用户名: 密码: 验证码:
高质量稀土掺杂上转换纳米粒子的制备及复合组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上转换发光纳米粒子具有吸收低能量的激发光子,并发射出一个高能量光子的独特性质,因此在过去的十几年中吸引了广泛的研究兴趣。由于性能独特,上转换发光纳米粒子潜在应用于固体激光器,光发射装置,高贯穿扫描,低密度红外成像,生物探针和生物检测等方向。当然,实现最终应用还有很多问题需要解决。例如:获得高强度、颜色可控的发光,提高生物兼容性,与其他材料进行复合等。
     基于上述考虑,我们在本文中选取上转换材料中稀土掺杂的氟钇化钠纳米粒子进行研究,因为氟钇化钠作为主体材料具有低的振动能量,低的非辐射衰减率,高的辐射发射率,是上转换纳米粒子中最好的主体材料。研究内容主要分为以下三个部分:第一,通过“一锅法”我们在相对低的温度利用更“绿色”的溶剂成功合成了晶型优良尺寸分布均匀的稀土掺杂氟钇化钠纳米粒子。通过改变投料比,加热时间或者加热温度以及金属掺杂,我们可以改变纳米粒子的形貌、尺寸、晶体类型、发光强度和颜色,为进一步的应用提供了优良的材料。第二,利用多种常见的两亲性表面活性剂去修饰有机相合成的纳米粒子,使其表面形成双层分子结构,从而把有机相纳米粒子以独立分散或组装体的形式转移到水相,根据不同表面活性剂赋予粒子的表面功能,再进行硅化作用或者聚合作用形成壳层,增加其生物稳定性和兼容性。第三,利用半导体或者贵金属纳米粒子与氟钇化钠纳米粒子组装,形成复合粒子,通过能量转移,改变原有发射峰之间的比率,从而实现功能集成和发光颜色可调,为生物应用提供更广阔的空间。
Rare-earth doped nanoparticles, with a combination of nano-size and specialrare-earth characteristics, have been widely used in various fields such as optics,electrics and magnetics in recent decades. One of the rare-earth doped upconversionluminescent nanoparticles have become the focus since they have special luminescentproperties which is to emit a high-energy photon with absorbing tow or morelow-energy excitation photons. As a kind of upconversion luminescent particles whichis the most stable, most controllable in shape and pattern and has the least defect andmost intensive luminescence, the lanthanides doped NaYF4is applied in lasers,anti-counterfeit labels, fingerprint acquisition and so on, especially several applicationsin biomedical science these years. However, the previous synthesis routines are notsuitable for mass production because of high-energy consumption, high cost andpoisonous by-product. So a new synthesis method which is more environmental friendlywith lower energy consumption and cost is in urgent need. On the other hand, this kind biomedical science, which means the particles synthesized in organic phase should betransferred in to aqueous phase. The previous method is complicated since a newcondition should be made with every single function group. Thus it is necessary to finda simple, convenient and universal method for organic-to-aqueous phase transportation.While simply upconversion is not enough for imaging, a kind of composite luminescentparticles is needed for various colors or luminescent controllable composites.
     In Chapter II, on the premise of low energy consumption and low cost, we havesynthesized upconversion luminescent, uniform and hexagonal NaYF_4:Yb~(3+),Er~(3+)(Tm~(3+))particles using oleic acid as the ligand and liquid paraffin as solvent at relatively lowtemperature (280℃). Based on this method, the crystals phase can be changed fromcubic to hexagonal crystal. Particles sized from20nm to150nm can be prepared viacontrol of heat duration; and the shape can be ball, ellipse,plate,cubic through thechange of ligand and solvent; while the color of the luminescence can be tuned bydoping of different lanthanide. We studied the impacts of particle patterns, sizes, andcrystal types, the intensity of upconversion luminescence and color change throughrigid control of reaction condition, which is totally controllable. Finally we tunedupconversion luminescence color via doping of transition metal elements. This realizesthe excitation and emission ranging from red light to near-infrared, which make a easierimaging inside biological body. From the experiment above, we have lowered cost andenergy consumption for mass production in “green” and environment protection,providing promising application.
     In chapter III, we use common small molecule surfactants and particle claddingoleic acid ligand to build double-layer structure through hydrophobic-hydrophobicinteraction and outward hydrophilic end to transport particles from organic phase toaqueous phase. The aqueous phase particles showed good dispersion and upconversionluminescence. This method was easy to operate, and universal for ion-, anion-, and non-ionic surfactant. silicification on the surface and polymerization can be carried outwith different properties with the change of surfactant, forming SiO2or PPy core-shellstructure. Then we can obtain nanoparticles converted on independent dispersed ordifferent sized super structure assembly using microemulsion droplets template viachange of concentration of surfactant. Also, the size of super structure assembly canchange from100nm to500nm in different concentration of surfactant. Thesuperstructure assemblies can be well dispersed in water, and the luminescence intensityof upconversion assembly NaYF_4:Yb~(3+), Er~(3+)(Tm~(3+)) is1.5times as much as those ofsingle dispersed ones. Finally we chose amphipathic triblock copolymersF127(PEO-b-PPO-b-PEO) to transport different sized upconversion nanopartiles fromorganic phase to aqueous phase. The transported NaYF_4:Yb~(3+), Er~(3+)(Tm~(3+)) nanoparticleswere applied in biological labeling and imaging. Upconversion nanoparticles modifiedwith F127showed good biological stability and luminescence intensity. Compared withthose small surfactant, F127is almost non-toxic to organism. Our research has providednew idea for applications of upconversion nanoparticles in biological field.
     In chapter IV, we first use noble metal nanoparticles interaction between Au andNaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) nanoparticles to control the optical proterties ofNaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) nanoparticles. In the experiment, we preparedNaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) and Au composite via (1) host-guest interaction betweencyclodextrin and NaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) surface oleic acid;(2) microemulsion dropletstemplate;(3) insitu synthesis of nanoparticles. The three composite can be welldispersed in water. The study of the spectrum data showed that the relative intensity ofemmisiton peaks of NaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) nanoparticles have changed a lot due tointroduction of Au particles. Then we use mercaptoacetic acid stabled CdTe QDs totransport NaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) nanoparticles from organic phase to aqueous phase,obtaining CdTe modified NaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) nanoparticles in different size. Duringthe study of the optical properties of this composite, we have found that under excitation of980nm near infrared, energy transfer occurred between NaYF_4:Yb~(3+), Er~(3+)(Tm~(3+))nanoparticles and CdTe QDs. The specific wavelength emmision of NaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) nanoparticles was effectively transferred to the adsorption band of CdTeQDs, thus leading to the emission of CdTe QDs and turning of the intensity of emissionpeaks among NaYF_4:Yb~(3+),Er~(3+)(Tm~(3+)) nanoparticles. The preparation of multifunctionalcomposite optical material can provide wider application in biological detection andlabeling.
