSe hollow microspheres [J]. Materials Science and Engineering B. 2008, 150: 89-94.
    [24] Wan B Y, Hu C G, Feng B, Xu J, Zhang Y, Tian Y S. Optical properties of ZnTe nanorods synthesized via a facile low-temperature solvothermal route [J]. Materials Science and Engineering B. 2010, 171: 11-15.
    [25] Cao F, Shi W D, Zhao L J, Song S Y, Yang J H, Lei Y Q, Zhang H J. Hydrothermal synthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostructures [J]. J. Phys. Chem. C. 2008, 112: 17095-17101.
    [26] Mitzi D B. Polymorphic one-dimensional (N2H4)2ZnTe: Soluble precursors for the formation ofhexagonal or cubic zinc telluride [J]. Inorg. Chem. 2005, 44: 7078-7086.
    [27] Panda A B, Acharya S, Efrima S, Golan Y. Synthesis, assembly, and optical properties of shape- and phase-controlled ZnSe nanostructures [J]. Langmuir. 2007, 23: 765-770.
    [28]Moon G M, Ko S, Xia Y, Jeong U. Chemical transformations in ultrathin chalcogenide nanowires [J]. ACS nano. 2010, 4: 2307-2319.
    [29] Zhou J, Dai J, Bian G Q, Li C Y. Solvothermal synthesis of group 13-15 chalcogenidometalates with chelating organic amines [J]. Coord. Chem. Rev. 2009, 253: 1221-1247.
    [30] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres [J]. Angew. Chem. Int. Ed. 2003, 42: 3027-3030.
    [31] Lawaetz P. Stability of the wurzite structure [J]. Phys. Rev. B. 1972, 5: 4039-4045.
    [32] Jun Y W, Choi C S, Cheon J. Size and shape controlled ZnTe nanocrystals with quantum confinement effect [J]. Chem. Commun. 2001: 101-102.
    [33] Walter J P, Cohen M L. Calculated and measured reflectivity of ZnTe and ZnSe [J]. Phys. Rev. B. 1970, 1: 2661-2667.
    [34] Ahmed F, Naciri A E, Grob J. Dielectric function of ZnTe nanocrystals by spectroscopic ellipsometry [J]. J. Nanotechnology. 2009, 20: 305702-7.
    [1] Frazier R, Thaler G, Overberg M, Gila B, Abernathy C R, Pearton S J. Indication of hysteresis in AlMnN [J]. Appl. Phys. Lett. 2003, 83: 1758-1760.
    [2] Frazier R M, Stapleton J, Thaler G T, Abernathy C R, Pearton S J, Rairigh R, Kelly J, Hebard A F. Properties of Co-, Cr-, or Mn-implanted AlN [J]. J. Appl. Phys. 2003, 94: 1592-1596.
    [3] Li M K, Li C B, Liu C S, Fan X J. Optical and magnetic measurements of Mn-implanted AlN [J]. J. Appl. Phys. 2004, 95: 755-757.
    [4] Ham M H, Yoon S, Park Y, Myoung J M. Observation of room-temperature ferromagnetism in (Al, Mn)N thin films [J]. Journal of Crystal Growth. 2004, 271: 420-424.
    [5] Song Y Y, Quang P H, Pham V T, Lee K W, Yu S C. Change of optical band gap and magnetization with Mn concentration in Mn-doped AlN films [J]. J. Magn. Magn. Mater. 2005, 1375: 290-291.
    [6] Ham M H, Yoon S, Park Y, Myoung J M. Role of manganese in ferromagnetic (Al, Mn)N films [J]. Solid State Commun. 2006, 137: 11-15.
    [7] Yang Y, Zhao Q, Zhang X Z, Liu Z G, Zou C X, Shen B, Yu D P. Mn-doped AlN nanowires with room temperature ferromagnetic ordering [J]. Appl. Phys. Lett. 2007, 90: 092118-3.
    [8] Li H, Bao H Q, Song B, Wang W J, Chen X L, He L J, Yuan W H. Ferromagnetic properties of Mn-doped AlN [J]. Physica B. 2008, 403: 4096-4099.
    [9] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. One-dimensional nanostructures: Synthesis, characterization, and applications [J]. Adv. Mater. 2003, 15: 353-389.
    [10] Ji X H, Lau S P, Yu S F, Yang H Y, Hreng T S, Chen J S. Ferromagnetic Cu-doped AlN nanorods [J]. Nanotechnology. 2007, 18: 105601-4.
    [11] Ji X H, Lau S P, Yu S F, Yang H Y, Herng T S, Sedhain A, Lin J Y, Jiang H X, Teng K S, Chen J S. Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods [J]. Appl. Phys. Lett. 2007, 90: 193118-3.
    [12] Yang S L, Gao R S, Niu P L, Yu R H. Room-temperature ferromagnetic behavior of cobalt-doped AlN nanorod arrays [J]. Appl. Phys. A. 2009, 96: 769-774.
