用户名: 密码: 验证码:
液相芯片中羧基功能性聚苯乙烯微球的制备、表征及其在生物检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流式微珠分析技术,又称液相芯片技术或悬浮芯片技术,是将溶液中的可溶性待测物质通过生物分子之间的特异性亲和反应结合在类似于细胞大小的经光学编码的微球体上,利用流式细胞仪对同一个微量样本中的多元待测组分同时进行快速定性、定量分析的新一代分子诊断技术平台。核酸杂交,免疫反应,酶学反应等都可以在同一个平台上实现。检测时,富集有待测物质的微球体逐一、顺次、高速地通过流式细胞仪的激光探测区,微球体本身带有的光学编码可用来区分不同的特异性结合,对待测物进行定性分析;微球体上报告分子所携带的荧光可对待测物进行定量分析。
     羧基功能性聚苯乙烯微球是流式微珠技术的重要载体,微球表面的羧基通过耦联剂活化之后可与蛋白、核酸等探针分子结合。结合有探针分子的聚苯乙烯微球经亲和反应与待测物质结合,进而与标记有荧光物质报告分子结合,通过测定微球表面荧光强度来检测生物样本中待测物的含量
     本论文的主要工作是单分散、粒径可控且表面羧基密度较高的聚苯乙烯功能性微球的合成及应用,以及包被有荧光染料的交联聚苯乙烯微球的初步制备。论文共分五章,第一章为绪论,第二章为粒径可控的聚苯乙烯微球的合成,第三章为羧基功能性聚苯乙烯微球的合成及其在甲胎蛋白检测中的应用,第四章为交联型聚苯乙烯微球的合成及荧光染料的包被,第五章为工作总结与展望。
     论文的第一章首先介绍了生物芯片的历史、发展及优势,重点介绍生物芯片中的一种——液相芯片的原理及应用。随后探讨了液相芯片载体聚苯乙烯微球合成的反应机理,并列举了不同的聚合方法及各方法的优势与局限性。最后讨论了分散聚合法合成聚苯乙烯微球中影响微球的粒径及单分散性的主要因素。绪论部分同时讨论了对微球进行表面羧基功能性修饰的不同方法,并介绍了羧基功能性微球在生物样本检测中的应用。
     第二章为粒径可控的聚苯乙烯微球的合成。由于不同粒径的微球具有不同的应用范围,在液相芯片中所应用的微球粒径为微米级,因此我们合成的目标微球的粒径为微米级的粒径可控的微球。本章实验通过调整单体质量分数、甲基丙烯酸的质量分数(与苯乙烯相比)、稳定剂的浓度等实验条件合成了粒径在2.0μm~7.0μm范围内且粒径可控的微球。
     论文第三章是羧基功能性微球的制备。实验尝试了制备表面带有羧基的聚苯乙烯微球的各种方法,包括分散共聚合法、分步加料法、种子聚合法、二步聚合法和后修饰法。实验证明分散共聚合法、分步加料分散聚合法、种子聚合法、二步聚合法合成表面羧基密度较高且粒径均一的微球均具有局限性,而采用后修饰法对分散聚合合成的微球进行羧基功能性修饰不会影响微球的粒径及单分散性,且大大提高了微球的表面羧基密度,因此该方法是制备羧基功能性聚苯乙烯微球的较好途径。
     论文的第四章尝试了交联型聚苯乙烯微球的初步合成,并成功的将罗丹明荧光染料包被在微球内,不足之处是微球的单分散性不是很好,有待改进。
     本论文的主要成果是合成了粒径均一可控的微米级聚苯乙烯微球;对聚苯乙烯微球进行表面羧基功能性修饰,其表面耦联探针的能力达到国际同类商品微球的水准。将合成的羧基化聚苯乙烯微球应用于生物样品的检测,得到较低的检测限,具有较高的实用价值。
Microsphere-based array, also named as liquid chip or suspension array, is a powerful platform for multiplexed analysis of complex samples. Nucleic acid hybridization, immuno reaction, enzyme reaction can all be carried out on this platform. The suspension array is created by immobilizing capture reagents on the surfaces of encoded microspheres in conjunction with flow cytometric analysis. The array elements, the microspheres, are classified by their distinct optical properties, such as light scatter or fluorescence from an internal dye. When analyzed by the flow cytometer, the microspheres are passed through the laser detection volume one by one. The fluorescence produced from the internal dye is used to decode the microspheres for quanlitative analysis, meanwhile the fluorescence signal from the analyte is used for quantitative analysis.