引文
[1] Eychmüller, A.; Structure and Photophysics of Semiconductor Nanocrystals [J]. J.Phys. Chem. B.,2000,104,6514-6528.
    [2] Wang, F.; Wang, J.; Liu, X. G.; Direct Evidence of a Surface Quenching Effect onSize-Dependent Luminescence of Upconversion Nanoparticles[J]. Angew. Chem.Int. Ed.,2010,49,7456–7460.
    [3] Henglein, A.; Small-Particle Research: Physicochemical Properties of ExtremelySmall Colloidal Metal and Semiconductor Particles[J]. Chem. Rev.,1989,89,1861-1873.
    [4] Weller, H.; Koch, U. M.; Gutierrez, A.; Henglein, B.; Photochemistry of ColloidalMetal Sulfides. A Bsorption and Fluorescence of Extremely Small ZnS Particles-The World of The Neglected Dimensions. Berich.Bunsen-Gesellschaft-Physical[J]. Phys Chem.,1984,88,649-656.
    [5] Koen, B.; Lanthanide-Based Luminescent Hybrid Materials[J]. Chem. Rev.,2009,109,4283–4374.
    [6] Luiz, G.. J.; Courtney, J. K.; Ballato, J.; Preparation and Characterization of RareEarth Doped Fluoride Nanoparticles[J]. Materials.,2010,3,2053-2068.
    [7] Mai, H. X.; Zhang, Y. W.; Yan C. H.; Orderly Aligned and Highly LuminescentMonodisperse Rare-Earth Orthophosphate Nanocrystals Synthesized by aLimited Anion-Exchange Reaction[J]. Chem. Mater.,2007,19,4514–4522.
    [8] Wang, F.; Liu, X. G.; Recent a advances in the chemistry of lanthanide-dopedpconversion nanocrystals[J]. Chem.Soc.Rev.,2009,38,976–989.
    [9] Chan, E. M.; Xu, Owen, J. S.; Reproducible, High-Throughput Synthesis ofColloidal Nanocrystals for Optimization in Multidimensional Parameter Space[J].Nano Lett.,2010,10,1874–1885.
    [10] Liang, X.; Wang, X.; Peng, Q.; Li, Y. D.; Synthesis of NaYF4nanocrystals withPredictable Phase and Shape[J]. Adv. Funct. Mater.,2007,17,2757–2765.
    [11] Ptacek, P.; Sch fer, H.; K mpe, K.; Haase, M.; Crystal Phase Control ofLuminescing NaGdF4:Eu3+Nanocrystals[J]. Adv. Funct. Mater.,2007,17,3843–3848.
    [12] Li, Z. Q.; Zhang, Y.; Jiang, S.; Multicolor Core/Shell-S tructured UpconversionFluorescent Nanoparticles[J]. Adv. Mater.,2008,20,4765–4769.
    [13] Liu, X. M.; Zhao, J. W.; Kong, X. G..; Zhang, H.; Ionothermal synthesis ofhexagonal-phase NaYF4:Yb3+,Er3+/Tm3+upconversion nanophosphors[J]. Chem.Commun.,2009,6628–6630.
    [14] Cao, T. Y.; Yang, Y; Li, F. Y.; High-quality water-soluble andsurface-functionalized upconversion nanocrystals as luminescent probes forbioimaging[J]. Biomaterials.,2011,32,2959-2968.
    [15] Zhang, F.; Shi, Q. H.; Stucky, G. D.; Fluorescence Upconversion Microbarcodesfor Multiplexed Biological Detection: Nucleic Acid Encoding[J]. Adv. Mater.,2011,23,3775–3779.
    [16] Chen, Q. T.; Wang, X.; Zhu, Y. M.; Functionalization of upconverted luminescentNaYF4:Yb/Er nanocrystals by folic acid–chitosan conjugates for targeted lungcancer cell imaging[J]. J. Mater. Chem.,2011,21,7661–7667.
    [17] He, M.; Zhang, C. L.; Cui, D. X.; Dual Phase-Controlled Synthesis of UniformLanthanide-Doped NaGdF4Upconversion Nanocrystals Via an OA/Ionic LiquidTwo-Phase System for In Vivo Dual-Modality Imaging[J]. Adv. Funct. Mater.,2011,21,4470–4477.
    [18] Liu, Q.; Sun, Y.; Li, F. Y.; Sub-10nm Hexagonal Lanthanide-Doped NaLuF4Upconversion Nanocrystals for Sensitive Bioimaging in Vivo[J]. J. Am. Chem.Soc.,2011,133,17122–17125.
    [19] Schietinger, S.; Nann, T.; Benson, O.; Plasmon-Enhanced Upconversion in SingleNaYF4:Yb3+/Er3+Codoped Nanocrystals[J]. Nano Lett.,2010,10,134-138.
    [20] Zhou, J.; Yu, M. X.; Li, F. Y.; Fluorine-18-labeled Gd3+/Yb3+/Er3+co-dopedNaYF4nanophosphors for multimodality PET/MR/UCL imaging[J].Biomaterials.,2011,32,1148-1156.
    [21] Wang, F.; Deng, R. R.; Liu, X. G.; Tuning upconversion through energy migrationin core–shell nanoparticles[J]. Nature Materials.,2011,10,968-973.
    [22] Bednarkiewicz, A.; Wawrzynczyk, D.; Strek, W.; Synthesis and spectralproperties of colloidal Nd3+doped NaYF4nanocrystals[J]. Optical Materials.,2011,33,1481–1486.
    [23] Sun, S. H.; Zeng, H.; Size-Controlled Synthesis of Magnetite Nanoparticles[J]. J.Am. Chem. Soc.,2002,124,8204-8205.
    [24] Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P.; Mid-infrared HgTe colloidalquantum dot photodetectors[J]. Nature Photonics.,2011,5,489-493.
    [25] Zhang, H. J.; Watanabe, T.; Toshima, N.; Catalytically highly active top goldatom on palladium nanocluster[J]. Nature Materials.,2012,11,49-52.
    [26] Talapin, D. V.; Haase, M.; Weller, H.; Highly Luminescent Monodisperse CdSeand CdSe/ZnS Nanocrystals Synthesized in a Hxadecylamine-TrioctylphosphineOxide-Trioctylphospine Mixture[J]. Nano Lett.,2001,1,207-211.
    [27] Benelli, C.; Gatteschi, D.; Magnetism of Lanthanides in Molecular Materials withTransition-Metal Ions and Organic Radicals[J]. Chem. Rev.,2002,102,2369-2387.
    [28] Kobayashi, S.; Sugiura, M.; Lam, W. W.; Rare-Earth Metal Triflates in OrganicSynthesis[J]. Chem. Rev.,2002,102,2227-2302.
    [29] Kim, K. J.; Kim, Y. W.; Fe doping and magnetic properties of zincblende SiCceramics[J]. Journal of the European Ceramic Society.,2012,32,1149-1155.
    [30] Goto, T.; Kimura, T.; Tokura, Y.; Ferroelectricity and Giant Magnetocapacitancein Perovskite Rare-Earth Manganites[J]. Phys. Rev. Lett.,2004,92,257201-257204.
