用户名: 密码: 验证码:
家蚕细胞色素P450基因及其定量方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞色素P450酶系又称作多功能氧化酶(MFO),是广泛存在于所有需氧生物中的一类代谢酶系,细胞色素P450基因起源于35亿年前的一个共同祖先,是最古老和最庞大的超基因家族之一,在生命的过程中,它对内源物质的代谢与转化或外源化合物的活化与降解等进行催化和调控。在昆虫基因组中大约有100个左右的P450s,它们的作用涉及生长、发育、取食等过程,其对异生物质的代谢特性导致了昆虫对杀虫剂的抗药性和对植物有毒物质的耐受性,它还参与了昆虫体内保幼激素、蜕皮激素和脂肪酸等内源化合物的合成与代谢。
     家蚕(Bombyx mori)是鳞翅目昆虫的模式生物,本研究以家蚕为研究对象,对家蚕P450基因CYP305B1基因组序列进行了分析;通过对目前家蚕实时定量PCR研究中常用的内源参照基因进行分析,提出了新的定量PCR方法,并应用此方法,对家蚕和野蚕(Bombyx mandarina)部分P450基因进行了定量研究。本论文的主要研究结果如下: 1.家蚕P450基因CYP305B1的克隆及其结构分析
     为了研究家蚕P450基因CYP305B1的结构,采用了反向PCR(inverse PCR)技术,克隆了家蚕CYP305B1基因的基因组DNA,经序列测定,拼接得到家蚕CYP305B1全基因序列,并与野桑蚕P450基因CYP305B1V1进行了比较分析。结果表明,CYP305B1和CYP305B1V1在5’UTR上游-400至-770之间370 bp的序列同源性只有40.4%;在第1内含子中,与家蚕相比,野桑蚕在翻译起始密码ATG上游-340之前多了330 bp的插入序列,而在-110至-340 bp间两者同源性也只有46.9%。这些结果为深入研究该基因的功能提供了信息。
     2.实时定量PCR方法的比较研究
     为了比较目前常用的内源参照基因actin-3、GAPDH、28s rRNA,在实验样品中加入IFP2基因的mRNA和DNA混合物,作为跟踪标定基因,测定了家蚕各组织中的actin-3、GAPDH、28s rRNA基因的转录水平。同时测定了后部丝腺中的FibH、FibL基因,中部丝腺Ser-1基因的转录水平,并对两种归一化方法进行了比较。
     结果表明,actin-3、GAPDH、28s rRNA在家蚕各组织中的差异极大,A3基因在后部丝腺中转录水平最高(1,098),中肠最低(9.9);GAPDH基因的转录水平以脂肪体最高(10,475),中肠最低(6.57)。28S rRNA基因的转录水平以脂肪体最高(97,321),中肠最低(2,178)。
     如用与actin-3、GAPDH、28s rRNA相比的相对表达结果,则后部丝腺中的FibH ,FibL基因,中部丝腺Ser-1基因的转录水平,相互之间差距较大。而应用加入IFP2基因的mRNA和DNA混合物作为跟踪标定基因测到的是实际转录水平,基因FibL和FibH在后部丝腺中的转录水平分别为106,453和192,029,Ser-1基因在中部丝腺中的转录水平为196,539。我们把同时加入mRNA和DNA混合物,作为跟踪标定基因的测定方法,称为双跟踪标定定量PCR,所得结果称为基因的表观转录活性。
     3.杀虫剂诱导的P450基因的表观转录活性
     应用双跟踪标定定量PCR方法,测定了野蚕和不同品种家蚕P450基因的表观转录活性。同时,测定了在杀虫剂敌敌畏和溴氰菊酯诱导下,家蚕L11和野蚕不同P450基因的表观转录活性。
     结果表明,家蚕品种菁松中P450基因主要在中肠中有较高的转录,其次是脂肪体;家蚕品种皓月P450基因在丝腺中有较高转录;野桑蚕的P450基因的表观转录水平,以丝腺最高,其次是中肠。
     在敌敌畏和溴氰菊酯诱导下,L11中肠的P450基因的转录水平上调最显著,其次是脂肪体。L11的P450基因以CYP9A19、CYP9A22显著上调。野桑蚕在溴氰菊酯诱导下,CYP9A19、CYP9A22均有显著上调,且达到较高转录活性,而在敌敌畏诱导下野桑蚕被测P450基因未检测到较高的转录水平。
     4.氟化物诱导下家蚕P450基因的表观转录水平
     应用双跟踪标定定量PCR方法,测定了家蚕在NaF诱导下的P450基因的表观转录活性。结果表明,CYP9A19,CYP9A22在中肠中具有较高表观转录活性,而CYP305B1,CYP4M5则在脂肪体中有较高表观转录活性。
     实验表明,NaF诱导下的时间曲线有组织特异性,我们把中肠、脂肪体的诱导称为正向诱导,这反映了家蚕对NaF的抵抗作用,把马氏管中的诱导称为反向诱导,这反映了NaF对家蚕的毒害作用。并由此提出了在今后家蚕抗性研究中应综合考虑这两方面因素的新观点。
Cytochrome P450 monooxygenases, known as multi-functional oxidase(MFO),are a very important enzymatic system, which has been found in all living organisms systems examined. Cytochrome P450 gene originated from a common ancestor 35 million years ago,is one of the oldest and the largest super-gene families. In the process of life, they catalyse and regulate the metabolism and transform of endogenous compounds or the activation and degradation of exogenous compounds. There are around 100 or so P450s in insect genome. Their functions involve growth, development, feeding, etc., which not merely involves a series of endogenous materials such as juvenile hormone(JH) and its analogue, ecdysone, biologic pheromone, but also involve the supersession to exogenous many kinds of compounds such as insecticide, plant secondary materials, environmental pollutant.