     Carboxyl functionalized polystyrene particle is an important carrier in the Microsphere-based array. The external carboxyl group can be activated to couple with probes such as proteins or nucleic acids. The microspheres coupled with probe molecules capture the analytes which then bind with fluorescently labelled reported molecules. Through the detection of the microsphere fluorescence intensity, the analyte concentration can be determined.
     The main work in this thesis is the synthesis of mono-dispersed and size-controllable polystyrene particles rich in surface carboxyl groups. We also explored the synthesis of cross-linked polystyrene microspheres embeding fluorescent dye. This thesis is composed of four chapters. Chapter one is the overview. Chapter two decribes the synthesis of size-controllable polystyrene microspheres. Chapter three discusses the preparation of carboxyl functionalized polystyrene particles and their application in the detection of alpha-foetal protein (APP). Chapter four decribes the synthesis of cross-linked polystyrene microspheres and their fluorescent dyeing.
     In Chapter one, the history, development and advantages of biochip are introduced with emphasis on the principle and applications of liquid chip. There are many methods to synthesize carboxyl functioanlzied polystyrene microspheres, the main carrier of liquid chip. The polymerization mechanism, advantages and limitations of several important synthesis methods were reviewed. For the disperse polymerization approach, factors affecting microsphere diameter and monodispersity were discussed. In the end of the introduction section, different approaches for surface carboxyl functionalization of polystyrene particles were discussed, along with the their applications in biological detection
     Chapter two describes the synthesis of size-controllable polystyrene particles. Polystyrene microspheres with different sizes are used in different fields. The microspheres employed in the liquid chip are in the micron size. So, we aimed to synthesize micro-sized polystyrene particles. In this part of work, through adjusting the wt% of the monomer, the wt% of the MAA (to St), and the concentration of the stabilizer PVP, we were able to successfully synthesize polystyrene microspheres with controllable size in the range of 2.0μm to 7.0μm with good monodispersity.
     In chapter three, the carboxyl functionalized polystyrene microspheres are prepared. Disperse polymerization, stepwise disperse polymerization, seeded polymerization, two-step polymerization and post-modification were all explored to synthesize the carboxyl functionalized polystyrene microspheres. The first four methods were all limited in synthesizing mono-dispersed polystyrene microspheres with high surface carboxyl density. It was demonstrated that during the post-modification process, the uniformity or diameter of the microsphere was not affected while enhancing the carboxyl groups density on the surface. Therefore, post-modification was recommended as the best approach for obtaining carboxyl functionalized microsphreres.
     In Chapter four, exploration of preparing cross-linked polystyrene microspheres was carried out. Rhodamine B was embedded in the cross-linked microspheres successfully.
     The main contribution of this thesis is the synthesis of the size controllable, monodispersed polystyrene microspheres. After post-modification for surface carboxyl functionalization, comparable coupling capability of monoclonal antibody onto the surface was achieved with that of the commercial products sold in US. When tested in AFP detection of biological samples, low detection limit was obtained indicating the potential application of our carboxyl functionalized microspheres in microsphere-based array technology.
引文
[1]Karmaker A.,Harris S.E.,Kwek S..Constructing Human Transcriptional Regulatory Subnets from Crossgenome Comparison and Gene Expression Profile Analysis[J].A Journal of Integrative Biology,2007,11(4):397-412.
