用户名: 密码: 验证码:
锰氧化物纳米材料的制备及生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会的飞速发展,能源与环境问题越来越突出。纳米科技的飞速发展为解决能源与环境危机提供了无尽的机遇与广阔的前景。锰氧化物的优异性质使得它在催化、吸附、离子交换、通讯、微波铁氧体、软磁铁氧体、气敏、湿敏等诸多领域都有广泛的应用。本文主要关注的是它在能源和环境领域的应用:以锰的氧化物作为锂离子二次电池的正极材料不仅具有造价低廉、能量密度高、安全性高等优点,而且对环境不会产生任何污染;锰氧化物作为微波吸收材料能消除或屏蔽电子设备所造成的电磁污染,净化人类的生存环境。本论文以倡导绿色环保为时代背景、以纳米科技的飞速发展为科学背景、以锰氧化物在二次电池和微波吸收领域的应用为着眼点,着重研究了各种不同形貌锰氧化物低维纳米材料的制备、生长机制及形貌控制,并初步研究了锰氧化物纳米材料的微波吸收特性,为进一步深入研究奠定基础。
     本论文的主要研究内容、研究成果及创新点如下:
     1、无需任何模板和表面活性剂的辅助,只用KMnO_4和H_2O为反应物,用水热法制备了分级结构的花状自组装MnO_2多孔微球和γ-MnOOH纳米带。我们对其微观形貌和结构进行了表征,首次提出了一个包含两个竞争因素,即温度和库仑相互作用的竞争机制,对其生长机理进行了很好的解释。根据我们所提出的生长机制,推论出了得到均一形貌及两种形貌在产物中所占比例的控制方法,并在实验中得到了验证,实现了产物形貌较为精确的控制。
     2、无需任何模板和表面活性剂的辅助,只用KMnO_4和H_2O为反应物,用水热法在硅基底上制备了锰氧化物多层膜。所制得的多层膜由一层单晶纳米片所组成的表面多孔层和一层或多层数目不等的底部非晶层组成。我们对其微观结构进行了深入表征,结果表明,表面多孔层是钠水锰矿结构的MnO_2,非晶底层中可能包含有γ-MnOOH、γ-Mn_3O_4、γ-MnO_2、α-MnO_2,在底层和基底的界面上可能存在SiO_2和结合了-OH的Mn离子和Si离子。为探索其生长机制,我们首次提出了一个包含内应力的产生、积累、释放和化学反应同时存在的复杂机制,成功的解释了这种多层膜的生长机制。
     3、用水热法结合后续热处理制备了黑水锰矿(β-MnOOH和γ-Mn_3O_4)和Mn_3O_4纳米颗粒及Mn_2O_3三维网状结构。研究了三维网状结构的形成过程。对产物的微波吸收性质进行了测试,着重研究了颗粒大小,热处理温度,热处理时间对它们微波吸收性能的影响,并跟相应的块体材料进行了对比。详细分析了产物微波吸收的机理,为锰氧化物在微波吸收领域的实际应用打下基础。
With the rapid development of modern society, energy and environment problem havearoused more and more attention, however, new approaches and chances to solve theseproblems are provided by the fast development of nanoscience and nanotechnology.Manganese oxides with excellent properties have wide applications in various fields, forexample, catalysts, absorbers, ion exchange, communication, microwave ferrite, softmagnetic ferrite, gas sensor, humidity sensors and many other fields. Here, our attention isfocused on its applications in the following two fields, energy and environmental protectionIt does not only has the advantages of low prices, high energy density and high safety, butalso has no harm to the environment as the cathode material of lithium-ion secondarybatteries. It can also eliminate the electron magnetic pollution caused by various kinds ofelectronic devices as an microwave absorber, thus purifies the human living environment.Therefore, with the call for environmental protection as the times background, the rapiddevelopment of nanoscience and technology as the scientific background and the respect ofits applications in the fields of lithium-ion secondary batteries and microwave absorption,the preparation, growth mechanism and morphology control of the low dimensionalmanganese oxides nanomaterials were investigated. Moreover, its application as microwaveabsorber was primarily studied which lays a solid foundation for further investigations.
     The content, results and originalities of this research are as follows:
     1.3D self-assembled flowerlike hierarchical spheres of MnO_2 andγ-MnOOH nanobelts were prepared by a simple hydrothermal method, using KMnO_4 and H_2O as reactants, without any templates and surfactants. Morphology and structure of the product were characterized. A growth mechanism was proposed for the first time, which involved two competitive factors, temperature and Coulomb interaction, to understand the formation mechanism of the product. A simple morphology control method to obtain products of uniform morphology and their proportion in the product, which deduced from the proposed mechanism was supported by parallel experiments, thus the morphology of the product can be controlled.
     2. Manganese oxde film on Si substrate was obtained by hydrothermal method, using KMnO_4 and H_2O as reactants, without the assistance of any templates and surfactants. The as-prepared film consists of a porous surface layer which was composed of many single crystal nanosheets, and one or more amorphous bottom layers. In-depth characterization was carried out. Results showed that the porous surface layer was Birnessite MnO_2 and the amorphous bottom layers might containγ-MnOOH,γ-Mn_3O_4,γ-MnO_2,α-MnO_2, and -OH bonded Mn and Si ions and SiO_2 might existed in the interface between the substrate and bottom layers. To understand formation mechanism of the as-prepared manganese oxide film, a complex mechanism involved the coexistence of internal stress and chemical reaction was proposed, and the formation mechanism and process of the film were well understood.
     3. Hydrohausmannite (β-MnOOH andγ-Mn_3O_4),Mn_3O_4 nanoparticles and 3D porous network were prepared by hydrothermal method and subsequent heat treatments. The formation process of the 3D porous network was studied. The microwave absorption properties of the samples were tested, and the effect of particles size, temperature and duration of the heat treatment were also investigated. Comparation of microwave absorption properties of nanomaterials and bulk materials were made. For the future application of manganese oxide in microwave absorption, microwave absorption mechanism of the samples was discussed in detail.
引文
[1]苏勉曾,材料化学展望,大学化学10 (3) (1995) 6-10.
    [2]李民乾,纳米科学技术----面向21世纪的新科技,物理21 (2) (1992) 65-69
    [3]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001
    [4]Y.Wang,W.Mahler,Degenerate four-wave mixing of CdS/polymer composite,Opt.Commun.61 (1987) 233-236.
    [5]Ball P,Garwin L.Science in atomic Scale.Nature 355 (1992) 761-766.
    [6]赵于文,超细粉的性能,制备及应用,现代化工5 (1991) 52
    [7]Cavicchi P E,Silsbee R H.Coulomb Suppression of Tunneling Rate from Small Metal Particles.Phys Rev.Lett.52 (1984) 1453-1456.
    [8]Zhu X,Birribger R,Herr U.et al.X-ray diffraction structure of nanometer-sized crystalline materials.Phys.Rev.Lett.35 (1987) 9085-9090.
    [9]A.R.Leheny,R.Rossetti,L.E.Brus,Tetrathiafulvalene photoionization in micellar solutions: a time-resolved Raman scattering study of interfacial solvation,J.Phys.Chem.89 (1985) 4091-4093
    [10]Crowen A J,Barry S.Magnetic Phase transitions in nanocryctalline erbium.J.Appl.Phys.61 (1987) 3317-3319.
    [11]Herr U,Birringer R,Gonser U and Gleiter H.Investigation of Nanocrystalline iron materials by Mossbauer spectroscopy,Appl.Phys.Lett.50 (1987) 472-474.
    [12]郭永,巩维,杨宏秀.纳米微粒的制备方法及其进展,化学通报3 (1996) 1-4.
    [13]Brus L E.Electronic ware functions in semiconductor clusters: experiment and theory,J.Phys.Chem.90 (1986) 2555-2560.
    [14]Nakanishi T,Ohtani B,Uosaki K.Fabrication and Characterization of CdS-Nanopaticle Mono-and Multilayers on a Self-Assembled Alkanedithiols on Gold,J.Phys.Chem B.102 (1998) 1571-1577.
    [15]Hagfeidt A,Gratzel M.Light-Induced Reactions in Nanocrystalline Systems,Chem.Rev.95 (1995) 49-53.
    [16]B.Barbara,W.Wernsdorfer,Quantum tunneling effect in magnetic particles,Curr.Opin.Solid State.Mater.Sci.2(2) (1997) 220-225
    [17]Takagahara T.Effect of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dot.Phys.Rev.B.47 (1993) 4569-4584.
    [18]史淑凤,水热/溶剂热法可控合成低维纳米材料,东北师范大学硕士学位论文,2008
    [19]Sir Roderick Murchison (1840s) (cited by S.Somiya,ed.),Hydrothermal Reactions for Materials Science and Engineering,Elsevier Applied Science,London (1989)
    [20]K.Byrappa,Handbook of Hydrothermal Technology,2001,NOYES PUBLICATIONS,Park Ridge,New Jersey,U.S.A./WILLIAM ANDREW PUBLISHING,LLC,Norwich,New York,U.S.A.P54
    [21]Meunier,S.,Production et Cristallisation d'un Silicate Anhydre (enstatite) en Presence de la Vespeur d'eau (?) ]a Pression Ordinaire,Compt.Rend.99 (1880) 349-351
    [22]Morey,G.W.,Neue Kristallisierte Silikate von Kalium und Natrium.Darstellung und Allgemeine Eigenschaften,Z.Anorg.Chem.86 (1914) 305-324
    [23]施尔畏,水热法的应用与发展,无机化学学报11(2) (1996) 193-197.
