用户名: 密码: 验证码:
重组白喉毒素的制备及体外抑瘤效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生长抑素(Somatostatin,简称SST或SS)是一种多肽物质,以14肽和28肽两种形式存在,其广泛分布于脑组织、胰腺、胃肠道,少量分布在甲状腺、颌下腺、肾上腺、前列腺、胎盘、肾脏、肝脏、胆囊等组织中。SS受体在很多肿瘤细胞表面都有过度表达,如神经内分泌瘤、神经系统肿瘤和结肠癌等。SS可以特异的结合过度表达SS受体的肿瘤细胞。
     白喉毒素(DT)是白喉杆菌产生的细菌外毒素,有三个不同功能区。N端为催化区( catalytic domain )由193个氨基酸组成(1~193),中间为穿膜区(transmembrance)由173个氨基酸组成(205~378),C端为受体结合区( receptor binding domain)由149个氨基酸组成(386~535)。DTB(390~535)氨基酸残基组成白喉毒素的受体结合区,该区域可以用抗体或细胞因子基因取代。DTA(1~389)为毒素发生毒性作用的部位,是白喉毒素的酶活性区,它通过阻止延长因子-2在核糖体内促进多肽链延长而抑制蛋白质合成造成细胞死亡,具有极强的细胞毒性。
     本文利用重叠延伸PCR技术,将DT389基因片断与SS基因片断通过一个柔性肽Linker连接,经特异性酶切后,将基因片段插入到原核表达载体pET-28a中,构建了原核重组表达质粒pET-28a- DT389 -SS,测序结果与设计一致。将重组质粒转化至BL21(DE3),诱导表达后经SDS-PAGE表明,DT389-SS重组蛋白表达量占菌体蛋白总量的31%。免疫印迹分析结果显示,重组蛋白可与anti-6×histag抗体发生特异性免疫反应。
     从培养基的选择、诱导剂剂量的选择、诱导条件的优化等方面,研究了重组工程菌BL21(DE3)LysS/pET-28a-DT389-SS的发酵工艺,对重组工程菌进行了发酵,用MTT法测定目的蛋白对细胞生长的抑制作用,结果表明,重组蛋白对多种癌细胞的生长抑制作用明显。
Cancers have been threatening the health of human beings. The chemicals used in clinical now lack selectivity. Toxical effects are common seen in clinical. Tumor-targeting therapy will be satisfactory for enhancing therapeutic effects of anti-tumor medicines.
     Somatostatin is a single chain peptide, which has two forms referred to as ss-14 and ss-28, reflecting their amino acid chain length. Somatostatin was found to be sreted by a broad range of tissues, including pancreas, intestinal tract and regions of the central nervous system outside the hypothalamus. The over-expression SSR which can be binded specially with SS was found on many cancer cells surface including neuroendocrine tumour, nervous system tumour and colon carcinomas. DipHtheria toxin (DT) is a single chain bacterial toxin, which is composed of three structural domains. Domain C is responsible for cell binding (amino acids 386~535), which can be replace the gene of antibody and cell factor. Domain T (amino acids 205~378) plays an essential role in the translocation of DT when it across the cell membrane and into the cytosol. Domain N is composed of domain (amino acids 1~193) and is responsible for catalytic domain with ADP-ribosy transferase activity can inactivate elongation factor 2 , and cause cell death.
     The gene fragment was amplified from PCDNA3-DTA by overlap extension PCR . The PCR products were digested by EcoRⅠand HindIII,and then inserted into plasmid vector pET28a(+). The positive recombinant plasmids were transformed into host strain E.coli BL21(DE3) and induced to express recombinant protein of DT389-SS by IPTG. The specific protein expressed (about 45.0kDa) was detected by SDS-PAGE. The protein was expressed at high level, amounting to 31% of the total bacterial protein as confirmed by the soft of computer scanning. Western blot analysis showed that the fusion protein may react specifically with anti-6×histag antibody.
     High cell density fermentation of the recombinant E.coli strain was studied, for optimizing the cell density and protein production. Several factors were investigated, such as the selection of host bacterium, the selection of medium, the selection of induced dose and optimized condition. In our study, the recombinant plasmid of DT389-SS can be express in four E.coli strain. After trial and error, we choose BL21(DE3)LysS strain. The optimized condition: the medium is LB, the pH is 7.0, the induced temperature is 23℃and time is 16 hours, the dose IPTG is 0.1mmol/L. Under induction of IPTG the recombinant protein was expressed as a soluble protein and was up to 12% of the total protein in E.coli BL21(DE3) LysS.