    [2]Strauss E..New ways to probe the molecules of life[J].Science,1998,282(5393):1406-1407.
    [3]Drobyshev A.,Mologina N.,Shik V.et al..Sequence analysis by hybridization with oligonucleotide microchip:identification of b-thalassemia mutations[J].Gene,1997,188(1):45-52.
    [4]Hacial J.G.,Makalowski W.,Edgemonl K.et al..Evolutionary sequence comparisons using high-density oligonucleotide arrays[J].Nature Genetics,1998,18(2):155-158.
    [5]Mendoza L.G.,McQuary P.,Mongan A.et al..High-throughput microarray-based enzyme-linked immunosorbent assay(ELISA)[J].BioTechniques,1999,27(4):778-780,782-786, 788.
    [6]Cogburn L.A.,Morgan R.,Burnside J..Expressed,sequence tags,DNA chip technology and gene expression profiling[J].Poultry Genetics,Breeding and Biotechnology,2003,629-645.
    [7]Yang G.P.,Ross D.T.,Kuang W.W.et al..Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes[J].Nucleic Acids Research,1999,27(6):1517-1523.
    [8]Gutjahr C.,Murphy D.,Lueking A.et al..Mouse protein arrays from a TH1 cell cDNA library for antibody screening and serum profiling[J].Genomics,2005,85(3):285-296.
    [9]Lucking A.,Horn M.,Eickhoff H.et al..Protein Microarrays for Gene Expression and Antibody Screening[J].Analytical Biochemistry,1999,270(1):103-111.
    [10]Hulse R.E.,Kunkler P.E.,Fedynyshyn J.P.et al..Optimization of multiplexed bead-based cytokine immunoassays for rat serum and brain tissue[J].Journal of Neuroscience Methods,2004,136(1):87-98.
    [11]北京医学院微生物学教研组编.实验免疫学[M].人民卫生出版社,1980.
    [12]彭娟.人血清肿瘤标志物液相芯片检测系统的研制[D].广州:南方医科大学硕士学位论文,2007.
    [13]Nolan J.P.,Sklar L.A..Suspension array technology:evolution of the flat-array paradigm[J].Trends in Biotechnology,2002,20(1):9-12.
    [14]Yan XM.,Schielke E.G.,Grace K.M.et al..Microsphere-based duplexed immunoassay for influenza virus typing by flow cytometry[J].Journal of Immunological Methods,2004,2(84):27-38.
    [15]Jani I.V.,Janossy G.,Brown D.W.et al..Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings[J].Lancet Infectious Diseases,2002,2(4):243-250.
    [16]陈云波,邓元江.液相蛋白芯片技术及其在中医药研究中的应用[J].广州中医药大学学报,2007,23(4):360-362.
    [17]王蕾,吴英松,李明.液相芯片分析技术及其应用简介[J].热带医学杂志,2005,5(4):562-564.
    [19]王建中.最新流式细胞分析技术在实验诊断中的应用[J].诊断学理论与实践,2004,3(5):310-312.
    [19]杨洋,汤华.液相芯片技术在检验医学和生物医学中的应用[J].中国生物化学与分子生物学报,2007,23(4):256-261.
    [20]Vignali D.A.A..Multiplexed particle-based flow cytometric assays[J].Journal of immunological methods,2000,243(1-2),243-55.
    [21]McBride M.et al..Multiplexed liquid arrays for simultaneous detection of simulants of biological warfare agents[J].Analytical Chemistry,2003,75(8):1924-1930.
    [22]Yan XM.,Zhong WW.,Tang AJ.et al..Multiplexed flow cytometric immunoassay for influenza virus detection and differentiation[J].Analytical Chemistry,2005,77(23):7673-7678.
    [23]马光辉,苏志国.高分子微球材料[M].化学工业出版社,2005.