    [24]徐如人,无机合成与制备化学,北京:高等教育出版社,2001.12-20.
    [25]Yoshimura M.Processing and properties of pydroxyapatite-based biomaterial for use as tissue replacement implants,Mater.Res.13 (1998) 94-98.
    [26]Zhou G T,Wang X,Yu J C.A Low-Temperature and Mild Solvothermal Route to the Synthesis of Wurtzite-Type ZnS With Single-Crystalline Nanoplate-like Morphology.Cryst.Growth Des.5 (2005) 1761-1765.
    [27]Biswas S,Kar S,Chaudhuri S.Optical and Magnetic Properties of Manganese-Incorporated Zinc Sulfide Nanorods Synthesized by a Solvothermal Process J.Phys.Chem.B 109 (2005) 17526-17530.
    [28]Grocholl L,Wang J,Gillan E G..Solvothermal Azide Decomposition Route to GaN Nanoparticles,Nanorods,and Faceted Crystallites,Chem.Mater.13 (2001) 4290-4296.
    [29]Zheng Y,Cheng Y,Wang Y.Metastable-MnS Hierarchical Architectures: Synthesis,Characterization,and Growth Mechanism.J.Phys.Chem.B 110 (2006) 8284-8288.
    [30]Datta A,Grorai S,Panda S K.A Simple Route to the Synthesis of Crystalline InS Nanowires from Indium Foil,Cryst.Growth Des.6 (2006) 1010-1013.
    [31]Demazeau G.lridium (Ⅲ) stabilized in oxygen lattices with the perovskite structure Sr2Mlr Ⅲ O6(M=Nb,Ta),J.Mater.Chem.3 (1995) 517-520.
    [32]钱逸泰等,非氧化物纳米材料的溶剂热合成[J].中国科学院院刊.16(1) (2001) 26-28.
    [33]Yoshimura M.Soft processing for advanced inorganic materials,MRS Bulletin 25(9) (2000) 12-25.
    [34]Yoshimura M.Structural behavior of Co/Cu multilayers grown by sputtering Solid State Ion,Difus.React.98 (1997) 179-208.
    [35]苗鸿雁,罗宏杰,王秀峰等.低压条件下纳米氧化锆的水热结晶合成.陶瓷工程.32 (1998) 1-4.
    [36]Guang-Guang Xia,Wei Tong,Elaine N.Tolentino,Nian-Gao Duan,Stephanie L.Brock,Jin-Yun Wang,and Steven L.Suib,Synthesis and Characterization of Nanofibrous Sodium Manganese Oxide with a 2×4 Tunnel Structure,Chem.Mater.13 (2001) 1585-1592
    [37]Buchner,W.;Schliebs,R.;Winter,G.;Buchel,K.H.Industrial Inorganic Chemistry;VCH:Weinheim,1989;pp 277-288.
    [38]Bertino,D.J.;Zepp,R.G.,Effects of solar radiation on manganese oxide reactions with selected organic compounds,Environ.Sci.Technol.25 (1991) 1267-1273.
    [39]Zheng-Rong Tian,Wei Tong,Jin-Yun Wang,Nian-Gao Duan,Venkatesan V.Krishana,Steven L.Suib,Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts,Science 276 (1997) 926-930.
    [40]Jie Chen,Jung Chou Lin,Vandana Purohit,Michael B.Cutlip,Steven L.Suib,Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides,Catalysis Today 33 (1997) 205-214.
    [41]Scott R.Segal,Steven L.Suib,Photoassisted Decomposition of Dimethyl Methylphosphonate over Amorphous Manganese Oxide Catalysts,Chem.Mater.11 (1999) 1687-1695.
    [42]Ruma Ghosh,Xiongfei Shen,Josanlet C.Villegas,Yunshuang Ding,Kinga Malinger,Steven L.Suib,Role of Manganese Oxide Octahedral Molecular Sieves in Styrene Epoxidation,J.Phys.Chem.B 110(2006)7592-7599.
    [43] Revital Ben-Daniel, Lev Weiner, Ronny Neumann, Activation of Nitrous Oxide and Selective Epoxidation of Alkenes Catalyzed by the Manganese-Substituted Polyoxometalate, [MnIII2ZnW(Zn2W9O34)2]10,J. Am. Chem. Soc. 124 (2002) 8788-8789.
    [44] M. Hudlicky, Oxidations in Organic Chemistry, ACS,Washington, DC, 1990, pp.114-126.
    [45] M.J. Schultz, M.S. Sigman, Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations, Tetrahedron 62 (2006) 8227-8241.
    [46] T. Mallat, A. Baiker, Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts, Chem. Rev. 104 (2004)3037-3058.
    [47] B.M. Choudary, M.L. Kantam, A. Rahman, C.V. Reddy, K.K. Rao, The First Example of Activation of Molecular Oxygen by Nickel in Ni-Al Hydrotalcite: A Novel Protocol for the Selective Oxidation of Alcohols, Angew. Chem.,Int. Ed. 40 (2001) 763-766.
    [48] T. Kawabata, Y. Shinozuka, Y. Ohishi, T. Shishido, K. Takaki, K. Takahira. Nickel containing Mg-Al hydrotalcite-type anionic clay catalyst for the oxidation of alcohols with molecular oxygen, J. Mol. Catal. A 236 (2005) 206-215.
    [49] H.B. Ji, T.T. Wang, M.Y. Zhang, Q.L. Chen, X.N. Gao, Green oxidation of alcohols by a reusable nickel catalyst in the presence of molecular oxygen, React. Kinet. Catal. Lett. 90 (2007) 251-257.
    [50] X.J. Meng, K.F. Lin, X.Y. Yang, Z.H. Sun, D.Z. Jiang, F.S. Xiao, Catalytic oxidation of olefins and alcohols by molecular oxygen under air pressure over Cu2(OH)PO4 and Cu4O(PO4)2 catalysts, J. Catal. 218 (2003) 460-464.
    [51] S. Velusamy, T. Punniyamurthy, Novel Vanadium-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones under Atmospheric Oxygen, Org. Lett. 6 (2004) 217-219.
    [52] Y. C. Son, V. D. Makwana, A. R. Howell, S. L. Suib, Efficient, Catalytic, Aerobic Oxidation of Alcohols with Octahedral Molecular Sieves, Angew. Chem. Int. Ed. 40 (2001) 4280-4283.
    [53] V.D. Makwana, L.J. Garces, J. Liu, J. Cai, Y.C. Son, S.L. Suib, Selective oxidation of alcohols using octahedral molecular sieves: influence of synthesis method and property-activity relations, Catal. Today 85 (2003)225-233.
    [54] Y.S. Ding, X.F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V.M.B. Crisostomo, S.L. Suib, M. Aindow, Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method, Chem. Mater. 17 (2005) 5382-5389.
    [55] Qinghu Tang, Xiaona Huang, Chengming Wu, Peizheng Zhao, Yuanting Chen, Yanhui Yang, Structure and catalytic properties of K-doped manganese oxide supported on alumina, Journal of Molecular Catalysis A: Chemical, (2009) doi:10.1016/j.molcata.2009.02.020
    [56] R.H. Crabtree, Organometallic alkane CH activation, J. Organomet. Chem. 689 (2004) 4083-4091
    [57] S.S. Stahl, J.A. Labinger, J.E. Bercaw, Homogeneous Oxidation of Alkanes by Electrophilic Late Transition Metals, Angew. Chem. Int. Ed. 37 (1998) 2180-2192
    [58] J.A. Labinger, J.E. Bercaw, Understanding and exploiting C-H bond activation, Nature 417 (2002) 507
    [59] A.E. Shilov, GB. Shul'pin, Activation of C-H Bonds by Metal Complexes, Chem. Rev. 97 (1997) 2879-2932
    [60] W. Chen, T.A. Brandvold, M.L. Bricker, J.A. Kocal, Prep. Pap. Am. Chem. Soc, Dev. Petr. Chem. 51 (1) (2006) 245.
    [61] T.A. Brandvold, J.A. Kocal, M.L. Bricker, W. Chen, J.T. Walenga, S. Yang, Prep. Pap. Am. Chem. Soc, Dev. Petr. Chem. 51 (2) (2006) 602.
    [62] Wensheng Chen, Joseph A. Kocal, Timothy A. Brandvold, Maureen L. Bricker, Simon R. Bare, Robert W. Broach, Nanette Greenlay, Kristoffer Popp, Joel T. Walenga, Susan S. Yang, John J. Low, Manganese oxide catalyzed methane partial oxidation in trifuoroacetic acide: Catalysis and kinetic analysis, Catalysis Today 140 (2009) 157-161.
    [63] H. Ulrich, Raw Materials for Industrial Polymers, Hanser Publishers, Munich, 1988.
    [64] I.V. Berezin, E.T. Denisov, N.M. Emanuel, Oxidation of Cyclohexane, Pergamon, New York, 1968.
    [65] M.T. Musser, Encyclopedia of Industrial Chemistry, VCH, Weinheim, 1987,pp. 217.
    [66] Ranjit Kumar, Shanthakumar Sithambaram, Steven L. Suib, Cyclohexane oxidation catalyzed by manganese oxide octahedral molecular sieves- Effect of acidity of the catalyst, Journal of Catalysis 262(2009)304-313.
    [67] S.C. Bergmeier, The Synthesis of Vicinal Ammo Alcohols, Tetrahedron 56 (2000) 2561, and references therein.