     Bombyx mori is one of model organisms in Lepidoptera. This research take the Bombyx mori as the object of study, and mark the genomic sequence analysis of CPY305B1 gene in the Bombyx mori. Through the current real-time quantitative PCR study of silkworm commonly used endogenous reference gene analysis, it has proposed the new quantitative PCR method, and using this method, has conducted the quantitative research to the Bombyx mori and the Bombyx mandarina part of P450 genes. The main results are as followed.
     1. Cloning and sequence analysis of cytochrome CPY305B1 gene in the Bombyx mori
     In order to study the gene structure of CYP305B1, the genomic sequence of this P450 gene was cloned by reverse PCR method. The complete genomic sequence of CYP305B1 was obatined after sequencing and assembling. Sequence analysis showed the first intron is located in the 5′UTR of this gene. Comparison of the genomic sequence of CYP305B1 with that of CYP305B1V1 from Bombyx mandarina demonstrated that the 370 bp sequence between 770 bp and 400 bp upstream of the 5′UTR of these two P450 genes shared only 40.4% identity to each other. The biggest differences between the two genes lies in the first and sixth introns. In the first intron, there is an additional insertion sequence of 330 bp before the 340 bp sequence upstream of the translation initiation codon ATG of CYP305B1V1 compared with CYP305B1, and the 230 bp sequences between 340 bp and 110 bp upstream of the translation initiation codon of the two genes showed only 46.9% identity to each other. In the sixth intron, there is an extra insertion sequence of about 300 bp in CYP305B1 compared with CYP305B1V1. This research will help us to research the mechanism of transcriptional regulation of this P450 gene.
     2. The comparative study of real-time quantitative PCR methods
     In order to compare the current commonly used endogenous reference genes actin-3, GAPDH, 28s rRNA, We determined the gene transcription levels of actin-3, GAPDH, 28s rRNA in different tissues of Bombyx mori with IFP2 mRNA and DNA mixed in the experiment type variety as the spike-in gene.
     Simultaneously it has determined the transcription level of FibH,the FibL gene in middle silk gland, Ser-1 gene in the the posterior silk gland, and comparison with the consequences determined with actin-3,GAPDH,28s rRNA.