    [13] Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T. Ferromagnetic Sc-doped AlN sixfold-symmetrical hierarchical nanostructures [J]. Appl. Phys. Lett. 2009, 95: 162501-3.
    [14] Bohnen T, Yazdi G R, Yakimova R, Dreumel G W G V, Hageman P R, Vlieg E, Algra R E, Verheijen M A, Edgar J H. ScAlN nanowires: A cathodoluminescence study [J]. Journal of Crystal Growth. 2009, 311: 3147-3151.
    [15] Wei Y Y, Guo J M, Hou D L, Qiao S. Preparation and properties of Mn-doped GaN powders [J]. Solid State Communications. 2008, 148: 234-236.
    [16] Wagner C D, Riggs W M, Davis L E, Moulder J M. Handbook of X-Ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie. 1979. 74.
    [17] Sarma S D, Hwang E H, Kaminski A. Temperature-dependent magnetization in diluted magnetic semiconductors [J]. Phys. Rev. B. 2003, 67: 155201-16.
    [18] Pearton S J, Park Y D, Abernathy C R, Overberg M G, Thaler G T, Kim J, Ren F. GaN and other materials for semiconductor spintronics [J]. Journal of electronic materials. 2003, 32: 288-297.
    [19] Lee G H, Huh S H, Jeong J W, Choi B J, Kim S H, Ri H C. Anomalous magnetic properties of MnO nanoclusters [J]. J. Am. Chem. Soc. 2002, 124: 12094-12905.
    [20] Seo W S, Jo H H, Lee K, Kim B, Oh S J, Park J T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles [J]. Angew. Chem. 2004, 43: 1115-1117.
    [21] Wu S Y, Liu H X, Gu L, Singh R K, Budd L, Schilfgaaarde M, McCartney M R, Smith D J, Newman N. Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN films [J]. Appl. Phys. Lett. 2003, 82: 3047-3049.
    [22] Esquinazi P, Spemann P D, H?hne R, Setzer A, Han H H, Butz T. Induced magnetic ordering by proton irradiation in graphite [J]. Phys. Rev. Lett. 2003, 91: 227201-4.
    [23] Yazyev O V, Helm L. Defect-induced magnetism in graphene [J]. Phys. Rev. B. 2007, 75: 125408-5.
    [24] Xia H, Li W, Song Y, Yang X, Liu X, Zhao M, Xia Y, Song C, Wang T W, Zhu D, Gong J, Zhu Z. Tunable magnetism in carbon-ion-implanted highly oriented pyrolytic graphite [J]. Adv. Mater. 2008, 20: 4679-4683.
    [25] Liu Y, Wang G, Wang S C, Yang J H, Chen L, Qin X B, Song B, Wang B Y, Chen X L. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals [J]. Phys. Rev. Lett. 2011, 106: 087205-4.
    [26] Frazier R M, Stapleton J, Thaler G T, Abernathy C R, Pearton S J. Properties of Co-, Cr-, or Mn-implanted AlN [J]. J. Appl. Phys. 2003, 94: 1592-1596.
    [27] Duan J H, Yang S G, Liu H W, Gong J F, Huang H B, Zhao X N, Tang J L, Zhang R, Du Y W. AlN nanorings [J]. Journal of Crystal Growth. 2005, 283: 291-296.
    [28] Shi S C, Chen C F, Chattopadhyay S, Chen K H, Ke B W, Chen L C, Trinkler L, Berzina B. Luminescence properties of wurtzite AlN nanotips [J]. Appl. Phys. Lett. 2006, 89: 163127-3.
    [29] Rutz R F. Ultraviolet electroluminesecence in AlN [J]. Appl. Phys. Lett. 1976, 28: 379-381.
    [30] Monroy E, Zenneck J, Cherkashinin G, Ambacher O, hermann M, Stutzmann M, Eickhoff M. Luminescence properties of highly Si-doped AlN [J]. Appl. Phys. Lett. 2006, 88: 071906-3.
    [31] Wu Q, Zhang F, Wang X Z, Liu C, Hu Z. Preparation and characterization of AlN-based hierarchical nanostructures with improved chemical stability [J]. J. Phys. Chem. C. 2007, 111: 12639-12642.
    [1] Ji X H, Lau S P, Yu S F, Yang H Y, Herng T S, Sedhain A, Lin J Y, Jiang H X, Teng K S, Chen J S. Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods [J]. Appl. Phys. Lett. 2007, 90: 193118-3.
    [2] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. One-dimensional nanostructures: Synthesis, characterization, and applications [J]. Adv. Mater. 2003, 15: 353-389.
    [3] Xu C, Chun J, Lee H J, Jeong H J, Han S E, Kim J J, Kim D E. Ferromagnetic and electrical characteristics of in situ manganese-doped GaN nanowires [J]. J. Phys. Chem. C. 2007, 111: 1180-1185.
    [4] Frazier R, Thaler G, Overberg M, Gila B, Abernathy C R, Pearton S J. Indication of hysteresis in AlMnN [J]. Appl. Phys. Lett. 2003, 83: 1758-1760.