    [68] P. O'Brien, Sharpless Asymmetric Aminohydroxylation: Scope, Limitations, and Use in Synthesis, Angew. Chem. Int. Ed. 38 (1999) 326-329.
    [69] D.J. Ager, I. Prakash, D.R. Schaad, 1,2-Amino Alcohols and Their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis, Chem. Rev. 96 (1996) 835-876.
    [70]R.M.Hanson,The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols,Chem.Rev.91 (1991) 437-475.
    [71]Shanthakumar Sithambaram,Linping Xu,Chun-Hu Chen,Yunshuang Ding,Ranjit Kumar,Carig Calvert,Steven L.Suib,Manganese octahedral molecular sieve catalysts for selective styrene oxide ring opening,Catalysis Today 140 (2009) 162-168.
    [72]Masaki Fukuda,Chihiro Iida,Masaharu Nakayama,One-step through-mask electrodeposition of a porous structure composed of manganese oxide nanosheets with electrocatalytic activity for oxygen reduction,Materials Research Bulletin 44 (2009) 1323-1327
    [73]Tan Chen,Hongying Dou,Xiaoling Li,Xingfu Tang,Junhua Li,Jiming Hao,Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde,Microporous and Mesoporous Materials 122 (2009) 270-274.
    [74]Lu-Cun Wang,Qian Liu,Xin-Song Huang,Yong-Mei Liu,Yong Cao,Kang-Nian Fan,Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation,Applied Catalysis B: Environmental 88 (2009) 204-212.
    [75]Lu-Cun Wang,Xin-Song Huang,Qian Liu,Yong-Mei Liu,Yong Cao,He-Yong He,Kang-Nian Fan,Ji-Hua Zhuang,Gold nanoparticles deposited on manganese(Ⅲ) oxide as novel efficient catalyst for low temperature CO oxidation,Journal of Catalysis 259 (2008) 66-74.
    [76]Lei Xu,Chao Xu,Meirong Zhao,Yuping Qiu,G.Daniel Sheng,Oxidative removal of aqueous steroid estrogens by manganese oxides,Water Research 42 (2008) 5038-5044.
    [77]马子川,蒋兰宏,董丽丽,张素坤,霍庆。新生二氧化锰吸附法去除水中直接大红染料,化工环保22 (2002) 38-41.
    [78]X.Fan,D.J.Parker,M.D.Smith,Adsorption kinetics of fluoride on lowcost materials,Water Res.37 (2003)4929-4937.
    [79]J.Fawell,K.Bailey,J.Chilton,E.Dahi,L.Fewtrell,Y.Magara,Fluoride in Drinkingwater,IWA/WHO,2006.
    [80]WHO,Chemical fact sheets: fluoride,in: Guidelines for drinking water quality (electronic resource):incorporation first addendum,Recommendations,vol.1,third ed,Geneva,2006,pp.375-377.
    [81]N.Azbar,A.Turkman,Defluoridation in drinking waters,Water Sci.Technol.42 (2000) 403-407
    [82]E.J.Reardon,Y.Wang,Activation and regeneration of a soil sorbent for defluoridation of drinking water,Appl.Geochem.16 (2001)531-539.
    [83]K.Vaaramaa,J.Lehto,Removal ofmetals and anions from drinkingwater by ion exchange,Desalination 155 (2003) 157-170.
    [84]S.Saha,Treatment of aqueous effluent for fluoride removal,WaterRes.27 (1993) 1347-1350.
    [85]Z.Amor,B.Bariou,N.Mameri,M.Taky,S.Nicolas,A.Elmidaou,Fluoride removal from brackish water by electrodialysis,Desalination 133 (2001) 215-223.
    [86]S.Ghorai,K.K.Pant,Equilibrium,kinetics and breakthrough studies for adsorptionof fluoride on activated alumina,Sep.Purif.Technol.42 (2005) 265-271.
    [87]Y.H.Li,S.G.Wang,X.F.Zhang,J.Q.Wei,C.L.Xu,Z.K.Luan,D.H.Wu,Adsorption of fluoride fromwater by aligned carbon nanotubes,Mater.Res.Bull.38 (2003) 469-476.
    [88]B.D.Turner,P.Binning,S.L.S.Stipp,Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption,Environ.Sci.Technol.39 (2005) 9561-9568.
    [89]Y.C,engelo(?)glu,E.Kir,M.Ers(o|¨)z,Removal of fluoride from aqueous solution by using red mud,Sep.Purif.Technol.28 (2002) 81-86.
    [90]D.P.Das,J.Das,K.Parida,Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution,J.Colloid Interface Sci.261 (2003) 213-220.
    [91]F.Delorme,A.Seron,A.Gautier,C.Crouzet,Comparison of the fluoride,arsenate and nitrate anionswater depollution potential of a calcined quintinite,a layered double hydroxide compound,J.Mater.Sci.42 (2007) 5799-5804.
    [92]H.T.Wang,J.Chen,Y.F.Cai,J.F.Ji,L.W.Liu,H.H.Teng,Defluoridation of drinking water by Mg/Al hydrotalcite-like compounds and their calcined products,Appl.Clay Sci.35 (2007) 59-66.
    [93]R.X.Liu,J.L.Guo,H.X.Tang,Adsorption of fluoride,phosphate,and arsenate ions on a newtype of ion exchange fiber,J.Colloid Interface Sci.248 (2002) 268-274.
    [94]N.Das,P.Pattanaik,R.Das,Defluondation of drinking water using activated titanium rich bauxite,J.Colloid Interface Sci.292 (2005) 1-10.
    [95]X.M.Wu,Y.Zhang,X.M.Dou,M.Yang,Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent,Chemosphere 69 (2007) 1758-1764.
    [96]S.M.Maliyekkal,A.K.Sharma,L.Philip,Manganese-oxide-coated alumina: a promising sorbent for defluoridation ofwater,Water Res.40 (2006) 3497-3506.
    [97]R.C.Meenakshi,Maheshwari,Fluoride in drinking water and its removal,J.Hazard.Mater.137 (2006) 456-463.
    [98]Shao-Xiang Teng,Shu-GuangWang,Wen-Xin Gong,Xian-Wei Liu,Bao-Yu Gao,Removal of fluoride by hydrous manganese oxide-coated alumina: Performance and mechanism,Journal of Hazardous Materials (2009) doi:10.1016/j.jhazmat.2009.02.133
    [99]E.Eren,B.Afsin,Y.Onal,Removal of lead ions by acid activated and manganese oxide-coated bentonite,Journal of Hazardous Materials 161 (2009) 677-685.
    [100]K.Chahara,T.Ohno,M.Kasai,and Yuzoo Kozono,Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure,Appl.Phys.Lett.63,1990 (1993).
    [101]S.Jin,T.H.Tiefel,M.McCormack,R.A.Fastnach,R.Ramesh,and L.H.Chen,Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films,Science 264,413 (1994).
    [102]G.C.Xiong,Qi Li,H.L.Ju,S.N.Mao,L.Senapati,X.X.Xi,R.L.Greene,and T.Venkatesan,Giant magnetoresistance in epitaxial Nd_(0.7)Sr_(0.3)MnO_(3-δ) thin films,Appl.Phys.Lett.66,1427 (1995).
    [103]H.L.Ju,C.Kwon,Qi Li,R.L.Greene,and T.Venkatesan,Giant magnetoresistance in La_(1-x)Sr_xMnO_z films near room temperature,Appl.Phys.Lett.65,2108 (1994).
    [104]Z.Trajanovic,C.Kwon,M.C.Robson,K.C.Kim,M.Rajeswari,R.Ramesh,T.Venkatesan,S.E.Lofland,S.M.Bhagat,and D.Fork,An optically pumped GaN-AlGaN vertical cavity surface emitting laser,Appl.Phys.Lett.69,1 (1996).
    [105]R.Shreekala,M.Rajeswari,K.Ghosh,A.Goyal,J.Y.Gu,C.Kwon,Z.Trajanovic,T.Boettcher,R L.Greene,R.Ramesh,and T.Venkatesan,Effect of crystallinity on the magnetoresistance in perovskite manganese oxide thin films,Appl.Phys.Lett.71 (1997) 282-284.
    [106]何秋星,陈权启,黄可龙,四氧化三锰磁性材料制备,韶关学院学报(自然科学版)23 (2002) 57-61.
    [107]Li-Xia Yang,Ying-Jie Zhu,Hua Tong,Wei-Wei Wang,Guo-Feng Cheng,Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study,Journal of Solid State Chemistry 179(2006)1225-1229.
    [108]T.Ozkaya,A.Baykal,H.Kavas,Y.Ko(?)seog(?)lu,M.S.Toprak,A novel synthetic route to Mn_3O_4 nanoparticles and their magnetic evaluation,Physica B 403 (2008) 3760-3764.
    [109]M.Armand,J.M.Tarascon,Building better batteries,Nature 451 (2008) 652.