    [24]Kornfield D.M.,Vicente F.A.,Micale F.J.et al..Preparation of large-particle-size monodisperse latexes in space:polymerization kinetics and process development[J].Journal of Dispersion Science and Technology,1984,5(34):231-246.
    [25]Vanderhoff J.W.,El-Aasser M.S.,Kornfeld D.M.et al..The first products made in space:monodisperse latex particles[J].Materials Research Society Symposium Proceedings,1987,(87):213-223.
    [26]李小兵,李已明,金士九.功能性聚苯乙烯微球的合成[J].高技术通讯,1995,(1):43-47.
    [27]彭洪修,朱以华,古宏晨等.无皂乳液聚合法合成均一性聚苯乙烯微球[J].华东理工大学学报,2002,28(3):260-262.
    [28]范慧俐,温美娟,张政朴等.二乙烯基苯对低密度聚苯乙烯密度及尺寸的影响[J].化学试剂,2002,24(4):193-195.
    [29]Hansen F.K.,Ugelstad J..Particle nucleation in emulsion polymerization.Ⅲ.Nucleation in systems with anionic emulsifier investigated by seeded and unseeded polymerization[J].Journal of Polymer Science,Part A:Polymer Chemistry Edition,1979,17(10):3047-3067.
    [30]韩卫华.乳液聚合法制备聚甲基丙烯酸甲酯无机纳米复合粒子[D].太原:太原理工大学硕士学位论文,2007.
    [31]Xu ZS.,Yi CF.,Cheng SY.et al..The Inverse Emulsion Polymerization of Acrylamide Using Poly(Methyl Methacrylate)-Graft-Polyoxyethylene as the Stabilizer[J].Journal of Applied Polymer Science,2001,79(3):528-534.
    [32]Ge XW.,Sheng MY.,Ye Q.et al..Ampholytic Terpolymers of Acrylamide with Sodium Acrylate and(2-Methacryloyloxyethyl) trimethylammonium Chloride.Synthesis with ~(60)Co γ-Ray and Polymerization Kinetics[J].Polymer Journal,1999,31(12):1243-1246.
    [33]王玉霞,张芳,王艳君等.无皂乳液聚合的进展[J].化学工业与工程,2003,20(1):15-19,50.
    [34]吴其晔,高卫平,贾云.无皂乳液聚合法合成单分散交联PS纳米微球[J].塑料工业,2000,28(3):21-23.
    [35]王志英,范丽恒,杨成等.无皂乳液共聚制备纳米微球[J].化工新型材料,2006,34(3):43-44,57.
    [36]张玉格,王补森,陈洪彬等.改进的微悬浮聚合法制备聚合物微球[J].高等学校化学学报,1992,13(11):1485-1487.
    [37]王补森,张玉格,何炳林.窄分布聚合物微球的制备及其在氨基酸分析上的应用[J].高等学校化学学报,1991,12(4):560-563.
    [38]Kim J.W.,Suh K.D..Monodisperse polymer particles synthesized by seeded polymerization techniques[J].Journal of Industrial and Engineering Chemistry,2008,14(1):1-9.
    [39]Kim J.W.,Park J.G.,Ryu J.H.et al..Monodisperse chloromethyl-functionalized macroporous polymer particles by seeded polymerization in aqueous media[J].Colloid Polymer Science,2005,283(11):1233-1240.
    [40]Gu SC.,Onishi J.,Mine E.et al..Preparation of multilayered gold-silica-polystyrene core-shell particles by seeded polymerization[J].Journal of Colloid and Interface Science,2004,279(1):284-287.
    [41]Ahmad H.,Tauer K..Poly(ethylene glycol)-Coated Monodisperse Micron-Sized Composite Polymer Particles[J].Macromolecules,2003,36(3):648-653.
    [42]Okubo M.,Hosotani T.,Yamashita T.et al..Influence of the swelling state of seed polymer particles with monomer on the morphology of micron-sized monodispersed composite polymer particles produced by seeded polymerization utilizing the dynamic swelling method[J].Colloid and Polymer Science,1997,275(9):888-892.