     As the results shown , actin-3, GAPDH and 28s rRNA are very different in each tissue of Bombyx mori.A3 gene in the posterior silk gland transcription level is in the highest (1,098),the lowest in the mid-gut(9.9);GAPDH gene transcription level in the fat body is the highest(10,475), the lowest in the mid-gut (6.57). 28S rRNA gene transcription level of the highest is in the fat body (97,321), the lowest in the mid-gut (2,178).
     With actin-3, GAPDH, 28s rRNA measured , FibH, FibL genes in the middle silk gland,the Ser-1 gene transcription level in the posterior silk gland,there is a large gap between any two.
     And adding IFP2 into a mixture of mRNA and DNA at the same time, as a tracking method of spike-in gene,we have measured the transcription level of gene FibH, FibL genes in the MSG and the Ser-1 gene in the PSG.The transcription level (106,453 and 192,029) of gene FibL and FibH in PSG, and the transcription level (196,539) of Ser-1 gene in MSG compare the level closer to the actual transcription.Adding a mixture of mRNA and DNA at the same time,as a tracking method of spike-in gene,known as the dual-sipke-in quantitative PCR. The obtained result is called the gene apparent transcription activity.
     3. Pesticides-induced apparent transcription levels of P450 gene
     It has applied of dual-spike-in method of quantitative PCR to measure the apparent transcription levels of P450 gene in the Bombyx mandarina and Bombyx mori different varieties. At the same time, it has determined Bombyx mori L11 and Bombyx mandarina different P450 gene apparent transcription activity under the induction of the pesticide DDVP(dimethyl dichloro vinyl phosphate) and DKDD (Decamethrin Kothrin Decis Deltamethrin)
     The results show that P450 gene mainly has the higher transcription level in the middle gut, followed by the fat body; Bombyx mori Haoyue P450 genes also have a higher transcription in the silk gland.The apparent transcription level of P450 gene in the Bombyx mandarina is the highest in silk gland, followed by the mid-gut.
     Induced by DDVP and DKDD,the transcription level of P450 gene in the mid-gut of Bombyx mori L11 increases significantly, followed by that of the fat body.CYP9A19 and CYP9A22 in Bombyx mori L11 are significantly raised.CYP9A19 and CYP9A22 in Bombyx mandarina are significantly raised, and reach a higher transcriptional activity under the induction of DDKD.However,the transcription of the DDKP-induced P450 gene measured in the Bombyx mandarina is not detected in a higher level.
     4. Fluoride-induced apparent transcription levels of P450 gene in Bombyx mori Using the dual-sipke-in quantitative PCR, the apparent transcription levels of P450 gene under the induction of NaF are measured.The results indicated that CYP9A19 and CYP9A22 have the higher apparent transcriptional levels in the middle gut, but CYP305B1 and CYP4M5 have the higher apparent transcriptional levels in the fat body(FB).
     In this study,As shown in the NaF-induced time curve,there is tissue speciality. The induction in the Mid-gut and fat body is called the positive induction,and it reflects the resistance of Bombyx mori to NaF,and that in the malpighian tubules is called the negative induction, it reflects the poison effect of NaF to Bombyx mori. In this study,we proposed a new opinion that we should consider these two aspects in study of resistance of Bombyx mori in the future.
引文
[1] Scott,J.G. Cytochromes P450 and insecticide resistance. [J] Insect biochemistry and molecular biology.1999,29(9):757-777.
    [2] Gonzalez,F.J. Cytochrome P450 evolution and nomenclature. In:Schenkman J B and Greim H. Eds. Handb,ExP. [J] Pharmacol Berlin:Springer,Gemany.1993,105:211-219.
    [3] Feyereise,R.Insect cytochrome P450.in:Gilbert LI,Iatrou K,Gill SS(Eds), [J] Comprehensive Molecular Insect Science.2005,vol.4. Elsevier,oxford,pp:l-77.
    [4] Porter,T.D,and Coon,M.J. Cytochrome P450:Multiplieity of isoforms,substrates,and Catalytic and regulatory mechanisms. [J] The Journal of biological chemistry.1991,266(21): 13459-13472.
    [6] Klingenberg,M.Pigments of rat liver microsomes. [J] Arch Biochem.Biophys, 1958.75:376-386.