    [110]I.Taniguchi,D.Song,M.Wakihara.Electrochemical Properties of LiM1/6Mn11/6O4 (M= Mn,Co, Al and Ni) as Cathode Material for Li-ion Batteries Prepared by Ultrasonic Spray Pyrolysis Method.Journal of Power Sources.2002,109(2): 333-339
    [111]H.Yamane,T.moue,M.Fujita and M.Sano.A Causal Study of the Capacity Fading of Lio.olMnl.99O4 Cathode at 800C,and the Suppressing Substance of Its Fading.Journal of Power Sources.2001,99(1): 60-65
    [112]K.S.Park,M.H.Cho,S.H.Park,K.S.Nahm,Y K.Sun,Y S.Lee and M.Yoshio.The Effects of Ni and Li Doping on the Performance of Lithium Manganese Oxide Material for Lithium Secondary Batteries.ElectrochimicaActa.2002,47(18): 2937-2942
    [113]雷永泉.新能源材料.天津大学出版社.2000: 100-101
    [114]黄可龙,王兆翔,刘素琴,锂离子电池原理与关键技术,2008年2月北京第一版第一次印刷,化学工业出版社。
    [115]Jeff Tollefson,Car industry: Charging up the future.Nature 456 (2008) 436.
    [116]P.G Bruce.Solid State Chemistry of Lithium Power Sources.Chemistry Communications.1977:1817-1818
    [117]S.Jouanneau,A.Verbaere,D.Guyomard.On a New Calcium Vanadate: Synthesis,Structure and Li Insertion Behavior.Journal of Solid State Chemistry 172(1) (2003) 116-122.
    [118]Brett Ammundsen,Jens Paulsen,Novel lithium-ion cathode materials based on layered manganese oxides.Adv.Mater.13 (2001) 943.
    [119]Zheng,J.P.;Jow,T.R.A New Charge Storage Mechanism for Electrochemical Capacitors,J.Electrochem.Soc.142 (1995) L6-L8.
    [120]郭炳琨,徐徽,王先友.锂离子电池.中南工业大学出版社.2002:34-70
    [121]B.Scrosati,Recent Advances in Lithium Ion Battery Materials,Electrochimica Acta.45(15-16) (2000) 2461-2466
    [122]俞泽民,溶胶-凝胶法制备锰酸锂系纳米粉体的结构与电化学性能,哈尔滨工业大学工学博士学位论文,2007.2
    [123]罗谷风.结晶学导论.地质出版社.1985:173-174
    [124]D.H.Jang,Y J.Shin,S.M.Oh.Dissolution of Spinel Oxides and Capacitty Losses in 4V Li/LixMn2O4 Cells.Electrochimica Society.1996,143(7): 2204-2211
    [125]A.L.Randolph,M.J.Palazzo,E.S.Takeuchi.A Study of the Overcharge Reaction of Lithium-ion Batteries.Journal of Power Sources.2001,97-98: 681-683
    [126] J. H. Lee, J. K. Hong, D. H. Jang, Y K. Sun and S. M. Oh. Degradation Mechamsums in Doped Spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co and Ni) for Secondary Batteries. Journal of Power Sources. 2000, 89(1):7-14
    [127] G H. Li, H. Ikuta, T. Vchida. The Spinel Phases LiM_yMn_(2-y)O_4 (M=Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries. Electrochimica Society. 1996, 143:178-182
    [128] P. Arora, B. N. Popov, R. E. White. Electrochemical Investigations of Cobalt-doped LiMn_2O_4 as Cathode Material for Lithium Ion Batteries. Electrochimica Society. 1998, 145(3): 807-815
    [129] S. MA, H. Hoguchi, M. Yoshio, Cyclic voltammetric study on stoichiometric spinel LiMn2O4 lectrode at elevated temperature, Journal of Power Sources 97-98 (2001) 258-388.
    [130] J. M. Amarilla, L. M. Vidalesj, R. M. Rojas, Electrochemical characteristics of cobalt-doped LiCo_yMn_(2-y)O_4 (0≤y≥0.66) spinel synthesized at low temperature from Co_xMn_(3-x)O_4 precursors, Solid State Ionics 127 (2000) 73-31.
    [131] G. Ceder, S. K. Mishra, The Stability of Orthorhombic and Monoclinic-layered LiMnO2, Electrochem. Solid State Lett. 2 (1999) 550.
    [132] Kisuk Kang, Ying Shirley Meng, Julien Bre'ger, Clare P. Grey, Gerbrand Ceder, Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries, Science 311 (2006) 977-980.
    [133] X.Wang, Y. Li, Rational synthesis of α-MnO_2 single-crystal nanorods, Chem. Commun. 149 (2002) 764-765.
    [134] M. Toupin, T. Brousse, D. Belanger, Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide, Chem. Mater. 14 (2002) 3946-3952.
    [135] S.C. Pang, M.A. Anderson, T.W. Chapman, Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide, J. Electrochem. Soc. 147 (2000) 444-450.
    [136] S.F. Chin, S.C. Pang, M.A. Anderson, Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors, J. Electrochem. Soc. 149 (2002) A379-A384.
    [137] R.N. Reddy, R.G. Reddy, Sol-gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources 124 (2003) 330-337.
    [138] C.-K. Lin, K.-H. Chuang, C.-Y. Lin, C.-Y. Tsay, C.-Y. Chen, Manganese oxide films prepared by sol-gel process for supercapacitor application, Surf. Coat. Technol. 202 (2007) 1272-1276.
    [139]R.Chen,T.Chirayil,P.Zavalij,M.S.Whittingham,The hydrothermal synthesis of sodium manganese oxide and a lithium vanadium oxide,Solid State Ionics 86-88 (1996) 1-7.
    [140]R.Chen,M.S.Whittingham,Cathodic Behavior of Alkali Manganese Oxides from Permanganate,J.Electrochem.Soc.144 (1997) L64-L67.
    [141]M.Tabuchi,K.Ado,H.Kobayashi,H.Kageyama,C.Masquelier,A.Kondo,R.Kanno,Synthesis of LiMnO_2 with-NaMnO_2-Type Structure by a Mixed-Alkaline Hydrothermal Reaction,J.Electrochem.Soc.145 (1998) L49-L52.
    [142]V.Subramanian,H.W.Zhu,R.Vajtai,P.M.Ajayan,B.Q.Wei,Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures,J.Phys.Chem.B 109 (2005) 20207-20214.
    [143]J.-K.Chang,W.-T.Tsai,Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors,J.Electrochem.Soc.150 (2003) A1333-A1338.
    [144]K.R.Prasad,N.Miura,Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors,J.Power Sources 135 (2004) 354-360.
    [145]M.Nakayama,A.Tanaka,Y.Sato,T.Tonosaki,K.Ogura,Electrodeposition of Manganese and Molybdenum Mixed Oxide Thin Films and Their Charge Storage Properties,Langmuir 21 (2005) 5907-5913.
    [146]N.Nagarajan,H.Humadi,I.Zhitomirsky,Cathodic electrodeposition of MnOx films for electrochemical supercapacitors,Electrochim.Acta 51 (2006) 3039-3045.
    [147]T.Xue,C.-L.Xu,D.-D.Zhao,X.-H.Li,H.-L.Li,Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates,J.Power Sources 164 (2007) 953-958.
    [148]Y.Dai,K.Wang,J.Zhao,J.Xie,Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors from the KMnO4 solution,J.Power Sources 161 (2006) 737-742.
    [149]K.-W.Nam,K.-B.Kim,Manganese Oxide Film Electrodes Prepared by Electrostatic Spray Deposition for Electrochemical Capacitors,J.Electrochem.Soc.153 (2006) A81-A88.
    [150]J.N.Broughton,M.J.Brett,Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim. Acta 49 (2004) 4439-4446.
    [151] B. Djurfors, J.N. Broughton, M.J, Brett, D.G. Ivey, Production of capacitive films from Mn thin films: Effects of current density and film thickness , J. Power Sources 156 (2006) 741-747.
    [152] B. Djurfors, J.N. Broughton, M.J. Brett, D.G. Ivey, Electrochemical Oxidation of Mn/MnO Films: Mechanism of Porous Film Growth, J. Electrochem. Soc. 153 (2006) A64-A68.
    [153] Zheng, J. P.; Jow, T. R. A New Charge Storage Mechanism for Electrochemical Capacitors, A New Charge Storage Mechanism for Electrochemical Capacitors, J. Electrochem. Soc. 142 (1995) L6-L8.
    [154] Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films, J. Power Sources 101 (2001) 126-129.
    [155] Yoshio Takasu, Takashi Nakamura, Hiroyuki Ohkawauchi, and Yasushi Murakami, Dip-Coated Ru-V Oxide Electrodes for Electrochemical Capacitors, J. Electrochem. Soc. 144(8) (1997) 2601-2606.
    [156] Kohichi Kameyama, Kohji Tsukada, Kiyochika Yahikozawa, and Yoshio Takasu, The Application of Scanning Auger Microscopy to the Surface Characterization of RuO2-TiO2 Coated Titanium Electrodes, J. Electrochem. Soc. 140(4)(1993) 966-969.
    [157] Minoru Ito, Yasushi Murakami, Hayato Kaji, Kiyochika Yahikozawa, and Yoshio Takasu, Surface Characterization of RuO2-SnO2 Coated Titanium Electrodes, J. Electrochem. Soc. 143(1) (1996) 32-36.
    [158] Manikandan Ramani, Bala S. Haran, Ralph E. White, and Branko N. Popov, Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors, J. Electrochem. Soc. 148(4) (2001) A374-A380.
    [159] Jianguo Wen, XiangyuanRuan, ZhentaoZhou, Preparation and electrochemical performance of novel nithenium-manganese oxide electrode materials for electrochemical capacitors, Journal of Physics and Chemistry of Solids (2009) doi:10.1016/j. jpcs.2009.03.015.
    [160] Srinivasan, V.; Weidner, J. W. Capacitance studies of cobalt oxide films formed via electrochemical precipitation, J. Power Sources 108 (2002) 15-20.