     Using glycerol as carbon sources, IPTG as inducing agent and specific fed-batch mode as feeding method while keeping stiring speed and DO at 20%, E.coli cell density could reach 30g/L and the expression remains at high level. the recombinant protein was expressed as a soluble protein and was up to 20% of the total protein in E. coli BL21(DE3) LysS.
     Cells was collected by centrifugation and lysed by sonication. Protein was purified by Ni+ chromatography. With the above purification, the purity of DT389-SS was about 95%. The cytotoxity of DT389-SS on SWWC and SPC-A1 cell growth was analyzed with MTT. The ID50 of DT389-SS on two cell were 16μg/mL and 15μg/mL.
引文
[1] von Behring E, Kitasato S. Dtsch Med Wochenschr 1890; 16: 1113–1114
    [2] Hericourt J, Richet CH. ‘PHysologie pathologique’-de la serotherapie dans la traitement du cancer. Comptes Rendus Hebd Seanc Acad Sci (Paris) 1895; 120: 567–569
    [3] Himmelweit F. The Collected Papers of Paul Ehrlich. Vol. 3. London: Pergamon; 1960: 59
    [4] Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lympHoma. Clin Oncol 2002; 20: 2453–2463
    [5] Davis TA, Kaminski MS, Leonard JP, et al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res 2004; 10: 7792–7798
    [6] Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (Rituxan, anti-CD20 mAb) in non-Hodgkin’s lympHoma: implications in chemosensitization and therapeutic intervention. Oncogene 2005; 24: 2121–2143
    [7] Zhang N, Khawli LA, Hu P, Epstein AL. Generation of rituximab polymer may cause hyper-cross-linking-induced apoptosis in non-Hodgkin’s lympHomas. Clin Cancer Res 2005; 11: 5971–5980
    [8] Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005; 55: 178–194
    [9] Bianco R, Daniele G, Ciardiello F, Tortora G. Monoclonal antibodies targeting the epidermal growth factor receptor. Curr Drug Targets 2005; 6: 275–287
    [10] Emens LA. Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am J Ther 2005; 12: 243–253
    [11] Czuczman M. CHOP plus rituximab chemoimmunotherapy of indolent B-cell lympHoma. Semin Oncol 1999( 5 Suppl 14): 88–96
    [12] Marty M, Cognetti F, Maraninchi D, et al. Randomized pHase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. Clin Oncol 2005; 23: 4265–4274
    [13] Raben D, Helfrich B, Chan DC, et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 2005; 11: 795–805
    [14] Nadler LM, Stashenko P, Hardy R, et al. Serotherapy of a patient with a monoclonal antibody directed against a human lympHoma-associated antigen. Cancer Res 1980; 40: 3147–3154
    [15] Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lympHoma with monoclonal anti-idiotype antibody. N Engl J Med 1982; 306: 517–522
    [16] Foon KA, Schroff RW, Bunn PA, et al. Effects of monoclonal antibody therapy in patients with chronic lympHocytic leukemia. Blood 1984; 64: 1085–1093
    [17] Goldenberg DM, DeLand F, Kim E, et al. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external pHotoscanning. N Engl J Med 1978; 298: 1384–1386
    [18] Gaffar SA, Pant KDA, Shochat D, et al. Experimental studies of tumor radioimmunodetection using antibody mixtures against carcinoembryonic antigen (CEA) and colon-specific antigen-p (CSAp) . Int J Cancer 1981; 27: 101–105
    [19] Oldenberg DM, Horowitz JA, Sharkey RM, et al. Targeting, dosimetry, and radioimmunotherapy of B-cell lympHomas with iodine-131-labeled LL2 monoclonalantibody. Clin Oncol 1991; 9: 548–564
    [20] Buchsbaum DJ, Wahl RL, Normolle DP, Kaminski MS. Therapy with unlabeled and 131I-labeled pan-B-cell monoclonal antibodies in nude mice bearing Raji Burkitt’s lympHoma xenografts. Cancer Res 1992; 52: 6476–6481
    [21] Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lympHoma with 131I-anti-B1 (anti-CD20) antibody. N Engl J Med 1993; 329: 459–465
    [22] Maloney DG, Liles TM, Czerwinski DK, et al. PHase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lympHoma. Blood 1994; 84: 2457–2466
    [23] Errara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem BiopHys Res Commun 2005; 333: 328–335
    [24] Each D R, Krummel M F, Allison J P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736
    [25] Kapadia D, Fong L. CTLA-4 blockade: autoimmunity as treatment Clin Oncol 2005; 23: 8926–8928
    [26] Rutgeerts P, Van Assche G, Vermeire S. Review article: inflab therapy for inflammatory bowel disease—seven years on. Aliment PHarmacol Ther 2006; 23: 451–463.