    [7] Omura,T. , and Sato,R. A new cytochrome in liver micrsome. [J] J Biol Chem.1962,237: 1375-1376.
    [8] Sato,R.,and Omura,T A carbon monoxide-binding Pigment of liver microsomes. [J] Proc 5th Intern Congr Biochem.1961,9:529.
    [9] Baekes,W.L. NADPH-Cytoehrome P450 reduetase. [J] Cytochromes P450.Schenkman,J B and Griem H.(Eds.).1993:PP15-34.Berlin SPringer-Verlag.
    [10] Coon,M.J.,Vaz,A.D.,and Bestervelt,L.L.Cytochrome P450 2:Peroxidative reactions of Diversozyrnes. [J] Faseb J.1996,10(4):425-434.
    [11] Fujii-kuriyama,Y.,Miaikami,Y,Kawajiri,and et,a. Primary structure of a cytochorme P450: Coding nucleotide sequence of Phenobarbital inducible cytochrome P450 cDNA from rat liver.[J].Proceedings of the National Academy of sciences of the United states of America.1982,79:2793-2797.
    [12] Werck-Reichhart,D.,and Feyereisen,R.Cytochromes P450:a success story. [J] Genome biology.2000,l(6):REVIEWS3003.
    [13]华梓婷,郭养浩,孟春,刘楠晓.细胞色素P450的基因多态性与药物代谢. [J]中国新药志.2007,7:510-515.
    [14]冷欣夫、邱星辉编著细胞色素P450酶系的结构、功能与应用前景[M]科学出版社,2001
    [15] Feyereisen,R.,Insect P450 enzymes. [J] Annual revyew of entomol0gy.1999,44:507-533.
    [16] Ray,J.W.The epoxidation of aldrin by housefly microsomes and its inhibition by carbon monoxide. [J] Biochem.Pharmacol.1967,16:99-107.
    [17] Feyereisen,R.,Koener.J.F.,Fansworth,D.E.,and et al.Isolation and sequence of cDNA Encoding a cytochrome P450 from an insecticide-resistant strain of the housefly,Musea domestica. [J] Proc.Natl.Acad.Sci.USA.1989,86:1465-1469.
    [18]邱星辉,冷欣夫.昆虫细胞色素P450基因的表达与调控及P450介导抗性的分子机制..[J]农药学学报.1999,l:5-14.
    [19]向仲怀.主编蚕丝生物学.北京:中国林业出版社[M].2005.
    [20] DoddaPanenil,H.,Chakraborty,R.,and JS.,Y.Genome-wide struetural and evolutionary. Analysis of the P450 monooxygenase genes(P450ome) in the white rot fungus Phanerochaete chrysosporium:Evidence for gene duplications and extensive gene clustering. [J] BMC Genomics 2005,6:92.
    [21] Tijet,N.,Helvig,C.,and Feyereisen,R.The cytochrome P450 gene superfamily in Drosophi melanogaster:annotation intron-exon organization and Phylogeny. [J] Gene.2001,262(l-2): 189-198.
    [22] Daborn P J,Yen J L,Bogwitz M R,Legoff G,Feil E, A single P450 allele associated with I nsecticide resistance in Drosophila, [J] Scince,2002,297(5590)2253-2256.
    [23] scott J.G,J.Pesticide Sci.,1996,21:241-245.
    [24] Porter T J,Coon M J, [J] J Bio Chem 1991,266:13469-13472.
    [25] Nelson D R,Koymons L,kamataki T,et al[J] Pharmacogenetics,1996;6:1-42.
    [26] Durst F,Okeefe D P, [J] Drug Metab Drug Interact 1995;12:171-187.
    [27] Berge J.B,Feyereisen R.and Amichot M,phil.Trans.,R.sco.lond.B,1998,353:1071-1075.
    [28] Agosin M,Role of microsomal oxidation in insecticide degradation,.[J]Comprehensive insect physiology,biochemistry and pharmacologyl2,Oxford:Pergamon,1985:647-751.