    [31] Zhang, S. W.; Wang, Y.; Niu, Y. J.; Two types of oxalate-bridgingrare-earth-substituted Keggin-type phosphotungstates[J]. Dalton transactions.,2012,41,3764-3772.
    [32] Kimani, M. M.; Mcmillen, C. D.; Kolis, J. W.; Hydrothermal Synthesis andComparative Coordination Chemistry of New Rare-Earth V4+Compounds[J].Inorganic Chemistry.,2012,513588-3596.
    [33] Guo, S. P.; You, T. S.; Bobev, S.; Closely Related Rare-Earth Metal GermanidesRE2Li2Ge3and RE3Li4Ge4(RE=La–Nd, Sm): Synthesis, Crystal Chemistry, andMagnetic Properties[J]. Inorganic Chemistry.,2012,513119-3129.
    [34] Zhao, S. Q.; Zhou, Y. L.; Han,P.; Effect of ambient oxygen pressure on structural,optical and electrical properties of SnO2thin films[J]. Rare Metals.,2006,25,693-696.
    [35] Sanchez, L. A.; Rio, G.. T. D.; Hotershall, J.;et al.; Deep winds beneath Saturn’supper clouds from a seasonal long-lived planetary-scale storm[J]. Nature.,2011,475,71-74.
    [36] Zhou, J. J.; Teng, Y.; Ye, S.; Qiu, J. R.; A discussion on spectral modificationfrom visible to near-infrared based on energy transfer for silicon solar cells[J].Optical Materials.,2011,34,901-905.
    [37] Sun, L. L.; Chen, X. J.; Zhao, Z. X.; Re-emerging superconductivity at48kelvinin iron chalcogenides[J]. Nature.,2011,483,67–69.
    [38] Wang, F.; Han, Y.; Liu, X. G.; Simultaneous phase and size control ofupconversion nanocrystals through lanthanide doping[J]. Nature.,2010,463,1061-1065.
    [39] Zhang, F.; Zhao, D. Y.; Synthesis of Uniform Rare Earth Fluoride (NaMF4)Nanotubes by In Situ Ion Exchange from Their Hydroxide [M(OH)3] Parents[J].ACS Nano.,2009,3,159-164.
    [40] Abel, K. A.; Boyer, J. C.; van veggel, F. C. J. M.; Hard Proof of theNaYF4/NaGdF4Nanocrystal Core/Shell Structure[J]. J. Am. Chem. Soc.,2009,131,14644–14645.
    [41] Sayle, T. X. T.; Parker, S. C.; Sayle, D. C.; Shape of CeO2nanoparticles usingsimulated amorphisation and recrystallisation[J]. Chem. Commun.,2004,2438-2439.
    [42] Yang, S. W.; Gao, L.; Controlled Synthesis and Self-Assembly of CeO2Nanocubes[J]. J. Am. Chem. Soc.,2006,128,9330-9331.
    [43] Yan, L.; Yu, R. B.; Chen, J.; Xing, X. R.; Template-Free Hydrothermal Synthesisof CeO2Nano-octahedrons and Nanorods: Investigation of the MorphologyEvolution[J]. Cryst. Growth Des.,2008,8,1474-1477.
    [44] Zhang, J.; Ohara, S.; Adschiri, T.; Colloidal Ceria Nanocrystals: A Tailor-MadeCrystal Morphology in Supercritical Water[J]. Adv. Mater.,2007,19,203-206.
    [45] Yang, Z. Q.; Zhou, K. B.; Yang, S.; Single-crystalline ceria nanocubes:size-controlled synthesis, characterization and redox property[J].Nanotechnology.,2007,18,185606.
    [46] Wang, Z. L.; Feng, X. D.; Polyhedral Shapes of CeO2Nanoparticles[J]. J. Phys.Chem. B.,2003,107,13563-13566.
    [47] Si, R.; Zhang, Y. W.; Yan, C. H.; You have full text access to this contentRare-Earth Oxide Nanopolyhedra, Nanoplates and Nanodisks[J]. Angew ChemInt Ed.,2005,44,3256-3260.
    [48] Kuchibhatla, S.; Karakoti, A. S.; Seal, S.; Hierarchical assembly of inorganicnanostructure building blocks to octahedral superstructures—a true template-freeself-assembly[J]. Nanotechnology.,2007,18,075303.
    [49] Jun, Y. W.; Choi, J. S.; Cheon, J.; Shape Control of Semiconductor and MetalOxide Nanocrystals through Nonhydrolytic Colloidal Routes[J] Angew Chem IntEd.,2006,45,3414-3439.
    [50] Xia, Y. N.; Yang, P. D.; Yan, Y. Q.; You have full text access to this contentOne-Dimensional Nanostructures: Synthesis, Characterization, andApplications[J]. Adv. Mater.,2003,15,353-389.
    [51] Cui, F.; Zhang, J.; Cui, T.; Liang, S.; Ming, L.; Gao, Z.; Yang, B.; A FacileSolution-phase Approach to th e Synthesis of Luminescent EuropiumMethacrylate Nanowires and Their Thermal Conversion into Europium OxideNanotubes[J]. Nanotechnology.,2008,19,065607.
    [52] Zhang, Y. W.; Sun, X.; Yan, C. H.; Single-Crystalline and Monodisperse LaF3Triangular Nanoplates from a Single-Source Precursor[J]. J. Am. Chem. Soc.,2005,127,3260-3261.
    [53] Sun, X.; Zhang, Y. W.; Yan, C. H.; From Trifluoroacetate Complex Precursors toMonodisperse Rare-Earth Fluoride and Oxyfluoride Nanocrystals with DiverseShapes through Controlled Fluorination in Solution Phase Chem. Eur. J.,2007,13,2320-2332.
    [54] Yada, M.; Mihara, M.; Kijima, T.; Rare Earth (Er, Tm, Yb, Lu) Oxide NanotubesTemplated by Dodecylsulfate Assemblies[J]. Adv. Mater.,2002,14,309-313.
    [55] Wu, C. F.; Qin, W. P.; Lin, H. Y.; Photoluminescence from surfactant-assembledY2O3:Eu nanotubes[J]. Appl. Phys. Lett.,2003,82,520-522.
    [56] Tang, C. C.; Bando, Y.; Ma, R. Z.; Cerium Phosphate Nanotubes: Synthesis,Valence State, and Optical Properties[J]. Angew. Chem. Int. Ed.,2005,44,576-579.
    [57] Guo, C. X.; Cao, M. H.; Hu, C. W.; Synthesis and Characterization of Dy(OH)3and Dy2O3Nanotubes[J]. J. Nanosci. Nanotechnol.,2005,5,184-187.
    [58] Shi, W. D.; Yu, J. B.; Zhang, H. J.; Synthesis of Neodymium HydroxideNanotubes and Nanorods by Soft Chemical Process[J]. J. Nanosci. Nanotechnol.,2006,6,2515-2519.