    [43]Okubo M.,Yamashita T.,Suzuki T.et al..Production of micron-sized monodispersed composite polymer particles by seeded polymerization utilizing the dynamic swelling method[J].Colloid and Polymer Science,1997,275(3):288-292.
    [44]Andor J.A.,Dreveni I..Kinetic and topochemical problems in the dispersion polymerization of styrene without an emulsifier[J].Acta Physica et Chemica,1978,24(4):489-497.
    [45]Dawkins J.V.,Taylor G..Nonaqueous poly(methylmethacrylate) dispersions:radical dispersion polymerization in the presence of AB block copolymers of polystyrene and poly(dimethyl siloxane)[J].Polymer,1979,20(5):599-604.
    [46]Killgoar P.C.Jr.,Dickie R.A..Application of Rayleigh spectroscopy to the study of emulsion and dispersion polymerization and polymers[J].Journal of Applied Polymer Science,1977,21(7):1813-1824.
    [47]Almog Y.,Levy M..Effect of initiator on the molecular weight distribution in dispersion polymerization of styrene[J].Journal of Polymer Science,Part A:Polymer Chemistry Edition,1980,18(1):1-11.
    [48]Almog Y.,Levy M..Dispersion polymerization of styrene:effect of surfactant[J].Journal of Polymer Science,Part A:Polymer Chemistry Edition,1981,19(1):115-126.
    [49]Zhang X.,Shen SH.,Fan LY..Uniform Polystyrene Particles by Dispersion Polymerization in Different Dispersion Medium[J].Polymer Bulletin,2008,61(1):19-26.
    [50]Almog Y.,Levy M..Studies of particle size distribution and adsorption of stabilizers in dispersion polymerization[J].Journal of Polymer Science,Part A:Polymer Chemistry Edition,1982,20(2):417-429.
    [51]Bahar T.,Tuncel A..Monodisperse PoIy(p -chloromethyl styrene ) Microbeads by Dispersion Polymerization[J].Polymer Engneering and Science,1999,39(10):1849-1855.
    [52]张洪涛,吕睿,陈敏.分散共聚合制备PSt-AA-EGDMA功能性单分散微米级交联微球的研究[J].高等学校化学学报,2004,25(2):366-371.
    [53]吴文兵.氨基磁性微球制备及其固定化木瓜蛋白酶应用研究[D].雅安:四川农业大学硕士学位论文,2007.
    [54]Tseng C.M.,L u Y.Y.,El-Aasser M.S.et al..Uniform polymer by dispersion polymerization in alcohol[J].Journal of Polymer Science,Part A:Polymer Chemistry Edition,1986,24(11):2995-3007.
    [55]Lok K.P.,Ober C.K..Particle size control in dispersion polymerization of polystyrene[J].Canadian Journal of Chemistry,1985,63(1):209-216.
    [56]Lu Y.Y.,El-Aasser M.S.,Vanderhoff J.W..Dispersion polymerization of styrene in ethanol:monomer partitioning behavior and locus of polymerization[J].Journal Polymer Science,Part B: Polymer Physics,1988,26(6):1187-1203.
    [57]Prochazka O.,Stejskal J..Spherical particles obtained by dispersion polymerization:model calculations[J].Polymer,1992,33(17):3658-3663.
    [58]Paine A.J.,Luymes W.,Mc N.J..Dispersion polymerization of styrene in Polar solvents.Ⅵ.Influence of reaction parameters on particle size and molecular weigh t in poly(N-vinylpyrrolidone)-stabilized reactions[J].Macromolecules,1990,23(12):3104-3109.
    [59]Paine A.J..Dispersion polymerization of styrene in polar solvents.Ⅶ.A simple mechanistic model to predict particle size[J].Macromolecules,1990,23(12):3109-3117.