    [29] Hodgson.E,Microsomal mono-oxygenases,:Kurkut.G.A,Gilben L.1(eds),Comprehensive insect Physiology,biochemistry and pharmacology ll,Oxford:Pergamon,1985,225-321.
    [30] Dunkov B C,Rodriguez Amaiz R,Pittendrigh B, [J] et al.Mol.Gen.Genet 1996,251:290-291.
    [31] Frolov M V,Alatortsev V E, [J] DNA and Cell Biology 1994,13(6):663-668.
    [32] Cohen M B,Feyereisen R, [J] DNA and Cell Biology 1995,14(1):73-82.
    [33] Hung C F,Harrison T L,Berebbaum M R, [J] .Insect Molec Biology 1995 4(3):149-160.
    [34] Tomita T,Liu N,Smith F F, [J].Insect Molec Biology 1995 4(3):135-140.
    [35] Sundseth S S, Nix C E, Waters L C, [J] Biochem.J. 1990,265:213-217.
    [36] Prapaipong.H.,BerenBaum.M.R.,Schuler.M.A.,[J]Nucleicacidsresearc1994,22(15): 3210-3217.
    [37] Snyder M J,Stevens J L,Andersen J F, [J] Archiv Biochem Biophys 1995,321(1):13-20.
    [38] Carino.F.A,Koener.J.F,P1app.F.W.JR, [J]Insect Biochem Molec Bio,1994,24(4) ,411-418.
    [39] Wang X P.,and Hobbs A.A.,[J] Insect Biochem.Molec.Biol.1995,25(9):1001-1009.
    [40] Gandhi R.,Varak E.,and Goldberg M.L.,D[J] NA and Cell Biology .1992.11(5):396-404.
    [41] Scott J.G.,and Liu N., [J] Insect Biochem Molec Biol.1993,23(6):729-738.
    [42] Liu N.and Scott J.G., [J] Insect Biochem.Molec.Biol.1998.28:531-535.
    [43] Water L.C.,zelhof A.C.,Shaw B.J., [J] Proc Natl Acad Sci USA.1992.89:4855-4859.
    [44] Maitra.S.,Dombrowski.S.M.,Water L.C., [J] Gene.1996.180:165-171.
    [45] Scott J.G,Sfidhar P.and Liu N,Arch .Insect Biochem.physiol,1996,31:313—323.
    [46] Wang.X.P.,and Hobbs A.A., [J] Insect Biochem.Molec.Biol.1995,25(9):1001-1009.
    [47] Bradfield J.Y.,Lee Y.H., Keeley L.L., [J] Proc Natl Acad Sci USA .1991,88:4558-62.
    [48] Ranasinghe C.,Headlam M.,Hobbs A .A,., [J] Arch .Insect Biochem.Physiol.1997, 34:99-109.
    [49] Liu. N., Scott J.G., [J] Insect Biochem.Molec.Biol.1998.28:531-535.
    [50] Gandhi.R.,Varak E and Goldberg M . [J],DNA and Cell Biology.1992,11(5):396-404.
    [51] Liu N.,and Scott J.G .J., [J] Econ Entomol .1997,90(6):1478-1481.
    [52] Feyereisen R.,Andersen J.F.,and Carino F.A., [J] Pestic.sci.1995,43:233-239.
    [53] elpuech J.M.,Aquadro C.F.,and Roush R.T[J]., Proc Natl Acad sci USA.1993, 90:5643-564.
    [54] Liu N.,Tomita T., and scott J.G., [J]1995 Biochem Genet . 51:146-167.
    [55] scott J.G.,Liu .N.,Wen Z., [J] Gene.1999,226(2):347-53
    [56] scott J.G., and Wen.Z., [J]Comp Biochem Physiol C:Pharmacol Toricol Endocrinol 1998,121(13):147-155.
    [57] Liu N.,and scott .j.G.,bi [J]ochem genet .1996,34(3-4):133-48
    [58] Spiegelman.V.S.,Fuchs .S .T.,and Belitsky. G. A., [J]Biochem Biophys Res Commun.1997,232(2):304-306.
    [59] Pittendrigh.B.,Aronstein .K.,zinkovsky .E., [J]Insect Biochem、Molec. Biol.1997, 27(6):507-512.