    [59] Li, W. J.; Wang, X.; Li,Y. D.; Single-step in situ synthesis of double bond-graftedyttrium-hydroxide nanotube core-shell structures[J]. Chem. Commun.,2004,164-165.
    [60] Gaponik, N.; Rogach, A. L.; Thiol-capped CdTe nanocrystals: progress andperspectives of the related research fields[J]. Phys.Chem.Chem.Phys.,2010,12,8685–8693.
    [61] Rogach, A. L.; Franzl, Thomas.; Donegan, J. F.; Aqueous Synthesis ofThiol-Capped CdTe Nanocrystals: State-of-the-Art[J]. J. Phys. Chem. C.,2007,111,14628-14637.
    [62] Guo, H.; Li, Z. Q.; Muhammad, I. N.; Seed-mediated synthesis ofNaYF4:Yb,Er/NaGdF4nanocrystals with improved upconversion fluorescenceand MR relaxivity[J]. Nanotechnology.,2010,21,125602.
    [63] Kamimura, M.; Miyamoto, D.; Nagasaki, Y.; Design of Poly(ethyleneglycol)/Streptavidin Coimmobilized Upconversion Nanophosphors and TheirApplication to Fluorescence Biolabeling[J]. Langmuir.,2008,24,8864-8870.
    [64] Suyver, J. F.; Aebischer, A.; Güdel, H. U.; Novel materials doped with trivalentlanthanides and transition metal ions showing near-infrared to visible photonupconversion[J]. Opt. Mater.,2005,27,1111-1130.
    [65] Wang, F.; Chatterjee, D. K.; Wang, M. Q.; Synthesis of polyethylenimine/NaYF4nanoparticles with upconversion fluorescence[J]. Nanotechnology.,2006,17,175786–5791.
    [66] K nig, K.; Multiphoton microscopy in life sciences[J]. J. Microsc.,2000,200,83-104.
    [67] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes[J]. J. Phys. Chem. B.,2002,106,7177-7185.
    [68] Haase, M.; Sch fer, H.; Upconverting Nanoparticles[J]. Angew. Chem. Int. Ed.,2011,50,5808–5829.
    [69] Chivian, J. S.; Case, W. E.; Eden,D. D.; The photon avalanche: A newphenomenon in Pr3+-based infrared quantum counters[J]. Appl. Phys. Lett.,1979,35,124-125.
    [70] Stouwdam, J. W.; van Veggel, F. C. J. M.; Near-infrared Emission ofRedispersible Er3+,Nd3+, and Ho3+Doped LaF3Nanoparticles[J]. Nano Lett.,2002,2,733-737.
    [71] Kumar, R.; Nyk, M.; Prasad, P. N.; Combined Optical and MR Bioimaging UsingRare Earth Ion Doped NaYF4Nanocrystals[J]. Adv. Funct. Mater.,2009,19,853–859.
    [72] Zhang, H.; Li, Y. J.; Huang, Y.; Duan, X. F.; Plasmonic Modulation of theUpconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals UsingGold Nanoparticles or Nanoshells[J]. Angew. Chem. Int. Ed.,2010,49,2865–2868.
    [73] Zhang, S. Z.; Sun, L. D.; Yan, C. H.; Reversible luminescence switching ofNaYF4:Yb,Er nanoparticles with controlled assembly of gold nanoparticlesw[J].Chem. Commun.,2009,2547–2549.
    [74] Yu, X. F.; Sun, Z. B.; Li, W. X.; Neurotoxin-conjugated upconversion nanoprobesfor direct visualization of tumors under near-infrared irradiation[J]. Biomaterials.,2010,31,8724-8731.
    [75] Wang, C.; Cheng, L.; Liu, Z.; Drug delivery with upconversion nanoparticle s formulti-fu nctional targeted cancer cell imaging and therapy[J]. Biomaterials.,2011,32,1110-1120.
    [76] Wang, Z. L.; Hao, J. H.; Chen, H. L. W.; Down-and up-conversionphotoluminescence, cathodoluminescence and paramagnetic properties ofNaGdF4:Yb3+,Er3+submicron disks assembled from primary nanocrystals[J]. J.Mater. Chem.,2010,20,3178–3185.
    [77] Chen, J. Mao, C. B.; Xu, S. K.; Controllable synthesis of NaYF4: Yb,Erupconversion nanophosphors and their application to in vivo imaging ofCaenorhabditis elegans[J]. J. Mater. Chem.,2011,21,2632–2638.
    [78] Liang, H. J.; Chen, G. Y.; Zhang, Z. G.; Upconversion luminescence inYb3+/Tb3+-codoped monodisperse NaYF4nanocrystals[J]. OpticsCommunications.,2009,282,3028–3031.
    [79] van Dijk, J. M. F.; Schuurmans, M. F. H.; On the nonradiative and radiative decayrates and a modified exponential energy gap law for4f–4f transitions in rare‐earth ions[J]. J. Chem. Phys.,1983,78,5317-5323.
    [80] Budijono, S.; Shan, J. N.; Prudhomme, R. K.; Synthesis of StableBlock-Copolymer-Protected NaYF4:Yb3+, Er3+Up-Converting PhosphorNanoparticles[J]. Chem. Mater.,2010,22,311–318.
    [81] Kuningas K.; Ukonaho T.; Pakkila H.; Upconversion Fluorescence ResonanceEnergy Transfer in a Homogeneous Immunoassay for Estradiol[J]. AnalyticalChemistry,2006,78,4690-4696.
    [82] Xu Z. H.; Li C. X.; Lin J.; Rare Earth Fluorides Nanowires/Nanorods Derivedfrom Hydroxides: Hydrothermal Synthesis and Luminescence Properties[J]. Cryst.Growth Des.,2009,9,4752-4758.
    [83] Bol A. A.; Beek R. V.; Meijerink A.; On theIncorporation of Trivalent Rare EarthIons in II-VI Semiconductor Nanocrystals[J]. Chem. Mater.,2002,14,1121-1126.
    [84] Zhang F.; Li J.; Zhao D. Y.; Shape, Size, and Phase-Controlled Rare-EarthFluoride Nanocrystals with Optical Up-Conversion Properties[J]. Chem. Eur. J.,2009,15,11010–11019.
    [85] Wang Y.; Kong X. G.; Zhang H.; Upconversion Luminescence of β-NaYF4: Yb3+,Er3+@β-NaYF4Core/Shell Nanoparticles: Excitation Power Density and SurfaceDependence[J]. J. Phys. Chem. C,2009,113,7164–7169.
    [86] Nunez N. O.; Quintanilla M.; Ocana M.; Uniform YF3: Yb, Er up-conversionnanophosphors of various morphologies synthesized in polyol media through anionic liquid[J]. J. Nanopart. Res.,2010,12,2553–2565.
    [87] Niu W. B.; Zhang S. F.; Li L.; Synthesis of colour tunable lanthanide-iondopedNaYF4upconversion nanoparticles by controlling temperature[J]. Chem.Commun.,2010,46,3908–3910.