    [27] Cuppoletti A, Perez-Villa F, Vallejos I, Roig E. Experience with single-dose daclizumab in the prevention of acute rejection in heart transplantation. Transplant Proc 2005; 37: 4036–4038
    [28] Liossis SN, Tsokos GC. Monoclonal antibodies and fusion proteins in medicine. Allergy Clin Immunol 2005; 116: 721–729
    [29] Chatenoud L. Monoclonal antibody-based strategies in autoimmunity and transplantation. Methods Mol Med 2005; 109: 297–328
    [30] Chambers SA, Isenberg D. Anti-B cell therapy (rituximab) in the treatment of autoimmune diseases. Lupus 2005; 14: 210–214
    [31] Looney RJ. B cell-targeted therapy in diseases other than rheumatoid arthritis. Rheumatol Suppl 2005; 73: 25–28
    [32] Kaufmann J, Wegener WA, Horak ID, et al. Initial clinical study of immunotherapy in SLE using epratuzumab (humanized anti-CD22 antibody). Arthritis Rheum 2004; 50: 44-47
    [33] Ilantzis C, DeMarte L, Screaton RA, Stanners CP. Deregulated expression of the human tumor marker CEA and CEA family member CEACAM6 disrupts tissue architecture and blocks colonocyte differentiation. Neoplasia 2002; 4: 151–163
    [34] Blumenthal RD, Osorio L, Hayes MK, et al. Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 2005; 54: 315–327
    [35] Adams GP, Schier R, McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001; 61: 4750–4755
    [36] Milstein C, ?hler G. Continuous cultures of fused cells sreting antibody of predefined specificity. Nature 1975; 256: 495–497. 39.Waldmann H, Hale G. CAMPATH: from concept to clinic. PHilos Trans R Soc Lond B Biol Sci 2005; 360: 1707–1711
    [37] Hainsworth JD, Litchy S, Shaffer DW, et al. Maximizing therapeutic benefit of rituximab: maintenance therapy versus re-treatment at progression in patients with indolent non-Hodgkin’s lympHoma—a randomized pHase II trial of the Minnie Pearl Cancer Res Network.. Clin Oncol 2005; 23: 1088–1095
    [38] Coiffier B. First-line treatment of follicular lympHoma in the era of monoclonal antibodies. Clin Adv Hematol Oncol 2005; 3: 484–505
    [39] Coiffier B. Rituximab in diffuse large B-cell lympHoma.Clin Adv Hematol Oncol 2004; 2: 156–157
    [40] Vaccaro C, Zhou J, Ober RJ, Ward ES. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 2005; 23: 1283–1288
    [41] Stockmeyer B, Elsasser D, Dechant M, et al. Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. Immunol Methods 2001; 248: 103–111
    [42] Bevaart L, Jansen MJ, van Vugt MJ, et al. The high-affinity IgG receptor, FcgammaRI, plays a central role in antibody therapy of experimental melanoma. Cancer Res 2006; 66: 1261–1264
    [43] Frankel AE, Kreitman RJ, Sausville EA. Targeted toxins. Clin Cancer Res 2000; 6: 326–334
    [44] Pastan I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother 2003; 52: 338–341
    [45] Newton DL, Hansen HJ, Mikulski SM, et al. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lympHoma. Blood 2001; 97: 528–535
    [46] Vitetta ES, Fulton RJ, May RD, et al. Redesigning nature’s poisons to create anti-tumor reagents. Science 1987; 238: 1098–1104
    [47] AmLot PL, Stone MJ, Cunningham D, et al. A pHase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lympHomas resistant to conventional therapy. Blood 1993; 82: 2624–2633
    [48] Sausville EA, Headlee D, Stetler-Stevenson M, et al. Continuous infusion of theanti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lympHoma: a pHase I study. Blood 1995; 85: 3457–3465