    [5] Frazier R M, Stapleton J, Thaler G T, Abernathy C R, Pearton S J, Rairigh R, Kelly J, Hebard A F. Properties of Co-, Cr-, or Mn-implanted AlN [J]. J. Appl. Phys. 2003, 94: 1592-1596.
    [6] Li M K, Li C B, Liu C S, Fan X J. Optical and magnetic measurements of Mn-implanted AlN [J]. J. Appl. Phys. 2004, 95: 755-757.
    [7] Ji X H, Lau S P, Yu S F, Yang H Y, Hreng T S, Chen J S. Ferromagnetic Cu-doped AlN nanorods [J]. Nanotechnology. 2007, 18: 105601-4.
    [8] Ji X H, Lau S P, Yu S F, Yang H Y, Herng T S, Sedhain A, Lin J Y, Jiang H X, Teng K S, Chen J S. Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods [J]. Appl. Phys. Lett. 2007, 90: 193118-3.
    [9] Yang S L, Gao R S, Niu P L, Yu R H. Room-temperature ferromagnetic behavior of cobalt-doped AlN nanorod arrays [J]. Appl. Phys. A. 2009, 96: 769-774.
    [10] Li H B, Wang W J, Song B, Wu R, Li J, Sun Y F, Zheng Y F, Jian J K. Catalyst-free synthesis, morphology evolution and optical property of one-dimensional aluminum nitride nanostructure arrays [J]. Journal of Alloys and Compounds. 2010, 503: L34–L39.
    [11] Li H, Bao H Q, Song B, Wang W J, Chen X L, He L J, Yuan W X. Ferromagnetic properties of Mn-doped AlN [J]. Physica B. 2008, 403: 4096-4099.
    [12] Ham M H, Yoon S, Park Y, Myoung J M. Role of manganese in ferromagnetic (Al, Mn)N films [J]. Solid State Commun. 2006, 137: 11-15.
    [13] Ham M H, Yoon S, Park Y, Myoung J M. Observation of room-temperature ferromagnetism in (Al, Mn)N thin films [J]. Journal of Crystal Growth. 2004, 271: 420-424.
    [14] Sato A, Azumada K, Atsumori T, Hara K. Characterization of AlN:Mn thin film phosphors prepared by metalorganic chemical vapor deposition [J]. Journal of Crystal Growth. 2007, 298: 379-382.
    [15] Dean J A.兰氏化学手册[M].尚久方,操时杰,辛无名,郑飞勇,陆晓明,林长青.北京:科学出版社. 1991, 3: 118-120.
    [16] Shi S C, Chen C F, Chattopadhyay S, Chen K H, Ke B W, Chen L C, Trinkler L, Berzina B. Luminescence properties of wurtzite AlN nanotips [J]. Appl. Phys. Lett. 2006, 89: 163127-3.
    [17] Rutz R F. Ultraviolet electroluminesecence in AlN [J]. Appl. Phys. Lett. 1976, 28: 379-381.
    [18] Monroy E, Zenneck J, Cherkashinin G, Ambacher O, Hermann M, Stutzmann M, Eickhoff M. Luminescence properties of highly Si-doped AlN [J]. Appl. Phys. Lett. 2006, 88: 071906-3.
    [19] Hang N H, Sakai J, Poirot N, Brize V. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films [J]. Phys. Rev. B. 2006, 73: 132404-4.
    [20] Xu Q Y, Schmidt H, Zhou S Q, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M. Room temperature ferromagnetism in ZnO films due todefects [J]. Appl. Phys. Lett. 2008, 92: 082508-3.
    [21] Nisar J, Peng X, Ahuja R. Origin of ferromagnetism in molybdenum dioxide from ab initio calculations [J]. Phys. Rev. B. 2010, 81: 012402-4.
    [22] Zhao M, Pan F, Mei L. Ferromagnetic ordering of silicon vacancies in N-doped silicon carbide [J]. Appl. Phys. Lett. 2010, 96: 012508-3.
    [23] Gohda Y, Oshiyama A. Intrinsic ferromagnetism due to cation vacancies in Gd-doped GaN: First-principles calculations [J]. Phys. Rev. B. 2008, 78: 161201-4.
    [24] Nisar J, Peng X, Kang T W, Ahuja R. Stabilizing the defect-induced dilute magnetic semiconductors: Li-doping in GaN with Ga vacancies [J]. EPL. 2011, 93: 57006-6.
    [25] Wu R Q, Peng G W, Liu L, Feng Y P. Ferromagnetism in Mg-doped AlN from ab initio study [J]. Appl. Phys. Lett. 2006, 89: 142501-3.
    [26]类伟巍.Ⅲ族氮化物及AlN基稀磁半导体纳米材料的制备与高压物性研究[D].吉林长春:吉林大学, 2009.
    [27] Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T. Ferromagnetic properties of Y-doped AlN nanorods [J]. J. Phys. Chem. C. 2010, 114: 15574-15577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700