    [88] Boyer J. C.; Gagnon J.; Capobianco J. A.; Synthesis, Characterization,andSpectroscopy of NaGdF4: Ce3+,Tb3+/NaYF4Core/Shell Nanoparticles[J].Chem. Mater.,2007,19,3358-3360.
    [89] Niu W. B.; Wu S. L.; Zhang S. F.; A facile and general approach for themulticolor tuning of lanthanide-ion doped NaYF4upconversion nanoparticleswithin a fixed composition[J]. J. Mater. Chem.,2010,20,9113–9117.
    [90] Qian L. W.; Zai J. T.; Qian X. F.; Control of the morphology and composition ofyttrium fluoride via a salt-assisted hydrothermal method[J]. CrystEngComm,2010,12,199–206.
    [91] Heer S.; Kompe K.; Haase M.; Highly Efficient Multicolour UpconversionEmission in Transparent Colloids of Lanthanide-Doped NaYF4Nanocrystals[J].Adv. Mater.,2004,16,2102-2105.
    [92] Wang H. Q.; Tilley R. D.; Nann T.; Size and shape evolution of upconvertingnanoparticles using microwave assisted synthesis[J]. CrystEngComm,2010,12,1993–1996.
    [93] Yi G. S.; Chow G. M.; Colloidal LaF3: Yb, Er, LaF3: Yb, Hoand LaF3: Yb, Tmnanocrystals with multicolor upconversion fluorescence[J]. J. Mater. Chem.,2005,15,4460–4464.
    [94] Heer S.; Lehmann O.; Gudel H. U.; Blue, Green, and Red UpconversionEmission from Lanthanide-Doped LuPO4and YbPO4Nanocrystals in aTransparent Colloidal Solution[J]. Angew. Chem. Int. Ed.,2003,42,3179–3182.
    [95] Yi G. S.; Chen D. P.; Guo L. H.; Synthesis, Characterization, and BiologicalApplication of Size-Controlled Nanocrystalline NaYF4: Yb, ErInfrared-to-Visible Up-Conversion Phosphors[J]. Nano Lett.,2004,4,2191-2196.
    [96] Zeng J. H.; Su J.; Li Y. D.; Synthesis and Upconversion Luminescence ofHexagonal-Phase NaYF4: Yb, Er3+Phosphors of Controlled size andMorphology[J]. Adv. Mater.,2005,17,2119-2123.
    [97] Li Z. Q.; Zhang Y.; Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4Nanocrystals with Multicolor Upconversion Fluorescence Emission[J.] Angew.Chem. Int. Ed.,2006,45,7732-7735.
    [98] Wang F.; Chatterjee D. K.; Wang M. Q.; Synthesis of polyethylenimine/NaYF4nanoparticles with upconversion fluorescence[J]. Nanotechnology,2006,17,5786–5791.
    [99] Zhang Y. W.; Sun X.; Yan C. H.; Single-Crystalline and Monodisperse LaF3Triangular Nanoplates from a Single-Source Precursor[J]. J. Am. Chem. Soc.,2005,127,3260-3261.
    [100] Mai H. X.; Zhang Y. W.; Yan C. H.; High-Quality Sodium Rare-Earth FluorideNanocrystals: Controlled Synthesis and Optical Properties[J]. J. Am. Chem. Soc.,2006,128,6426-6436.
    [101] Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A.; Synthesis of ColloidalUpconverting NaYF4: Er3+/Yb3+and Tm3+/Yb3+Monodisperse Nanocrystals[J].Nano Lett.,2007,7,847-852.
    [102] Boyer, J.-C.; Vetrone, F. Capobianco, J. A.; Synthesis of Colloidal UpconvertingNaYF4Nanocrystals Doped with Er3+, Yb3+and Tm3+, Yb3+via ThermalDecomposition of Lanthanide Trifluoroacetate Precursors[J]. J. Am. Chem. Soc.,2006,128,7444-7445.
    [103] Wei, Y.; Lu, F. Q.; Chen, D. P.; Polyol-mediated synthesis and luminescence oflanthanide-doped NaYF4nanocrystal upconversion phosphors[J]. J. AlloysCompd.,2008,455,376-384.
    [104] Wang, L. Y.; Li, Y. D.; Controlled Synthesis and Luminescence of LanthanideDoped NaYF4Nanocrystals[J]. Chem. Mater.,2007,19,727-734.
    [105] Zhang, F.; Wan, Y.; Zhao, D. Y.; Uniform Nanostructured Arrays of SodiumRare-Earth Fluorides for Highly Efficient Multicolor UpconversionLuminescence[J]. Angew. Chem., Int. Ed.,2007,46,7976-7979.
    [106] Liu, C. H.; Chen, D. P.; Controlled synthesis of hexagon shaped lanthanide-dopedLaF3nanoplates with multicolor upconversion fluorescence[J]. J. Mater. Chem.,2007,17,3875-3880.
    [107] Patra, A.; Friend, C. S.; Prasad, P. N.; Upconversion in Er3+:ZrO2Nanocrystals[J].J. Phys. Chem. B,2002,106,1909-1912.
    [108] Patra, A.; Friend, C. S.; Prasad, P. N.; Fluorescence Upconversion Properties ofEr3+-Doped TiO2and BaTiO3Nanocrystallites[J] Chem. Mater.,2003,15,3650-3655.
    [109] Venkatramu, V.; Falcomer, D.; Jayasankar, C. K.; Synthesis and luminescenceproperties of Er3+-doped Lu3Ga5O12nanocrystals[J] J. Lumin.,2008,128,811-813.
    [110] Teng, X. M.; Zhuang, W. Zhang, S. S.; Luminescent Properties of BaMgAl10O17:Eu2+Phosphors Coated with Y2SiO5J. Rare Earth.,2006,24,143-145.
    [111] Vetrone, F.; Boyer, J.-C.; Bettinelli, M.; Significance of Yb3+concentration onthe upconversion mechanisms in codoped Y2O3:Er3+, Yb3+nanocrystals[J] J. Appl.Phys.,2004,96,661-667.
    [112] Luo, X.-X.; Cao, W.-H.; Ethanol-assistant solution combustion method to prepareLa2O2S:Yb,Pr nanometer phosphor[J] J. Alloys Compd.,2008,460,529-534.
    [113] Xu, L. L.; Yu, Y. N.; Zhang, Z. G.; Synthesis and upconversion properties ofmonoclinic Gd2O3:Er3+nanocrystals[J]. Opt. Mater.,2008,30,1284-1288.
    [114] Qin, X.; Yokomori, T.; Ju, Y. G.; Flame synthesis and characterization ofrare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors[J] Appl.Phys. Lett.,2007,90,073104.
    [115] Yi, G.-S.; Chow, G.-M.; Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/PolymerCore/Shell/Shell Nanoparticles with Significant Enhancement of UpconversionFluorescence[J]. Chem. Mater.,2007,19,341-343.