    [161] Qiang Li, Kai-xi Li,Jian-yu Gu, Hui Fan, Preparation and electrochemical characterization of cobalt-manganese oxide as electrode matenals for electrochemical capacitors, Journal of Physics and Chemistry of Solids 69 (2008) 1733-1739.
    [162]Guang-Yu Zhao,Cai-Ling Xu,Hu-Lin Li,Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor,Journal of Power Sources 163 (2007) 1132-1136.
    [163]Raj Kishore Sharma,Hyung-Suk Oh,Yong-Gun Shul,Hansung Kim,Carbon-supported,nano-structured,manganese oxide composite electrode for electrochemical supercapacitor,Journal of Power Sources 173 (2007) 1024-1028.
    [164]P.Staiti,F.Lufrano,Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors,Journal of Power Sources 187 (2009) 284-289.
    [165]Hao Zhang,Gaoping Cao,Zhiyong Wang,Yusheng Yang,Zujin Shi,and Zhennan Gu,Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage,Nano.Lett.8 (2008) 2664-2668.
    [166]Sang-Bok Ma,Kyung-Wan Nam,Won-Sub Yoon,Xiao-Qing Yang,Kyun-Young Ahn,Ki-Hwan Oh,Kwang-Bum Kim,Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications,Journal of Power Sources 178 (2008) 483-489.
    [167]Xiong Zhang,Liyan Ji,Shichao Zhang,Wensheng Yang,Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor,Journal of Power Sources 173 (2007) 1017-1023.
    [168]R.K.Sharm,A.C.Rastogi,S.B.Desu,Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor,Electrochimica Acta 53 (2008) 7690-7695.
    [169]Antonino Salvatore Aric(?),Peter Bruce,Bruno Scrosati,Jean-Marie Tarascon,Walter van Schalkwijk,Nanostructured materials for advanced energy conversion and storage devices,Nature Mater.4 (2005) 366.
    [170]B.Scrosati,Nanomaterials: Paper powers battery breakthrough,Nature Nanotechnology 2 (2007) 598.
    [171]Hiroyuki Nishide,Kenichi Oyaizu,MATERIALS SCIENCE: Toward Flexible Batteries,Science 319 (2008) 737-738.
    [172]Yang-Kook Sun,Seung-Taek Myung,Byung-Chun Park,and Khalil Amine,Synthesis of Spherical Nano-to Microscale Core-Shell Particles Li[(Ni_(0.8)Co_(0.1)Mn_(0.1))_(1-x)(Ni_(0.5)Mn_(0.5))_x]O_2 and Their Applications to Lithium Batteries,Chem.Mater.18 (2006) 5159-5163.
    [173]Jia-Yan Luo,Jing-Jun Zhang,and Yong-Yao Xia,Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus β-MnO2, Chem. Mater. 18 (2006) 5618-5623.
    [174] J. Katana Ngala, Shaun Alia, Arthur Dobley, Vincent Mark B. Crisostomo, and Steven L. Suib, Charactenzation and Electrocatalytic Behavior of Layered Li2MnO3 and Its Acid-Treated Form, Chem. Mater. 19 (2007) 229-234.
    [175] De Yan, Pengxun Yan, Shuang Cheng, Jiangtao Chen, Renfu Zhuo, Juanjuan Feng, Guang'an Zhang. Crystal Growth & Design 9 (2009) 218-222.
    [176] D Yan, S Cheng, R F Zhuo, J T Chen, J J Feng, H T Feng, H J Li, Z G Wu, J Wang and P X Yan. Nanotechnology 20 (2009) 105706.
    [177] D. Yan , P.X. Yan, G.H. Yue, J.Z. Liu, J.B. Chang, Q. Yang, D.M. Qu, Z.R. Geng, J.T. Chen, G.A. Zhang, R.F. Zhuo. Chemical Physics Letters 440 (2007) 134-138.
    [1] C. X. Lin, Y. Liu, S. Rinker, et al, DNA tile based self-assembly building complex nanoarchitectures, Chem. Phys. Chem. 7 (2006) 1641-1649.
    [2] T, Kawauchi, J. Kumaki and E. Yashima, Nanosphere and nano-network formations of [60] Fullerene-end-Capped stereo regular poly (methylmethacrylate)s through stereo complex formation combined with self-assembly of the fullerenes, J. Am. Chem. Soc. 128 (2006) 10560-10567.
    [3] M. Schock, R. Otero, S. Stojkovic, et al, Chiral close-packing of achiral star-shaped molecules on solid surfaces, J. Phys. Chem. B 110 (2006) 12835-12838
    [4] M. W. Cao, X. Y. Song, J. Zhai, et al, Fabrication of highly antireflective silicon surfaces with superhydrophobicity, J. Phys. Chem. B 110 (2006) 13072-13075
    [5] J. H. Xiang, P. X. Zhu, Y Masuda, et al, Fabrication of self-assembled monolayers (SAMs) and inorganic micropattern on flexible polymer substrate, Langmuir, 20 (2004) 3278-3283.
    [6] A. Valsesia, P. Colpo, T. Meziani, et al, Immobilization of antibodies on biosensing devices by nanoarrayed self-assembled monolayers, Langmuir 22 (2006) 1763-1767.
    [7] C. Lin, C. R. Kagan, Layer-by Layer growth of metal-metal bonded supramolecular thm films and its use in the fabrication of lateral nanoscale devices, J. Am. Chem. Soc. 125 (2003) 336-337
    [8] Z. Y. Tang, N. A. Kotov, S. Magonov, et al, Nanostructured artificial nacre, Nature Materials 2 (2003) 413-418.
    [9] L. M. Huang, Z. B. Wang, J. Y. Sun, et al, Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals, J. Am. Chem. Soc. 122 (2000) 3530-3531
    [10] H. T. Wang, Z. B. Wang, L. M. Huang, Anupam Mitra, Y. S. Yan, Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles, Langmuir 17 (2001) 2571-2574.
    [11] X. H. An, G. W. Meng, Q. Wei, L. D. Zhang, Mesh-like hemispherical shells formed by self-assembly of Zn2SiO4 textured nanowires, Cryst. Growth Des. 6 (2006) 1967-1971.
    [12] A. Salant, E. A. Sadovsky, U. Banin, Directed self-assembly of gold-tipped CdSe nanorods, J. Am. Chem. Soc. 128 (2006) 10006-10007.
    [13] E. J. Foster, R. B. Jones, C. lavigueur, V. E. Williams, Structural factors controlling the self-assembly of columnar liquid crystals, J. Am. Chem. Soc. 128 (2006) 8569-8574.
    [14]Y Xia,B.Gates,Z.Y.Li,Self-assembly approaches to three-dimensional photonic crystals,Adv.Mater.13 (2001) 409-413
    [15]B.C.Kovaric,B.Kokona,A.D.Schwab,et al,Self-assembly of peptide porphyrin complexes:toward the development of smart biomaterials,J.Am.Chem.Soc.128 (2006) 4166
    [16]D.Y.Wang,A.L.Rogach,F.Caruso,Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,Nano.Lett.2 (2002) 857-861.
    [17]A.R.Pease,J.O.Jeppesen,J.F.Stoddart,et al,Switching devices based on interlocked molecules,Acc.Chem.Res.34 (2001) 433-444
    [18]Y.Q.Wen,J.X.Wang,J.P.Hu,et al,Eversible nanometer-scale data storage on a self-assembled organic crystalline thin film,Adv.Mater.18 (2006) 1983-1987
    [19]S.J.Tans,C.Dekker,Molecular transistors: potential modulations along carbon nanotubes,Nature 404 (2000) 834-835
    [20]S.C.Chang,Z.Y.Li,C.N.Lau,et al,Investigation of model molecular-electronic rectifier with an evaporated Ti-metal top contact,Applied Physics Letters 83 (2003) 3198-3200
    [21]W.Hu,H.Nakashima,K.Furukawa,et al,Self-assembled nano potical switch and transistor based on a rigid conjugated polymer,Thioacetyl-end-functionalized poly (para-phenylene ethynylene),J.Am.Chem.Soc.127 (2005) 2804-2805
    [22]N.A.Melosh,A.Boukai,F.Diana,et al,Ultrahigh-density nanowire lattices and circuits,Science 300 (2003) 112-115
    [23]江浪,黄桂芳,李洪祥等,自组装分子电子器件,化学进展,17(2005) 172-179
    [24]T.Kim,H.J.Seo,J.S.Choi,et al,Pamam-peg-pamam: novel triblock copolymer as a biocompatible and efficient gene delivery carrier,Biomacromolecules,5 (2004) 2487-2492
    [25]M.Yagi,E.Tomita,S.Sakita,et al,Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation,J.Phys.Chem.B 109 (2005) 21489-21491
    [26]G.M.Whitesides,J.I.Mathias and C.T.Seto,Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures,Science,1991,254,1312-1315
    [27]C.B.Murray,C.R Kagan,and M.G Bawendi,Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices,Science 270 (1995) 1355-1358
    [28]A.R.Parker,V L.Welch,D.Driver and N.Martini,Stuctural colour opal analogue discovered in weevil,Nature 426 (2003) 786-789
    [29]L.P Biro,Z.Balint,K.Kertesz.Z.Vertesy,G.I.Mark,Z.E.EHorvath,J.Balazs,D.Mehn,I.Kiricsi,V Lousse,and J.P Vigneron,Role of photonic-crystal-type structures in the thermalregulation of a Lycaenid butterfly sister species pair,Phys.Rev E,2003,67,021907-1-5.