    [60] Feyereisen R.,Andersen J.F.,and Carino F.A., [J]Pestic.sci.1995,43:233-239
    [61] Waters L.C.,Chang L.Y.,and Kennel S.J., [J]pestic. Sci.1990,30:456-458
    [62] Wang X. P.,and Hobbs A.A.,I [J]nsect Biochem.Molec.Biol.1995,25(9):1001-1009
    [63] Ranasinghe .C.,and Hobbs A.A., [J]Insect Biochem.Molec.Biol.,1998,28:571-580
    [64] Sushmata.Maitra.,Charles.Price.,Ranjan.Ganguly.,CPY6A8 of Drosophila Melanogaster: gene structure and sequnce and functional analysis of upstream DNA, [J]Insect biochemistry and molecular liology .2002,32:859-870.
    [65] H.Ranson.,O.Nikou,.,M.Hutchinson.,X..wang., Molecular analysis ofmultiple cytochrome P450 genes from the malaria vector. [J] Anopheles gambiae Insect molecular liology.2002,11(5):409-418.
    [66] Parks.S,.,Brown.T.M,.,Linkage of gene for sodium channel and cytochrome P450 (CYP6B10) in Heliothis virescens , [J]Pest manag Sci,2002,58(2):209-212.
    [67] Gorrochotegui.Escalante.N.,Munoz.M.L.,Fernandez-Salas/I,.,Beaty.B.J., lack WC 4th.. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. [J]Am J Trop Med Hyg. 2000 Feb;62(2):200-209
    [68] Carrasco.H.J,.,Frame. I.A,.,Valente S.A.,Miles.M.A .,Genetic exchange as a possible source of genomic diversity in sylvatic populations of Trypanosoma cruzi. [J]Am J Trop Med Hyg. 1996 Apr,54(4):418-424.
    [69] Stuart J.J.,Schulte S.J, Hall P.S, Mayer K.M.,Genetic mapping of Hessian fly avirulence gene vH6 using bulked segregant analysis. [J]Genome. 1998 Oct;41(5):702-708.
    [70] Manguin S, WilkersonR C, Conn J E,Rubio-Palis Y, Danoff-Burg J A, Roberts D R. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. [J] Am J Trop Med Hyg. 1999 Mar,60(3):364-376
    [71] Nocelli E, Giovannini T, Bioni M, Alicchio R,RFLP and RAPD based genetic relationships of seven diploid species of Avena with the genome. [J] Genome. 1999 .Oct,42(5):950-959.
    [72] Horike N,Takemori H,Nonaka Y,Sonobe,H.,and Okamoto,M. Molecular cloning of NADPH-cytochrome P450 oxidoreduetase froms ilkworm eggs.Its involvement in 20-hydroxyecdysone biosynthesis during embryonic development. [J] Eupean journal of Biochemistry FEBS.2000,267(23):6914-6920.
    [73] Horike N. , and Sonobe H,Ecdysone20-monooxygenase ine ggs of the silkworn,Bombyx mori:enzymatic properties and developmental changes. [J]Archives of insect btochemistry and Physiology.1999,41(l):9-17.
    [74] Maeda S,Yarnada R.,Sonobe H.,and Molecular cloning of a Bombyx cytochrome P450 Enzyrne that belongs to the CYP314al subfamily , encodeing ecdysone 20-hydroxylase in Dros0phila. [J]unpubilshed.2005.
    [75] Niwa R.,MatsudaT,Yoshiyama T,Nanuki T,Mita K.,Fujimoto Y,andKataoka.H, CYP306A1,a cytochrome P450 enzyme,is essential for ecdysteroid biosynthesis in the Prothoracic glands of Bombyx and Drosophila. [J]The Journal of biological chemistry .2004,279(34):35942-35949.
    [76] Niwa R.,Sakudh T.,Namiki T.,Saida.K.,Fujimoto .Y., and Kataoka.H., The Ecdysteroidogenic P450 Cyp302al /disembedied from he silkworm,Bombyx mori,is Transcriptionally regulated by prothoracicotropic hormone. [J]Insect molecular biology.2005,14(5):563-571.