    [116] Mai, H.-X.; Zhang, Y.-W.; Yan, C.-H.; Highly Efficient MulticolorUp-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,ErCore and Core/Shell-Structured Nanocrystals[J]. J. Phys. Chem. C.,2007,111,13721-13729.
    [117] Lü, Q.; Guo, F.; Zhao, L.; Silica-/titania-coated Y2O3: Tm3+, Yb3+nanoparticleswith improvement in upconversion luminescence induced by different thicknessshells[J]. J. Appl. Phys.,2008,103,123533.
    [118] Tian, G.; Gu, Z. J.; Zhao, Y. L.; Mn2+Dopant-Controlled Synthesis ofNaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and DrugDelivery[J]. Adv. Mater.,2012,24,1226-1231.
    [119] Yi, G.-S.; Chow, G.-M.; Synthesis of Hexagonal‐Phase NaYF4: Yb, Er andNaYF4: Yb, Tm Nanocrystals with Efficient Up‐Conversion Fluorescence[J].Adv. Funct. Mater.,2006,16,2324-2329.
    [120] Chen, Z. G.; Chen, H. L.; Huang, C. H.; Versatile synthesis strategy forcarboxylic acid-functionalized upconverting nanophosphors as biologicallabels[J]. J. Am. Chem. Soc.,2008,130,3023-3029.
    [121] Wang, L.; Yan, R.; Li, Y.; Fluorescence Resonant Energy Transfer BiosensorBased on Upconversion‐Luminescent Nanoparticles[J]. Angew. Chem., Int. Ed.,2005,44,6054-6057.
    [122] Sivakumar, S.; Diamente, P. R.; van Veggel, F. C. J. M.; Silica-coated Ln^-dopedLaF3nanoparticles as robust down-and upconverting biolabels[J]. Chem. Eur. J.,2006,12,5878-5884.
    [123] Jalil, R. A.; Zhang, Y.; Biocompatibility of silica coated NaYF4upconversionfluorescent nanocrystals[J]. Biomaterials,2008,29,4122-4128.
    [124] Liu, Z.; Yi, G.; Xue, J.; Monodisperse silica nanoparticles encapsulatingupconversion fluorescent and superparamagnetic nanocrystals[J]. Chem.Commun.,2008,694-696.
    [125] Ehlert, O.; Thomann, R.; Nann, T.; A Four-Color Colloidal MultiplexingNanoparticle System[J]. ACS Nano,2008,2,120-124.
    [126] Hampl, J.; Hall, M.; Cooper, D. E.; Upconverting Phosphor Reporters inImmunochromatographic Assays[J]. Anal. Biochem.,2001,288,176.
    [127] van de Rijke, F.; Zijlmans, H.; Tanke, H. J.; Up-converting phosphor reporters fornucleic acid microarrays[J]. Nat. Biotechnol.,2001,19,273-276.
    [128] Niedbala, R. S.; Feindt, H.; Vallejo, R.; Detection of Analytes by ImmunoassayUsing Up-Converting Phosphor Technology[J]. Anal. Biochem.,2001,293,22-30.
    [129] Wang, M.; Mi, C. C.; Xu, S. K.; Immunolabeling and NIR-Excited FluorescentImaging of HeLa Cells by Using NaYF4:Yb,Er Upconversion Nanoparticles[J].ACS Nano,2009,3,1580–1586.
    [130] Xiong, L. Q.; Chen, Z. G.; Huang, C. H.; Synthesis, characterization, and in vivotargeted imaging of amine-functionalized rare-earth up-convertingnanophosphors[J]. Biomaterials,2009,30,5592–5600.
    [131] Hilderbrand, S. A.; Shao, F. W.; Weissleder, R.; Upconverting luminescentnanomaterials: application to in vivo bioimaging[J]. Chem. Commun.,2009,4188–4190.
    [132] Kobayashi, H.; Kosaka, N.; Choyke, P. L.; In vivo multiple color lymphaticimaging using upconverting nanocrystals[J]. J. Mater. Chem.,2009,19,6481–6484.
    [133] Cheng, L.; Yang, K.; Liu, Z.; Highly-sensitive multiplexed in vivo imaging usingPEGylated upconversion nanoparticles[J]. Nano Res.,2010,3,722–732.
    [134] Idris, N. M.; Li, Z. Q.; Zhang, Y.; Tracking transplanted cells in live animal usingupconversion fluorescent nanoparticles[J]. Biomaterials,2009,30,5104–5113.
    [135] Kim, J.; Piao, Y.; Hyeon, T.; Multifunctional nanostructured materials formultimodal imaging, and simultaneous imaging and therapy[J]. Chem. Soc. Rev.,2009,38,372–390.
    [136] Cheon, J.; Lee, J. H.; Synergistically Integrated Nanoparticles as MultimodalProbes for Nanobiotechnology[J]. Acc. Chem. Res.,2008,41,1630–1640.
    [137] Li, Z. Q.; Zhang, Y.; Idris, N. M.; Hybrid Lanthanide Nanoparticles withParamagnetic Shell Coated on Upconversion Fluorescent Nanocrystals[J].Langmuir,2009,25,12015–12018.
    [138] Sun, Y.; Yu, M. X.; Fluorine-18labeled rare-earth nanoparticles for positronemission tomography (PET) imaging of sentinel lymph node[J]. Biomaterials,2011,32,2999–3007.
    [139] Liu, Q.; Sun, Y.; Li, F. Y.; F-Labeled Magnetic-Upconversion Nanophosphors viaRare-Earth Cation-Assisted Ligand Assembly[J]. ACS Nano,2011,5,3146–3157.
    [140] Barreto, J. A.; O’Malley, W.; Spiccia, L.; Nanomaterials: Applications in CancerImaging and Therapy[J]. Adv. Mater.,2011,23, H18–H48.
    [141] Ungun, B.; Prud’Homme, R. K.; Austin, R.; Nanofabricated upconversionnanoparticles for photodynamictherapy[J]. Opt. Express,2008,17,80–86.
    [142] Zhang, P.; Steelant, W.; Scholfield, M.; Versatile Photosensitizers forPhotodynamic Therapy at Infrared Excitation[J]. J. Am. Chem. Soc.,2007,129,4526–4527.
    [143] Guo, H. C.; Qian, H. S.; Zhang, Y.; Singlet oxygen-induced apoptosis of cancercells using upconversion fluorescent nanoparticles as a carrier ofphotosensitizer[J]. Nanomed. Nanotechnol. Biol. Med.,2010,6,486–495.
    [144] Qian, H. S.; Guo, H. C.; Zhang, Y.; Mesoporous-Silica-Coated Up-ConversionFluorescent Nanoparticles for Photodynamic Therapy[J]. Small,2009,5,2285–2290.
    [145] Dong, B.; Xu, S.; Song, H. W.; Multifunctional NaYF4: Yb3+,Er3+@Ag core/shellnanocomposites: integration of upconversion imaging and photothermaltherapy[J]. J. Mater. Chem.,2011,21,6193–6200.