    [30]H.Ghiradella,Light and dour on the wing,Appllied Optics 30 (1991) 3492-3495
    [31]Jeffrey S.Moore and Mary L.Kraft,Synchronized Self-Assembly,Science 320 (2008),620-621.
    [32]G.M.Whitesides,J.P.Mathias,C.T.Seto,Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures,Science 254 (1991) 1312-1319
    [33]M.Fialkowski,K.J.M.Bishop,R.Klajn,S.K.Smoukov,C.J.Campbell,B.A.Grzybowski,Principles and Implementations of Dissipative (Dynamic) Self-Assembly,J.Phys.Chem.B.110 (2006) 2482-2496.
    [34]R.M.Capito,H.S.Azevedo,Y.S.Velichko,A.Mata,S.I.Stupp,Self-Assembly of Large and Small Molecules into Hierarchically Ordered Sacs and Membranes,Science 319 (2008) 1812-1816.
    [35]邢丽,张复实,向军辉,杨镜奎,自组装技术及其研究进展,世界科技研究与进展,29 (2007) 39-44
    [36]R.F.Service,How far can we push chemical self-assembly,Science,309 (2005) 95
    [37]Y.F.Shen,P.R.Zerger,N.R.DeGuzman,L.S.Suib,L.McCurdy,I.D.Potter,C.L O'Young,Manganese Oxide Octahedral Molecular Sieves: Preparation,Characterization,and Applications,Science 1993,260,511-515
    [38]Y.Paik,P.J.Osegovic,F.Wang,W.Bowden,P.C.Grey,2H MAS NMR Studies of the Manganese Dioxide Tunnel Structures and Hydroxides Used as Cathode Materials in Primary Batteries,J.Am.Chem.Soc.123 (2001) 9367-9377.
    [39]Jikang Yuan,Kate Laubemds,Qiuhua Zhang,Steven L.Suib,Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres,J.Am.Chem.Soc.125 (2003) 4966-4967
    [40]Jikang Yuan,Wei-Na Li,Sinue Gomez,Steven L.Steven,Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures,J.Am.Chem.Soc.127 (2005) 14184-14185
    [41]Li-Xia Yang,Ying-Jie Zhu,Wei-Wei Wang,Hua Tong,Mei-Ling Ruan,Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using ionic liquid,J.Phvs.Chem.B 110 (2006) 6609-6614.
    [42]David Portehault,Sophie Cassaignon,Nadine Nassif,Emmanuel Baudrin,Jean-Pierre Jolivet,A core-corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism,Angew.Chem.Int.Ed.47 (2008) 6441-6444
    [43]David Portehault,Sophie Cassaignon,Emmanuel Baudrin,Jean-Pierre Jolivet,Design of hiereachical core-corona architectures of layered manganese oxides by aqueous precipitation,Chem.Mater.20 (2008) 6140-6147
    [1]Stephanie L.Brock,Niangao Duan,Zheng Rong Tian,Osca Giraldo,Hua Zhou,Steven L.Suib,A review of porous manganese oxide materials,Chem.Mater.10 (1998) 2619-2628.
    [2]Mathieu Toupin,Thierry Brousse,Daniel Belanger,Influence of inicrostructure on the charge storage properties of chemically synthesized manganese dioxide,Chem.Mater.14 (2002) 3946-3952
    [3]Lee,H.Y.;Goodenough,J.B.Supercapacitor Behavior with KC1 Electrolyte,J.Solid State Chem.144 (1999) 220-223.
    [4]Lee,H.Y.;Kim,S.W.;Lee,H.Y.Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode,Electrochem.Solid-State Lett.4 (2001) A19-A22.
    [5]Hu,C.C.;Tsou,T.W.Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition,Electrochem.Comm.4 (2002) 105-109.
    [6]Chin,S.F.;Pang,S.C.;Anderson,M.A.Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors,J.Electrochem.Soc.149 (2002) A379-A384.
    [7]Micka(e|¨)l Doll(?),S(?)banstien Patoux,Marca M.Doeff,Layered Manganese Oxide Intergrowth Electrodes for Rechargeable Lithium Batteries.1.Substitution with Co or Ni,Chem.Mater.17 (2005) 1036-1043.
    [8]Mao-Sung Wu,Pin-Chi Julia Chiang,Jyh-Tsung Lee,Jung-Cheng Lin,Synthesis of Manganese Oxide Electrodes with Interconnected Nanowire Structure as an Anode Material for Rechargeable Lithium Ion Batteries,J.Phys.Chem.B 109 (2005) 23279-23284.
    [9]S(?)bastien Patoux,Micka(e|¨)l Doll(?),Marca M.Doeff,Layered Manganese Oxide Intergrowth Electrodes for Rechargeable Lithium Batteries.2.Substitution with Al,Chem.Mater.17 (2005) 1044-1054
    [10]Masaharu Nakayama,Akihiro Tanaka,Yoshimine Sato,Tsuyoshi Tonosaki,Kotaro Ogura,Electrodeposition of Manganese and Molybdenum Mixed Oxide Thin Films and Their Charge Storage Properties,Langmuir 21 (2005) 5907-5913.
    [11]Brett Ammundsen,Jens Paulsen,Novel lithium-ion cathode materials based on layered manganese oxide,Adv.Mater.13 (2001) 943-956
    [12]Buchner,W.;Schliebs,R.;Winter,G.;Buchel,K.H.Industrial Inorganic Chemistry;VCH:Weinheim,1989;pp 277-288.
    [13]Bertino,D.J.;Zepp,R.G.,Effects of solar radiation on manganese oxide reactions with selected organic compounds,Environ.Sci.Technol.25 (1991) 1267-1273.
    [14]Zheng-Rong Tian,Wei Tong,Jin-Yun Wang,Nian-Gao Duan,Venkatesan V.Krishana,Steven L.Suib,Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts,Science 276 (1997) 926-930.
    [15]Jie Chen,Jung Chou Lin,Vandana Purohit,Michael B.Cutlip,Steven L.Suib,Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides,Catalysis Today 33 (1997) 205-214.
    [16] Scott R. Segal, Steven L. Suib, Photoassisted Decomposition of Dimethyl Methylphosphonate over Amorphous Manganese Oxide Catalysts, Chem. Mater. 11 (1999) 1687-1695.
    [17] Ruma Ghosh, Xiongfei Shen, Josanlet C. Villegas, Yunshuang Ding, Kmga Malinger, Steven L. Suib, Role of Manganese Oxide Octahedral Molecular Sieves in Styrene Epoxidation, J. Phys. Chem. B 110(2006)7592-7599.
    [18] Revital Ben-Daniel, Lev Weiner, Ronny Neumann, Activation of Nitrous Oxide and Selective Epoxidation of Alkenes Catalyzed by the Manganese-Substituted Polyoxometalate, [MnⅢ2ZnW(Zn2W9O34)2]10-, J. Am. Chem. Soc. 124 (2002) 8788-8789.
    [19] R. Shreekala, M. Rajeswari, K. Ghosh, A. Goyal, J. Y. Gu, C. Kwon, Z. Trajanovic, T. Boettcher, R. L. Greene, R. Ramesh, T. Venkatesan, Effect of crystallinity on the magnetoresistance in perovskite manganese oxide thin films, Appl. Phys. Lett. 71 (1997) 282-284
    [20] A. Goyal, M. Rajeswari, R. Sherrkala, S. E. Lofland, S. M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan, Material characteristic of perovskite manganese oxide thin films for bolometnc applications, Appl. Phys. Lett. 71 (1997) 2535-2537
    [21] Yan, Y. G; Bern, T. Molecular recognition through intercalation chemistry: immobilization of organoclays on piezoelectric devices, Chem. Mater. 5 (1993) 905-907.
    [22] Trolier-McKinstry, S.; Newnham, R. E. Sensors, Actuators, and Smart Materials, MRS Bull. 1993, April, 27-33.
    [23] Xu, C. N.; Miyazaki, K. Humidity sensor with manganese oxide for room temperature use, Sens. Act. B. Chem. 14 (1993) 523-524.
    [24] Kazuhide Miyazaki, Masaharu Hieda, Takafumi Kato, Development of a Novel Manganese Oxide-Clay Humidity Sensor, Ind. Eng. Chem. Res. 36 (1997) 88-91.
    [25] Mihai Polverejan, Josanlet C. Villegas, Steven L. Suib, Higher Valency Ion Substitution into the Manganese Oxide Framework, J. Am. Chem. Soc. 126 (2004) 7774-7775.
    [26] Seong-Ju Hwang, Hyo-Suk Park, Jin-Ho Choy, Effects of Chromium Substitution on the Chemical Bonding Nature and Electrochemical Performance of Layered Lithium Manganese Oxide, J. Phys. Chem. B 104 (2000) 7612-7618.
    [27] Oscar Giraldo, Stephanie L. Brock, William S. Willis, Manuel Marquez, Steven L. Suib, Manganese Oxide Thin Films with Fast Ion-Exchange Properties, J. Am. Chem. Soc. 122 (2000) 9330-9331.
    [28] Stephanie Ouvrard, Mane-Odile Simonnot, Michel Sardin, Reactive Behavior of Natural Manganese Oxides toward the Adsorption of Phosphate and Arsenate,Ind.Eng.Chem.Res.41 (2002) 2785-2791.
    [29]Naggar,I.M.;El-Asby,M.A.;Abdel-Hamid,M.M.;Aly,H.F.Solv.Extr.Ion Exch.11 (1993) 521-540.