    [77] Namiki T,Niwa R,Sakudoh T.,Shirai K.,Takeuchi H.,and Kataoka H,Cytochrome P450 CYP3071I/Spook:a regulator for ecdysone synthesis in insects.[J]Biochemical and biophysical research communications.2005,337(l):367-374.
    [78] Gu S H,and YS,C,Analysis of ecdysteroidogenic activity of the prothoracic glands during the last Iarval instar of the silkwom. Bombycx mori. [J]Arch.Insect Bioehem.physiol. 2005,58:17-26.
    [79] Xia Q Y, Zhou Z Y, Lu C, et al. A draft sequence for the genome of the domesticated silkworm(Bombyx mori) [J], Science, 2004, 306:1937-1940
    [80]吉武成美,蒋猷龙.家蚕的起源和分化[ J ].蚕业科学, 1987,13 (3) : 182
    [81]苏州蚕桑专科学校主编,桑树病虫害防治学[M].农业出版社,1982,第1版:200-202
    [82]李兵,于继彬,耿世勇,等.太湖流域野桑蚕的生态学研究[J].蚕业科学, 2003, 29(1):78-82
    [83]黄尔田.野蚕越冬卵的孵化和年发生代数的研究[J].蚕业科学, 1985 ,11 (4) :194-200.
    [84]李兵,浜野国胜,蜷木理,等.基于线粒体CO I和NADH-6基因分子检测的中日家蚕和野桑蚕亲缘关系的研究[J].昆虫学报, 2006, 49(3):470-473
    [85]沈卫德,李兵,季平,等.野桑蚕和家蚕的环境适应性比较研究[J]. 2003: 29 (4):375-379
    [86]赵华强,王东,李兵,等.杀虫剂溴氰菊酯对野桑蚕和家蚕的毒力比较[J].蚕业科学, 2008, 34 (1): 115-118.
    [87]李斌,夏庆友,鲁成,周泽扬,向仲怀.家蚕细胞色素P450的基因组学分析[J]中国科学.C辑,2004,34(6):517-521.
    [88]陈玉华等.野桑蚕CYP305B1V1基因的组织表达特异性初探[J]江苏蚕业,2005,4:11-13
    [89]卫正国等.野桑蚕抗性基因P450 cDNA片段的克隆[J].江苏蚕业,2004.3:1-3
    [90]陈玉华,卫正国, ,李兵,等.野桑蚕CYP305B1 V1基因的克隆与序列分析[J].蚕业科学, 2006,32(2):161-165
    [91] Hartl D.L, Ochman H., Inverse polymerase chain reaction. [J]Methods Mol. Biol. 1993. 58:293-301.
    [92] Ochman H., Ayala F.J., Hartl D.L., Use of polymerase chain eaction to amplify segments outside boundaries of known sequences. [J] Methods Enzymol. 1993,218:309-321.
    [93] Crick, F., Central dogma of molecular biology. [J] Nature, 1970. 227(5258): p. 561-3.
    [94] Alwine, J.C., D.J. Kemp, and G.R. Stark, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5350-4.
    [95] Alwine, J.C., et al., Detection of specific RNAs or specific fragments of DNA by fractionation in gels and transfer to diazobenzyloxymethyl paper. [J] Methods Enzymol, 1979. 68: p. 220-42.
    [96] Mullis, K., et al., Specific enzymatic amplification of DNA in vitro: the polymerasechain reaction. [J]Cold Spring Harb Symp Quant Biol, 1986. 51 Pt 1: p. 263-73.
    [97] Koos, R.D. and R.H. Seidel, Detection of acidic fibroblast growth factor mRNA in the rat ovary using reverse transcription-polymerase chain reaction amplification. [J] Biochem Biophys Res Commun, 1989. 165(1): p. 82-8.
    [98] Sellner, L.N. and G.R. Turbett, Comparison of three RT-PCR methods. [J]Biotechniques, 1998. 25(2): p. 230-4.