    [146] Cheng, L.; Yang, K.; Liu, Z.; Facile preparation of multifunctional upconversionnanoprobes for multimodal imaging and dual-targeted photothermal therapy[J].Angew. Chem. Int. Ed.,2011,50,7385–7390.
    [147] Gai, S. L.; Yang, P. P.; Li, C. X.; Lin, J.; Synthesis of Magnetic, Up-ConversionLuminescent, and Mesoporous Core–Shell-Structured Nanocomposites as DrugCarriers[J]. Adv. Funct. Mater.,2010,20,1166–1172.
    [148] Jiang, S.; Zhang, Y.; Lim, K. M.; Sim, E. K. W.; Ye, L.; NIR-to-visibleupconversion nanoparticles for fluorescent labeling and targeted delivery ofsiRNA[J]. Nanotechnology,2009,20,155101.
    [149] Yan, C. L.; Dadvand, A.; Perepichka, D. F.; Near-IR Photoresponse in NewUp-Converting CdSe/NaYF4:Yb,Er Nanoheterostructures[J]. J. Am. Chem. Soc.,2010,132,8868-8869.
    [150] Li, Z. Q.; Wang, L. M.; Xiong, Y. J.; Modification of NaYF4:Yb,Er@SiO2Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red UpconversionEmissions[J]. J. Phys. Chem. C,2011,115,3291–3296.
    [151] Wang L. Y.; Li Y. D.; Controlled Synthesis and Luminescence of LanthanideDoped NaYF4Nanocrystals[J]. Chemistry of Materials,2007,19,727-734.
    [152] Li Z. Q.; Zhang Y.; Monodisperse Silica-Coated Polyvinyl-pyrrolidone/NaYF4Nanocrystals with Multicolor Upconversion Fluorescence Emission[J]. Angew.Chem. Int. Ed.,2006,45,7732-7735.
    [153] Zhang S. Z.; Sun,L. D.; Yan C. H.; Reversible luminescence switching of NaYF4:Yb, Er nanoparticles with controlled assembly of gold nanoparticles[J]. Chem.Commun.,2009,2547–2549.
    [154] Lin C. K.; Berry M.; May P. S.; Highly Luminescent NIR-to-VisibleUpconversion Thin Film sand Monoliths Requiring No High-TemperatureTreatment[J]. Chem. Mater.,2009,21,3406-3413.
    [155] Li Z. Q.; Zhang Y.; An efficient and user-friendly method for the synthesis ofhexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape andupconversion fluorescence[J]. Nanotechnology,2008,19, Article ID345606.
    [156] Mai H. X.; Zhang Y. W.; Yan C. H.; High-Quality Sodium Rare-Earth FluorideNanocrystals: Controlled Synthesis and Optical Properties[J]. J. Am. Chem. Soc.,2006,128,6426-6436.
    [157] Kramer K. W.; Biner D.; Luthi S. R.; Hexagonal Sodium Yttrium Fluoride BasedGreen and Blue Emitting Upconversion Phosphors[J]. Chem. Mater.,2004,16,1244-1251.
    [158] Budijono S. J.; Shan J. N.; Prud’homme R. K.; Synthesis of StableBlock-Copolymer-Protected NaYF4: Yb3+, Er3+Up-Converting PhosphorNanoparticles[J]. Chem. Mater.,2010,22,311-318.
    [159] Han J. S.; Zhang H.; Yang B.; Manipulating the growth of aqueoussemiconductor nanocrystals through amine-promoted kinetic process[J]. Phys.Chem. Chem. Phys.,2010,12,332–336.
    [160] Ma D. K.; Huang S. M.; Dong Y. Q.; Rare-Earth-Ion-Doped Hexagonal-PhaseNaYF4Nanowires: Controlled Synthesis and Luminescent Properties[J]. J. Phys.Chem. C,2009,113,8136–8142.
    [161] Liu C. H.; Wang H.; Chen D. P.; Monodisperse, size-tunable and highly efficientb-NaYF4: Yb, Er(Tm) up-conversion luminescent nanospheres: controllablesynthesis and their surface modifications[J]. J. Mater. Chem.,2009,19,3546–3553.
    [162] Yi G. S.; Chow G. M.; Synthesis of Hexagonal-Phase NaYF4: Yb, Erand NaYF4:Yb, Tm Nanocrystals with EfficientUp-Conversion Fluorescence[J]. Adv. Funct.Mater.,2006,16,2324–2329.
    [163] Wang F.; Liu X. G.; Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals[J]. Chem. Soc. Rev.,2009,38,976–989.
    [164] Carling C. J.; Boyer J. C.; Branda N. R.; Remote-Control Photo switching UsingNIR Light[J]. J. Am. Chem. Soc.,2009,131,10838–10839.
    [165] Liu X. M.; Kong X. G.; Zhang H.; Ionothermal synthesis of hexagonal-phaseNaYF4: Yb3+, Er3+/Tm3+upconversion nanophosphors[J]. Chem. Commun.,2009,6628–6630.
    [166] Li C. X.; Quan Z. W.; Lin J.; Highly Uniform and Monodisperse β-NaYF4:Ln3+(Ln Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: HydrothermalSynthesis and Luminescent Properties[J]. Inorg. Chem.,2007,46,63296337.
    [167] Liang X.; Wang X.; Li Y. D.; Synthesis of NaYF4Nanocrystals with PredictablePhase and Shape[J]. Adv. Funct. Mater.,2007,17,2757–2765.
    [168] Burda C.; Chen X. B.; EI-Sayed M. A.; Chemistry and Properties of Nanocrystalsof Different Shapes[J]. Chem. Rev.,2005,105,10251102.
    [169] Boyer J. C.; Vetrone F.; Capobianco J. A.; Synthesis of Colloidal UpconvertingNaYF4Nanocrystals Doped with Er3+, Yb3+and Tm3+, Yb3+via ThermalDecomposition of Lanthanide Trifluoroacetate Precursors[J]. J. Am. Chem. Soc.,2006,128,7444-7445.
    [170] Li X. F.; Chen L. D.; Wang Q. Q.; Highly Efficient Fluorescence of NdF3/SiO2Core/Shell Nanoparticles and the Applications for in vivo NIR Detection[J]. Adv.Mater.,2008,20,4118–4123.
    [171] Yin A. X.; Zhang Y. W.; Yan C. H.; Colloidal synthesis and blue based multicolorupconversion emissions of size and composition controlled monodispersehexagonal NaYF4:Yb, Tm nanocrystals[J]. Nanoscale,2010,2,953–959.
    [172] Chatterjee D. K.; Fong L. S.; Zhang Y.; Nanoparticles in photodynamic therapy:An emerging paradigm[J]. Advanced DrugDelivery Reviews,2008,60,1627–1637.
    [173] Zhang F.; Shi Q. H.; Stucky G. D.; Fluorescence Upconversion Microbarcodes forMultiplexed Biological Detection: Nucleic Acid Encoding[J]. Adv. Mater.,2011,23,3775–3779.