    [30]Mishra,S.P.;Tiwary,D.Radiotracer technique in adsorption studies,J.Radioanal.Nucl.Chem.170 (1993) 133-141.
    [31]Srinivasan,V.;Weidner,J.W.Capacitance studies of cobalt oxide films formed via electrochemical precipitation,J.Power Sources 108 (2002) 15-20.
    [32]Zheng,J.P.;Jow,T.R.A New Charge Storage Mechanism for Electrochemical Capacitors,J.Electrochem.Soc.142 (1995) L6-L8.
    [33]Yoon,Y.S.;Cho,W.I.;Lim,J.H.;Choi,D.J.Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films,J.Power Sources 101 (2001) 126-129.
    [34]Pang,S.C.;Anderson,M.A.;Chapman,T.W.Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide,J.Electrochem.Soc.147 (2000) 444-450.
    [35]Scott R.Segal,Sang Hyun Park,Steven L.Suib,Thin films of octahedral molecular sieves of manganese oxide,Chem.Mater.9 (1997) 98-104.
    [36]Kyung-Wan Nam,Min Gyu Kim,Kwang-Bum Kim,In-situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors,J.Phys.Chem.C 111 (2007) 749-758.
    [37]Eric S.Toberer,Madeleine Grossman,Thomas Schladt,Frederick F.Lange,Ram Seshadri,Epitaxial manganese oxide thin films with connected porosity: topotactic induction of crystallographic pore alignment,Chem.Mater.19 (2007) 4833-4838.
    [38]Chi-Chang Hu,Ta-Wang Tsou,Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition,Electrochemistry Communication 4 (2005) 105-109.
    [39]Masaya Chigane,Masami Ishikawa,Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism,Journal of The Electrochemical Society 147(6) (2000) 2246-2251.
    [40]Lianzhou Wang,Nobuyuki Sakai,Yasuo Ebina,Kazunori Takada,Takayoshi Sasaki,Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabrication, structure, and electrochemical behavior, Chem. Mater. 17 (2005) 1325-1357.
    [41] P. Lavela, J. L. Tirado, C. Vidal-Abarca, Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials m lithium cells, Electrochimica Acta 52 (2007) 7986-7995,
    [42] Jeffrey W. Long, Lala R. Qadir, Rhonda M. Stroud, Debra R. Rolison, Spectroelectrochemical Investigations of Cation-Insertion Reactions at Sol-Gel-Derived Nanostructured, Mesoporous Thin Films of Manganese Oxide, J. Phys. Chem. B 105 (2001) 8712-8717.
    [43] Suk-Fun Chin, Suh-Cem Pang, Marc A. Aderson, Material and electrochemical characterization of Tetraporpylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, Journal of The Electrochemical Society, 149(4) (2002) A379-A384.
    [44] B. Djurfors, J. N. Broughton, M. J. Bertt, D. G. Ivey, Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications, Journal of Materials Science 38(2003)4817-4830.
    [45] B. Djurfors, J. N. Broughton, M. J. Brett, D. G. Ivey, Electrochemical oxidation of Mn/MnO films: formation of an electrochemical capacitor, Acta Materialia 53 (2005) 957-965.
    [46] N. Nagarajan, M. Cheong, I. Zhitomirsky, Electrochemical capacitance of MnOx films, Materials Chemistry and Physics 103 (2007) 47-53.
    [47] D. Yan , P.X. Yan, G.H. Yue, J.Z. Liu, J.B. Chang, Q. Yang, D.M. Qu, Z.R. Geng, J.T. Chen, G.A. Zhang, R.F. Zhuo. Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them, Chem. Phys. Lett. 440 (2007) 134-138.
    [48] Potter, R. M.; Rossman, G. R. The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy, Am. Mineral. 64 (1979) 1199-1218.
    [49] Drago, R. S.; Dias, S. C; McGivray, J. M.; Mateus, A. L. M. L. Acidity and Hydrophobicity of TS-1, J. Phys. Chem. B 102 (1998) 1508-1514.
    [50] Lin, J.; Siddiqui, J. A.; Ottenbrite, R. M. Degradation and 5-fluorouracil release behavior in vitro of polycaprolactone/poly(ethylene oxide)/polylactide tri-component copolymer, Polym. Adv. Technol. 12(2001)258-292.
    [51] Fonaseca, C. D.; Ozanam, F.; Chazalviel, J. N. In situ infrared characterisation of the mterfacial oxide during the anodic dissolution of a silicon electrode in fluoride electrolytes, Surf. Sci. 365 (1996) 1-14.
    [52]Feng,X.H.;Tan,W.F.;Liu,F.;Huang,Q.Y.;Liu,X.W.Pathways of birnessite formation in alkali medium,Sci.China,Ser.D: Earth Sci.48 (2005) 1438-1451.
    [53]Zhang,W.X.;Yang,Z.H.;Liu,Y.;Tang,S.P.;Han,X.Z.;Chen,M.Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method,J.Cryst.Growth 263 (2004) 394-399.
    [54]Yang,R.Z.;Wang,Z.X.;Dai,L.;Chen,L.Q.Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH,Mater.Chem.Phys.93 (2005) 149-153.
    [55]Navak,A.Struct.Bond.18 (1974) 177-216.
    [56]Greene,A.C.;Madgwick,J.C.Microbial Formation of Manganese Oxides,Appl.Environ.Microbiol.57 (1991) 1114-1120.
    [57]Banov,B.;Momchilov,A.;Massot,M.;Julien,C.M.Lattice vibrations of materials for lithium rechargeable batteries V.Local structure of LiO.3MnO2,Mater.Sci.Eng.B 100 (2003) 87-92.
    [58]Julien,C.M.;Massot,M.Spectroscopic studies of the structural transitions in positive electrodes for lithium batteries,J.Power Sources 119 (2003) 743-748.
    [59]Gibot,P.;Laffont,L.Hydrophilic and hydrophobic nano-sized Mn3O4 particles,J.Solid State Chem.180 (2007) 695-701.
    [60]Du,J.;Gao,Y.Q.;Chai,L.L.;Zou,G.F.;Li,Y.;Qian,Y.T.Hausmannite Mn3O4 nanorods:synthesis,characterization and magnetic properties,Nanotechnology 17 (2006) 4923-4928.
    [61]Ishii,M.;Nakahira,M.Infrared absorption spectra and cation distributions in (Mn,Fe)3O4,Solid State Commun.11 (1972) 209-212.
    [62]Luo,J.;Zhang,Q.H.;Suib,S.L.Mechanistic and Kinetic Studies of Crystallization of Birnessite,Inorg.Chem.39 (2000) 741-747.
    [63]Wang,H.E.;Qian,D.;Lu,Z.G.;Li,Y.K.;Cheng,R.J.;Li,Y.J.Facile synthesis and electrochemical properties of hierarchical MnO2 submicrospheres and LiMn2O4 microspheres,J.Phys.Chem.Solids 68 (2007) 1422-1427.
    [64]R.S.Wagner,W.C.Ellis,Vapor-Liquid-Solid mechanism of single crystal growth,Appl.Phys.Lett.4 (1964) 89-90.
    [65]Yong Ding,Pu Xian Gao,Zhong Lin Wang,Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO,J.Am.Chem.Soc 126 (2004) 2066-2072.
    [66] Youguo Yan, Lixia Zhou, Jun Zhang, Haibo Zeng, Ye Zhang, Lide Zhang, Synthesis and growth discussion of one-dimensional MgO nanostructures: nanowires, nanobelts, and nanotubes in VLS mechanism, J. Phys. Chem. C 112 (2008) 10412-10417.
    [67] Takeshi yanagida, Aurelian Marcu, Hiroaki Matsui, Kazuki Nagashima, Keisuke Oka, Kazumichi Yokota, Masateru Taniguchi, Tomoji Kawai, Enhancement of oxide VLS growth by carbon on substrate surface, J. Phys. Chem. C 112 (2008) 18923-18926.
    [1]王鹏,新型纳米吸波材料的制备、结构与性能研究,山东科技大学硕士毕业论文,2005
    [2]张玉萍,造福人类的电磁屏蔽和吸波材料.物理与工程,13(6) (2003) 25-29
    [3]王杨勇,张柏宇,王景平.本征型导电高分子电磁千扰屏蔽材料研究进展.兵器材料科学与工程,27(3) (2004)54-60
    [4]黄金田,木材化学镀镍及木质电磁屏蔽材料的制备,北京:北京林业大学,2004
    [5]Ri Ichi Muhakmat,Hidetoshi Yamamoto,Chan Kong Kim,et al.Electromagneticwave slueding effectiveness of carbon fiber sheet coated fenite film by microwave-hydrothennalprocess.International Journal of Modern Physics B 17(8&9) (2003) 1235-1241
    [6]LI Mao-qiong,HU Yong-mao,FANG Jing-hua,et al.Current status and future trends of electromagnetic wave absorbent with nano-stuucture,Materials Review,2002,16(9) (2002) 15-17。
    [7]谢丹阳,高发明,M型钡铁氧体的制备与表征,兵器材料科学与工程,27(1) (2004) 6-9
    [8]毕红,吴先良,李民权,镀钴碳纳米管P环氧树脂基复合材料的制及其微波吸收特性研究,宇航材料与工艺,2 (2005) 34-37。
    [9]KIMA Sung-soo,KIMA Seontae,AHNB Joon-mo,et al.Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density,Journal of Magnetism and MagneticMaterials,271 (2004) 39-45.