    [99] Heid, C.A., et al., Real time quantitative PCR. [J]Genome Res, 1996. 6(10): p. 986-94.
    [100] Jung, R., K. Soondrum, and M. Neumaier, Quantitative PCR[J]. Clin Chem Lab Med, 2000. 38(9): p. 833-6.
    [101] Freeman, W.M., S.J. Walker, and K.E. Vrana, Quantitative RT-PCR: pitfalls and potential. [J]Biotechniques, 1999. 26(1): p. 112-22, 124-5.
    [102] Schmittgen, T.D., Real-time quantitative PCR. [J]Methods, 2001. 25(4): p. 383-5.
    [103] Huggett, J., et al., Real-time RT-PCR normalisation; strategies and considerations. [J] Genes Immun, 2005. 6(4): p. 279-84.
    [104] Lau, Y.F. and J. Zhang, Expression analysis of thirty one Y chromosome genes in human prostate cancer. [J] Mol Carcinog, 2000. 27(4): p. 308-21.
    [105] Grone, A., et al., RT-PCR amplification of various canine cytokines and so-called house-keeping genes in a species-specific macrophage cell line (DH82) and canine peripheral blood leukocytes.[J]. Zentralbl Veterinarmed B, 1999. 46(5): p. 301-10.
    [106] Revilla-Fernandez, S., et al., The use of endogenous and exogenous reference RNAs for qualitative and quantitative detection of PRRSV in porcine semen. [J]J Virol Methods, 2005. 126(1-2): p. 21-30.
    [107] Smith, R.D., et al., Exogenous reference RNA for normalization of real-time quantitative PCR. [J] Biotechniques, 2003. 34(1): p. 88-91.
    [108] Johnson, D.R., et al., An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. [J] Appl Environ Microbiol, 2005. 71(7): p. 3866-71.
    [109] Grzelak, K., Control of expression of silk protein genes. [J] Comp Biochem Physiol B Biochem Mol Biol, 1995. 110(4): p. 671-81.
    [110]. Fraser, M.J., et al., Transposon-mediated mutagenesis of a baculovirus. [J] Virology, 1985. 145(2): p. 356-61.
    [111] Wang, H.H., M.J. Fraser, and L.C. Cary, Transposon mutagenesis of baculoviruses:analysis of TFP3 lepidopteran transposon insertions at the FP locus of nuclear polyhedrosis viruses. [J] Gene, 1989. 81(1): p. 97-108.
    [112] Guo, X.Y., et al., Introduction of foreign genes into silkworm eggs by electroporation and its application in transgenic vector test. [J] Acta Biochim Biophys Sin (Shanghai), 2004. 36(5): p. 323-30.
    [113] Garel, A., G. Deleage, and J.C. Prudhomme, Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser 1B cDNA. [J]Insect Biochem Mol Biol, 1997. 27(5): p. 469-77.
    [114] Zhang, Y., et al., Quantitative analysis of cytoplasmic actin gene promoter and nuclear polyhedrosis virus immediate-early promoter activities in various tissues of silkworm Bombyx mori using recombinant Autographa californica nuclear polyhedrosis virus as vector. [J]Acta Biochim Biophys Sin (Shanghai), 2008. 40(6): p. 533-8.
    [115] Zhou, H., et al., Molecular cloning of Bombyx mori cytochrome P450 gene and its involvement in fluoride resistance. [J] J Hazard Mater, 2008. 160(2-3): p. 330-6.
    [116] Bettegowda, A., et al., Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. [J] Mol Reprod Dev, 2006. 73(3): p. 267-78.
    [117] Schuchhardt, J., et al., Normalization strategies for cDNA microarrays. [J]Nucleic Acids Res, 2000. 28(10): p. E47.
    [118] Tseng, G.C., et al., Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. [J] Nucleic Acids Res, 2001. 29(12): p. 2549-57.
    [119] Liu, X.S., Getting started in tiling microarray analysis. [J] PLoS Comput Biol, 2007. 3(10): 1842-1844.
    [120]李兵,沈卫德野桑蚕与家蚕对敌敌畏的抗性研究初报. [J]江苏蚕业2003,25(1):57-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700