    [49] Stone MJ, Sausville EA, Fay JW, et al. A pHase I study of bolus versus continuous infusion of the anti-CD19 immunotoxin, IgG-HD37-dgA, in patients with B-cell lympHoma. Blood 1996; 88: 1188–1197
    [50] Posey JA, Khazaeli MB, Bookman MA, et al. A PHase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE-40) in patients with advanced solid tumors. Clin Cancer Res 2002; 8: 3092–3099
    [51] Hellstrom I, Garrigues HJ, Garrigues U, Hellstrom KE. Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Le(y)-related surface antigens. Cancer Res 1990; 50: 2183–2190
    [52]Saltz LB, Lenz H, Hochster HS, et al. Randomized pHase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer. Clin Oncol 2005; 23: 248
    [53] Goldenberg DM. Perspectives on oncologic imaging with radiolabeled antibodies. Cancer 1997; 80: 2431–2435
    [54] Larson SM, Pentlow KS, Volkow ND, et al. PET scanning of iodine-124-3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. Nucl Med 1992; 33: 2020–2023
    [55] Wong JY, Chu DZ, Williams LE, et al. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin Cancer Res 2004; 10: 5014–5021
    [56] McBride WJ, Zanzonico P, Sharkey RM, et al. Bispecific antibody pretargeting PET (ImmunoPET) with an 124I-labeled hapten-peptide. Nucl Med. In press, 2006
    [66] Sharkey RM, Karacay H, Cardillo TM, et al. Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. ClinCancer Res 2005; 11: 1250–1255
    [57] athé G, Loc TB, Bernard J. Effet sur la leucémie 1210 de la souris d’une combinaison par diazotation d’A-méthoptérine et de -globulines de hamsters porteurs de cette leucémie par hétérogreffe. C R Acad Sci (Paris) 1958; 246: 1626–1628
    [58] Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 2001; 7: 1490–1496
    [59] Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 2005; 104: 1442–1452
    [60] Chevallier P, Roland V, Mahe B, et al. Administration of mylotarg 4 days after beginning of a chemotherapy including intermediate-dose aracytin and mitoxantrone (MIDAM regimen) produces a high rate of complete hematologic remission in patients with CD33+ primary resistant or relapsed acute myeloid leukemia. Leuk Res 2005; 29: 1003–1007
    [61] Amadori S, Suciu S, Stasi R, et al. Gemtuzumab ozogamicin (Mylotarg?) as single-agent treatment for frail patients 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a pHase 2 study of the European Organisation for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell’Adulto Leukemia Groups Leukemia 2005; 19: 1768–1773
    [62] Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood 2005; 106: 1183–1188
    [63] Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nature Biotechnol 2005; 23: 1137–1146
    [64] Chen J, Jaracz S, Zhao X, et al. Antibody-cytotoxic agent conjugates for cancertherapy. Expert Opin Drug Deliv 2005; 2: 873–890
    [65] Govindan SV, Griffiths GL, Hansen HJ, et al. Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies. Technol Cancer Res Treat 2005;4:375–391
    [66] Smith SV. Technology evaluation: cantuzumab mertansine, ImmunoGen. Curr Opin Mol Ther 2004; 6: 666–674
    [67] Law CL, Cerveny CG, Gordon KA, et al. Efficient elimination of B-lineage lympHomas by anti-CD20-auristatin conjugates. Clin Cancer Res 2004; 10: 7842–7851
    [68] Torgov MY, Alley SC, Cerveny CG, et al. Generation of an intensely potent anthracycline by a monoclonal antibody-beta-galactosidase conjugate. Bioconjug Chem 2005; 16: 717–721