    [10]王光华,董发勤,贺小春,纳米吸波材料研究进展,中国粉体技术4 (2005) 35-38.
    [11]Yusoff A.N.,Abdullah M.H.,Microwave electromagnetic and absorption properties of some LiZn ferrites,Journal of Magnetism and Magnetic Materials 269 (2004) 271-280.
    [12]邓建国,王建华,贺传兰,纳米微波吸收剂研究现状与进展,宇航材料工艺5 (2002) 5-9.
    [13]黄婉霞,陈家钊,王健,等,纳米级Fe3O4对电磁波的吸收效能研究,功能材料30(1)(1999) 1-5.
    [14]Ning Li,Yi Huang,Feng Du,Xiaobo He,Xiao Lin,Hongjun Gao,Yanfeng Ma,Feifei Li,Yongsheng Chen,Peter C.Eklund,Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,Nano Letters 6 (2006) 1141-1145
    [15]Renchao Che,Chongyun Liang,Honglong Shi,Xingui Zhou,Xinan Yang,Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes,Nanotechnology 18 (2007) 355705
    [16]Renchao Che,LianMao Peng,Xiaofeng Duan,Qing Chen,Xuelei Liang,Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes,Adv.Mater.16 (2004) 401-405
    [17]Zunfeng Liu,Gang Bai,Yi Huang,Feifei Li,Yanfeng Ma,Tianying Guo,Xiaobo He,Xiao Lin,Hongjun Gao,Yongsheng Chen,Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites,J.Phys.Chem.C 111 (2007) 13696-13700
    [18]Zhuangjun Fan,Guohua Luo,Zengfu Zhang,Li Zhou,Fei Wei,Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites,Mater.Sci.Eng.B,132 (2006) 85-89
    [19]Maosheng Cao,Xiaoling Shi,Xiaoyong Fang,Haibo Jin,Zhiling Hou,Wei Zhou,Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites,Appl.Phys.Lett.91 (2007) 203110
    [20]R.F.Zhuo,H.T.Feng,J.T.Chen,D.Yan,J.J.Feng,H.J.Li,B.S.Geng,S.Cheng,X.Y.Xu,P.X.Yan,Multistep Synthesis,Growth Mechanism,Optical,and Microwave Absorption Properties of ZnO Dendritic Nanostructures,J.Phys.Chem.C,112 (2008) 11767-11775
    [21]R.F.Zhuo,L.Qiao,H.T.Feng,J.T.Chen,D.Yan,Z.G.Wu,P.X.Yan,Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees,J.Appl.Phys.104 (2008) 094101
    [22]R.F.Zhuo,H.T.Feng,L.Qiao,J.Z.Liu,J.T.Chen,D.Yan,J.J.Feng,H.J.Li,S.Cheng,B.S.Geng,X.Y.Xu,J.Wang,Z.G.Wu,P.X.Yan,G.H.Yue,Morphology-controlled synthesis,growth mechanism,optical and microwave absorption properties of ZnO nanocombs,J.Phys.D: Appl.Phys.41 (2008) 185405
    [23]D.Yan,P.X.Yan,G.H.Yue,J.Z.Liu,J.B.Chang,Q.Yang,D.M.Qu,Z.R.Geng,J.T.Chen,G.A.Zhang,R.F.Zhuo.Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them,Chem.Phys.Lett.440 (2007) 134-138.
    [24]Zheng-Rong Tian,Wei Tong,Jin-Yun Wang,Nian-Gao Duan,Venkatesan V.Krishana,Steven L.Suib,Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts,Science 276 (1997) 926-930.
    [25]Kazuhide Miyazaki,Masaharu Hieda,Takafumi Kato,Development of a Novel Manganese Oxide-Clay Humidity Sensor,Ind.Eng.Chem.Res.36 (1997) 88-91.
    [26]Mihai Polverejan,Josanlet C.Villegas,Steven L.Suib,Higher Valency Ion Substitution into the Manganese Oxide Framework,J.Am.Chem.Soc.126 (2004) 7774-7775.
    [27]St(?)phanie Ouvrard,Marie-Odile Simonnot,Michel Sardin,Reactive Behavior of Natural Manganese Oxides toward the Adsorption of Phosphate and Arsenate,Ind.Eng.Chem.Res.41 (2002) 2785-2791.
    [28]Brett Ammundsen,Jens Paulsen,Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides, Adv. Mater. 13 (2001) 943-956
    [29] M. M. Hessien, M. M. Rashad, K. E1-Barawy, I. A. Ibrahim, Influence of manganese substitution and annealing temperature on the formation, microstructure and magnetic properties of Mn-Zn ferntes, J. Magn. Magn. Mater. 320 (2008) 1615-1621
    [30] Duan Yuping, Yang Yang, He Ma, Liu Shuhua, Cui Xiaodong, Chen Huifeng, Absorbing properties of α-manganese oxide/carbon black double-layer composites, J. Phys. D: Appl. Phys. 41 (2008) 125403-125408.
    [31] Hongtao Guan, shunhua Liu, Yanbo Zhao, Yuping Duan, Electromagnetic characteristics of nanomerer manganese dioxide composites materials, Journal of Electronic Materials, 35(5) (2006) 892-896.
    [32] Y. Natio, K. Suetake, IEEE Trans. Microwave Theory Tech. MTT 19 (1971) 65
    [33] Feitknecht, W.; Marti, W. Helv. Chim. Acta 28 (1945) 129
    [34] Juergen B, Gregory W N, Andrea M H, Monika M B, Alex V H and Stefan A. M, Nanoporous Plasmonic Metamaterials, Adv. Mater. 20 (2008) 1211-1217.
    [35] Erlebacher J, Aziz M J, Kanna A, Dimitrov N, Sieradzki K, Evolution of nanoporosity in dealloying, Nature 410 (2001) 450
    [36] Sun Y and Balk T. J, A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking, Scripta Mater 58 (2008) 727-730
    [37] Sun L, Chien C L and Searson P C, Fabrication of Nanoporous Nickel by Electrochemical Dealloying, Chem. Mater. 16 (2004) 3125-3129
    [38] Thorp J C, Sieradzki K, Tang L, Crozier P A, Misra A, Nastasi M, Mitlin D and Picraux S T, Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSil-x, Appl. Phys. Lett. 88(2006)033110
    [39] Snyder J, Asanithi P, Dalton A B and Erlebacher J, Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors, Adv. Mater. 20 (2008) 4883-4886.
    [40] Chan V Z H, Hoffman J, Lee V Y, Latrou H, Avgeropoulos A, Hadjichristidis N, Miller R D and Thomas E L, Ordered Bicontinuous Nanoporous and Nanorelief Ceramic Films from Self Assembling Polymer Precursors, Science 286 (1999) 1716-1719
    [41] Jia F L, Yu C F, Deng K J and Zhang L Z, Nanoporous Metal (Cu, Ag, Au) Films with High Surface Area: General Fabrication and Preliminary Electrochemical Performance, J. Phys. Chem. C 111 (2007)8424-8431
    [42] Zhang J T, Liu P P, Ma H Y and Ding Y, Nanostructured Porous Gold for Methanol Electro-Oxidation, J. Phys. Chem. C 111 (2007) 10382-10388.
    [43] Stratford K, Adhikari R, Pagonabarraga I, Desplat J C and Cates M E, Colloidal Jamming at Interfaces: A Route to Fluid-Bicontinuous Gels, Science 309 (2005) 2198-2201.
    [44] Poulin P, New Gels for Mixing Immiscible Liquids, Science 309 (2005) 2174-2175.
    [45] Nalwa H S 2004 Encyclopedia of Nanoscience and Nanotechnology Vol 2 (American Scientific Publishers) pp 371-387.
    [46] Gopalan E V, Malini K A, Saravanan S, Kumar D S, Yoshida Y and Anantharaman M R, Evidence for polaron conduction in nanostructured manganese ferrite, J. Phys. D: Appl. Phys. 41 (2008) 185005
    [47] Hussain S, Youngs I J and Ford I J, The electromagnetic properties of nanoparticle colloids at radio and microwave frequencies, J. Phys. D: Appl. Phys. 40 (2007) 5331
    [48] Tepper T and Berger S, Correlation between microstructure, particle size, dielectric constant, and electrical resistivity of nano-size amorphous SiO2 powder, Nanostruct. Mater. 11 (1999) 1081-1089
    [49] Mo C M, Zhang L D and Wang G Z, Characteristics of dielectric behavior in nanostructured materials, Nanostruct. Mater. 6 (1995) 823-826
    [50] Pissis P, Konsta A A, Apekis I, Diamanti D D and Christodoulides C, Dielectric effects of water in water-containing systems, J. Non-Cryst. Solids 131/133 (1991) 1174-1181
    [51] Puzenko A, Kozlovich N, Gutina A and Feldman Y, Determination of pore fractal dimensions and porosity of silica glasses from the dielectric response at percolation, Phys. Rev. B 60 (1999) 14348-14359.
    [52] Wen H, Cao M H, Sun G B, Xu W G, Wang D, Zhang X Q and Hu C W, Hierarchical Three-Dimensional Cobalt Phosphate Microarchitectures: Large-Scale Solvothermal Synthesis, Characterization, and Magnetic and Microwave Absorption Properties, J. Phys. Chem. C 112 (2008) 15948-15955
    [53] Fessenden R W, Carton P M, Shimamori H and Scaiano J C, Measurement of the dipole moments of excited states and photochemical transients by microwave dielectric absorption, J Phys. Chem. 86 (19)(1982) 3803

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700