    [174] Wang M.; Mao C. B.; Xu S. K.; Immunolabeling and NIR-Excited FluorescentImaging of HeLa Cells by Using NaYF4: Yb, Er Upconversio Nanoparticles[J].ACSNano,2009,3,1580-1586.
    [175] Bogdan N.; Ozin G. A.; Capobianco J. A.; Synthesis of Ligand-Free ColloidallyStable Water Dispersible Brightly Luminescent Lanthanide-Doped UpconvertingNanoparticles[J]. Nano Lett.,2011,11,835–840.
    [176] Yi G. S.; Chen D. P.; Guo L. H.; Synthesis, Characterization, and BiologicalApplication of Size-Controlled Nanocrystalline NaYF4: Yb, ErInfrared-to-Visible Up-Conversion Phosphors[J]. Nano Lett.,2004,4,2191-2196.
    [177] Park Y.; Suh Y. D.; Hyeon T.; Nonblinking and Nonbleaching UpconvertingNanoparticles as an Optical Imaging Nanoprobe and T1Magnetic ResonanceImaging Contrast Agent[J]. Adv. Mater.,2009,21,4467–4471.
    [178] Wang G. F.; Peng Q.; Li Y. D.; Luminescence Tuning of UpconversionNanocrystals[J]. Chem. Eur. J.,2010,16,4923–4931.
    [179] Li C. X.; Lin J.; Rare earth fluoride nano-/microcrystals: synthesis, surfacemodification and application[J]. J. Mater. Chem.,2010,20,6831–6847.
    [180] Abel K. A.; Boyer J. C.; Veggel F. C. J. M.; Hard Proof of the NaYF4/NaGdF4Nanocrystal Core/Shell Structure[J]. J. Am. Chem. Soc.,2009,131,14644–14645.
    [181] Li Z. Q.; Zhang Y.; Jiang S.; Multicolor Core/Shell-Structured UpconversionFluorescent Nanoparticles[J]. Adv. Mater.,2008,20,4765–4769.
    [182] Liu Q.; Yi T.; Li F. Y.;18F-Labeled Magnetic-Upconversion Nanophosphors viaRare-Earth Cation-Assisted Ligand Assembly[J]. ACS Nano,2011,5,3146-3157.
    [183] Yang J. P.; Tu B.; Zhao D. Y.; Mesoporous Silica Encapsulating UpconversionLuminescence Rare-Earth Fluoride Nanorods for Secondary Excitation[J].Langmuir,2010,26,8850-8856.
    [184] Zhang H.; Huang Y.; Duan X.; Plasmonic Modulation of the UpconversionFluorescencein NaYF4: Yb/Tm Hexaplate Nanocrystals Using GoldNanoparticlesor Nanoshells[J]. Angew. Chem. Int. Ed.,2010,49,2865–2868.
    [185] Hou Z. Y.; Li C. X.; Lin J.; Electrospinning Preparation and Drug-DeliveryProperties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@SilicaFiber Nanocomposite[J]. Adv. Funct. Mater.,2011,21,2356–2365.
    [186] Shen J.; Sun L. D.; Yan C. H.; Superparamagnetic and upconversion emittingFe3O4/NaYF4: Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy[J].Chem. Commun.,2010,46,5731–5733.
    [187] Beaune G.; Dubertret B.; Menager C.; Giant Vesicles Containing MagneticNanoparticles and Quantum Dots: Feasibility and Tracking by Fiber ConfocalFluorescence Microscopy[J]. Angew. Chem. Int. Ed.,2007,46,5421–5424.
    [188] Fan H. Y.; Yang K.; Brinker Z. J.; Self-Assembly of Ordered, Robust,Three-Dimensional Gold Nanocrystal/Silica Arrays[J]. Science,2004,304,567-571.
    [189] Xing S. X.; Tan L. H.; Chen H. Y.; Highly controlled core/shell structures:tunable conductive polymer shells on gold nanoparticles and nanochains[J]. J.Mater. Chem.,2009,19,3286–3291.
    [190] Zhuang J. Q.; Wu H. M.; Cao Y. C.; Controlling Colloidal Superparticle GrowthThrough Solvophobic Interactions[J]. Angew. Chem. Int. Ed.,2008,47,2208–2212.
    [191] Foy S. P.; Manthe R. L.; Labhasetwar V.; Optical Imaging and Magnetic FieldTargeting of Magnetic Nanoparticles in Tumors[J]. ACS Nano,2010,4,5217-5224.
    [192] Deyerle B. A.; Zhang Y.; Effects of Hofmeister Anions on the AggregationBehavior of PEO-PPO-PEO Triblock Copolymers[J]. Langmuir,2011,27,9203-9210.
    [193] Kim J.; Park T. G.; Hyeon T.; Designed Fabrication of a Multifunctional PolymerNanomedical Platform for Simultaneous Cancer-Targeted Imaging andMagnetically Guided Drug Delivery[J]. Adv. Mater.,2008,20,478–483.
    [194] Welsher K.; Liu Z.; Dai H.; A route to brightly fluorescent carbon nanotubes fornear-infrared imaging in mice[J]. Nature Nanotech.,2009,4,773-780.
    [195] Michalet X.; Pinaud F. F.; Weiss S.; Quantum Dots for Live Cells, in VivoImaging, and Diagnostics[J]. Science,2005,307,538-544.
    [196] Wang Y.; Wong J. F.; Yang H.;“Pulling” Nanoparticles into Water: PhaseTransfer of Oleic Acid Stabilized Monodisperse Nanoparticles into AqueousSolutions of α-Cyclodextrin[J]. Nano Lett.,2003,3,1555-1559.
    [197] Seo S. B.; Huh Y. M.; Haam S.; Nanohybrids via a polycation-basednanoemulsion method for dual-mode detection of human mesenchymal stemcells[J]. J. Mater. Chem.,2008,18,4402–4407.
    [198] Gaponik N.; Rogach A. L.; Thiol-capped CdTe nanocrystals: progress andperspectives of the related research fields[J]. Phys. Chem. Chem. Phys.,2010,12,8685–8693.
    [199] Bao H. F.; Wang E. K.; Dong S. J.; One-Pot Synthesis of CdTe Nanocrystals andShape Control of Luminescent CdTe–Cystine Nanocomposites[J]. small.,2006,2,476–480.
    [200] Rajh T.; Micic O. I.; Nozik A. J.; Synthesis and Characterization ofSurface-Modified Colloidal CdTe Quantum Dots[J]. J. Phys. Chem.,1993,97,11999-12003.
    [201] Alivisatos A. P.; Semiconductor Clusters, Nanocrystals, and Quantum Dots[J].Science,1996,217,933-937.
    [202] Tang Z.Y.; Kotov N. A.; Giersig M.; Spontaneous Organization of Single CdTeNanoparticles into Luminescent Nanowires[J]. Science.,2002,297,237-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700