    [60]Huang J.,Zhang H.,Hou J.et al..Preparation of micron-size crosslinked microspheres by dispersion copolymerization of polystyrene/2,2 -oxy-bisethanoldiacrylate[J].Reactive &Functional Polymers,2002,53(1):1-9.
    [61]Okubo M..Minami H.,Yamamoto Y..Penetration/release behaviors of various solvents into/from micron-sized monodispersed hollow polymer particles[J].Colloids and Surface,A:Physicochemical and Engineering Aspects,1999,153(1-3):405-411.
    [62]Laus M.,Dinnella C.,Lanzarini G.et al..Core-shell functional microspheres by dispersion p olymerization:Ⅱ.Synthesis and characterization[J].Polymer,1996,37(1):343-347.
    [63]Okubo M.,Iumi.Synthesis of micron-sized monodispersed,core-shell composite polymer p articles by seeded dispersion polymerization[J].Colloids and Surface,A:Physicochemical and Engineering Aspects,1999,153(1-3):297-304.
    [64]Ding XB.,Sun ZH.,Wan GX.et al..Preparation of the thermosensitive magnetic particles by dispersion polymerization[J].Reactive & Functional Polymers,1998,38(1):11-15.
    [65]杜磊.基于光谱自编码微球的高通量筛选技术[D].武汉:华中科技大学博士学位论文,2004,21-22.
    [66]Okubo M.,Miya T.,Minami H.et al..Morphology of micron-sized,monodisperse,nonspherical polystyrene/poly(n-butyl methacrylate) composite particles produced by seeded dispersion polymerization[J].Journal of Applied Polymer Science,2002,83(9):2013-2021.
    [67]Okubo M.,Okada M.,Miya T.et al..Production of micron-sized,monodisperse composite polymer particles having epoxy groups by seeded dispersion polymerization[J].Colloid and Polymer Science,2001,279(8):807-812.
    [68]刘学涌,常昆,王晓川等.氨基两亲高分子磁性微球的制备与表征[J].高分子学报, 2005,(4):519-523.
    [69]王伟财,张琦,张兵波等.氨基化单分散超顺磁荧光PGMA多功能微球制备[J].科学通报,2007,52(21):2477-2481.
    [70]Okubo M.,Takekoh R.,Sugano H..Production of micron-sized,monodispersed,multilayered composite polymer particles by multistep seeded dispersion polymerization[J].Colloid Polymer Science,2000,278(6):559-564.
    [71]Okubo M.,Miya T.,Minami H.et al..Morphology of Micron-Sized,Monodisperse,Nonspherical Polystyrene/Poly(n-butyl methacrylate) Composite Particles Produced by Seeded Dispersion Polymerization[J].Journal of Applied Polymer Science,2002,83(9):2013-2021.
    [72]Okubo M.,Miya T.,Takekoh R..Production of micro-sized,monodisperse composite polymer particles having epoxy groups by seeded dispersion polymerization[J].Colloid Polymer Science,2001,279(8):807-812.
    [73]Okubo M.,Fujii S.,Minami H..Production of electrically conductive,core/shell polystyrene/polyanliline composite particles by chemical oxidative seeded dispersion polymerization[J].Colloid Polymer Science,2001,279(2):139-145.
    [74]汪地强.功能荧光微球的制备及其对蛋白质的固定化[D].成都:成都有机所博士学位论文,2004.
    [75]李璐,文秀芳,皮丕辉等.功能型多孔聚合物微球的制备及其缓释性能研究[J].功能材料,2006,(37):1318-1321.
    [76]张凯,雷毅,贾利军等.核壳高分子微球的制备及应用[J].化工新型材料,2001,29(10):27-41.
    [77]黄德华,张先亮.氨基硅微乳的研制与应用[J].浙江化工,1995,26(4):17-19.
    [78]康凯,阚成友,杜奕等.高羧基含量无皂多孔聚合物乳胶粒的研究[J].化学学报,2005,63(15):1456-1460.