    [69] Hamann PR, Hinman LM, Beyer CF, et al. A calicheamicin conjugate with a fully humanized anti-MUC1 antibody shows potent antitumor effects in breast and ovarian tumor xenografts. Bioconjug Chem 2005; 16: 354–360
    [70]Burton JD, Ely S, Reddy PK, et al. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 2004; 10: 6606–6611
    [71] Griffiths GL, Mattes MJ, Stein R, et al. Cure of SCID mice bearing human B-lympHoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin Cancer Res 2003; 9: 6567–6571
    [72] Sapra P, Stein R, Pickett J, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res 2005; 11: 5257–5264
    [73] Chang CH, Sapra P, Vanama SS, et al. Effective therapy of human lympHoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood 2005; 106: 4308–4314
    [74] Jedema I, Barge RM, van der Velden VH, et al Internalization and cellcycle-dependent killing of leukemic cells by gemtuzumab ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 2004; 18: 316–325
    [75] Keri GY, Erchegyi J, Horvath A ,et al. A tumor-selective somatostatin analogue (TT-232 )with strong in vitro and in vivo antitumor activity. Ptoc NatlAcad Sci USA 1996;93:12513-12518
    [76] Dalm VA, Van Hagen PV, Koelsvelcl PV,e1 al. Expression of somaloslalin, corlislalin and somaloslalin receplors in human monocyes,macropHages and clenclrilic cells.Am JPHvsiol Enclocrinol Me1 ab, 2003, 5 (2):344-353
    [77] Kraus J WoltijeM,Schonwetter N, et al. Gene structure and Regulation of the somatostatin receptor type 2 . PHysioparis,2000,94:199-204
    [78] Szereday Z, Schally AV, Szepeshazi K, et al. Effective treatment of H838 human non-small cell lung carcinoma with a targeted cytotoxic somatostatin analog AN-238.Int J Oncol. 2003, 22(5):114
    [79] Plonowski A, Schally AV, Nagy A, et al. Inhibition of metastatic renal cell carcinomas expressing somatostatin re-ceptors by a targeted cytotoxic analogue of socnatostatin AN- 238. Cancer Res, 2001 , 6(1(11) : 2996
    [80] Anthony LB,Woltering EA,Espenan GD, et al. Indium-111-petetreotide prolongs survival in gastroenteropancreati cmalignancie. Semin Nucl Med,2002,32:123-132
    [81] Kreitman RJ,Pastan I. Immunotoxins for targeted cancer therapy. Adv Drug Deliv Rev,1998,31:53-88
    [82] Jin N ,Chen W,Blazar BR , et al . Gene therapy of murine solid tumors with T cells transduced with a retroviral vascular endothelial growth factor immunotoxin target gene. Hum Gene Ther ,2002 ,13(4) :497-508
    [83] Pastan I, ChaudharyV, Fitz Geralid DJ. Recombinant toxins as novel therapeutic agents. Annu Rev Bio Chem, 1992, 61:331-354
    [84] Yu D, Chen D, Chin C, et al. Prostate-Specific targeting using PAS promoter-based lenvoval vector. Cancer Gene Res,2001,8(9):628-635
    [85] Trinh R, Gurbaxani B, Morrison S L . Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Molecular Immunology, 2004,40: 717-722
    [86] 郑黎燕, 奚永志,孔繁华.重组IL-6-PE40融合蛋白的构建及其生物活性 研究.中国微生物学与免疫学杂志, 2001, 21(1):95~98
    [87] 智刚,侯云德,张德震,克隆表达重组人肿瘤坏死因子和干扰素.生物化学杂志,1991,7(1): 89~94
    [88] 吴乃虎等编著,基因工程原理(下册). 科学出版社, 2002
    [89] 郝新保,张利朝,殷缨等. MTT 比色法测定细胞生长曲线. 第四军医大 学报,1997,18(4):390-391
    [90] 王福林. 一种生长曲线的参数估计方法. 生物数学学报,1997,12(5):398- 402
    [91] Georgious G. Expression of correctly folded proteins in E.coli. Curr Opin Biotechnol,1996,7(2):190-197
    [92] 李良铸等.最新生化药物制备技术.中国医药科技出版社,2000
    [93] 陈坚, 李寅.发酵过程优化原理与实践.化学工业出版社,2002
    [94] 贾士儒等. 生物反应工程原理.科学出版社,2001
    [95] 刘国诠等.生物工程下游技术.化学工业出版社, 2001
    [96] 杨运桂等.新型高密度发酵基因工程菌G830. 生物化学与生物物理学报.2001,33(3):296~302
    [97] 梅乐和等. 生化生产工艺学.科学出版社, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700