    [79]Song J.S.,Leonid C.,Mitchell A.W..Monodisperse Micrometer-Size Carboxyl-Functionalized Polystyrene Particles Obtained by Two-Stage Dispersion Polymerization[J].Macromolecules,2006,39(17):5729-5737.
    [80]Spherotech,Inc.27845 Irma Lee Circle,Unit 101,Lake Forest,Illinois 60045.
    [1]Haruma K..Functional polymer microspheres[J].Progress in Polymer Science,2000,25(8):1171-1210.
    [2]吕睿,张洪涛.窄分散大粒径交联聚苯乙烯功能微球的合成研究[J].功能高分子学报,2003,16(1):54-58.
    [3]Tseng C.M.,L u Y.Y.,El-Aasser M.S.et al..Uniform polymer by dispersion polymerization in alcohol[J].Journal of Polymer Science,Part A:Polymer Chemistry Edition,1986,24(11):2995-3007.
    [4]Yah XM.,Schielke E.G.,Grace K.M.et al..Microsphere-based duplexed immunoassay for influenza virus typing by flow cytometry[J].Journal of Immunological Methods,2004,2(84):27-38.
    [1]Song J.S.,Leonid C.,Mitchell A.W..Monodisperse Micrometer-Size Carboxyl-Functionalized Polystyrene Particles Obtained by Two-Stage Dispersion Polymerization[J],Macromolecules,2006,39(17):5729-5737.
    [2]范宇,王海霞,张晓丹等.甲胎蛋白异质体在原发性肝癌早期诊断的临床意义[J].临床荟萃,2007,(2):84-86.
    [3]梁宝英,刘延英.甲胎蛋白测定在重型肝炎预后判断中的意义[J].检验医学与临床,2007,(4):1200-1201.
    [4]林铁军.甲胎蛋白检测对肝病患者的临床意义[J].传染病信息,2006,(19):211-212.
    [5]Ball D.,Rose E.,Alpert E..Alpha-fetoprotein levels in normal adults[J].The American Journal of the Medical Sciences,1992,303(3):157-159.
    [6]张洪涛,吕睿,陈敏.分散共聚合制备PSt-AA-EGDMA功能性单分散微米级交联微球的 研究[J].高等学校化学学报,2004,25(2):366-371.
    [7]汪地强.功能荧光微球的制备及其对蛋白质的固定化[D].成都:成都有机研究所博士学位论文,2004.
    [8]Zhang HT.,Huang H.,Sun R.et al..Preparation of Micron-Size Monodispersed PS/P (St/MAA) Microspheres by Seeded Dispersion Polymerization[J].Journal of Applied Polymer Science,2006,99(6):3586-3591.
    [9]Wang C.H.J.,Shah D.O..Process to make magnetically responsive fluorescent polymer particles[P].US 5283079,1994-02-01.
    [1]赵文元,王亦军.功能高分子材料化学[M].北京:化学工业出版社,1996.
    [2]张洪涛,黄锦霞,江兵兵等.制备单分散交联聚苯乙烯微球共聚合动力学和粒径的研究[J].应用化学,2001,(18):726-730.
    [3]Gao XH.,Nie SM..Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity:Rapid Readout Using Flow Cytometry[J].Analytical Chemistry,2004,76(8): 2406-2410.
    [4]袁才登,许涌深,王艳君等.交联聚合物微粒改性乳液聚合物工艺研究[J].热固性树脂,2001,16(4):3-5.
    [5]Shi LY.,Qin YX.,Cheng WX.et al..Effect of swelling response of the support particles on ethylene polymerization[J].Polymer.2007,48(9):2481-2488.
    [6]Kim D.O.,Jin J.H..Investigation for Surface Morphology and Mechanical Property Variations of Single Polymer Particles[J].Journal of Applied Polymer Science,2007,104(4):2350-2360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700