氟化物发光材料的离子液体辅助水热法制备与荧光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上转换发光在全固态紧凑型激光器件(紫、蓝、绿区域)、上转换荧光粉、红外量子计数器、三维立体显示、温度探测器和生物分子的荧光探针等领域有较好的应用前景,一直是发光材料的一个研究热点。氟化物材料是一类重要的上转换发光基质材料,具有较低的声子能量、较高的发光效率等优点。在众多氟化物中,LaF3纳米晶体具有良好的热稳定性和环境稳定性、低的声子能量(低于350 cm-1)、容易掺杂稀土离子等优点。所以研究LaF3发光材料具有重要的意义。
     传统制备纳米材料的方法中多用到各种有机溶剂或模板,这对反应条件的要求相当苛刻,所以找到一种简便、有效、绿色的合成方法已成为人们追求的目标。室温离子液体具有绿色环保,良好的热稳定性,较宽液程等优点,可以作为一种良好的反应介质满足无机材料合成的要求。水热法则是一种有效的合成无机材料的方法,具有以下优点:合成的颗粒纯度高、分散性好,晶形好且可控制、可通过对反应条件的选择控制产物的尺寸和形貌,且生产成本低。本文采用离子液体辅助水热法成功制备了氟化物发光材料,并研究了其结构和荧光性质。
     本文的研究内容如下:
     1、结合离子液体和水热法的优点,得到了一种简便、绿色的合成稀土氟化物发光材料的方法,即离子液体辅助水热法。在合成过程中,离子液体[bmim]BF4起到共溶剂和提供氟源的作用,在温度高于120℃时会水解产生F-离子,它与加入的稀土硝酸盐在180℃生成稀土氟化物发光材料。
     2、通过XRD, FE-SEM对制备的LaF3:RE样品进行了结构表征,测试结果表明样品的颗粒大小为60 nm。LaF3:Er的样品在980 nm红外光激发下,发射出较强的绿光,通过功率关系得出其绿光和红光发射均为双光子过程,并讨论了其发光机制。LaF3:Eu(5%)和LaF3:Ce(15%),Tb(5%)样品在紫外光的激发下分别能观察到红光和绿光发射。和商业绿粉对比,通过测试计算出LaF3:Ce(15%),Tb(5%)样品的荧光量子效率是34%。结果表明LaF3:RE纳米颗粒在高分辨显示器、放大器和荧光粉等领域有潜在的应用。
     3、通过离子液体辅助水热法制备了LaF3:Ce,Tb样品,并加入EDTA-2Na控制样品的形貌和大小。TEM数据和XRD估算表明,样品是直径为25 nm、厚度为5 nm的圆盘结构。在实验过程中EDTA-2Na在控制形貌和粒径大小方面起到了重要作用。系统研究了LaF3:Ce,Tb样品在254 nm紫外光激发下的荧光性质。结果表明LaF3:Ce,Tb颗粒可以应用于生物标记等领域。
     4、通过离子液体辅助水热法制备了CaF2:RE纳米颗粒,TEM和SEM结果显示样品是球状结构,直径大约为150 nm。测试和研究了在254 nm激发下,CaF2:Ce,Tb样品的荧光性质;在397nm激发下,CaF2:Eu样品的荧光性质;在980 nm激发下,CaF2:Er样品的上转换发光性质。结果表明红光和绿光的发射均为双光子过程,紫光的发射为三光子过程。
The synthesis and luminescent characterization of rare earth ions (REI) doped fluoride nanocrystals have aroused material scientists' great interest due to their potential application in phosphors, high resolution displays, electroluminescent devices, optical amplifiers, and fluorescent labels for biomolecules. Among the fluorides, LaF3 nanocrystals have received particular attention because of the outstanding physical and chemical properties of this material:excellent thermal and environ-mental stability, low phonon energy (as low as 350 cm-1), the capability of being easily doped with rare earth ions, and so on.
     Tradition synthetic methods for fluoride nanocrystals are complicated and organic solvent or template always be used in process. Therefore, scientists expect to find green, facile and general method to prepare fluoride nanocrystals. Recently, ionic liquids (ILs) have attracted considerable interest owing to their exceptional features such as wide liquid range, thermal stability, non-coordinating properties, electrochemical stability, and adjustable solvent polarity. On the other hand, hydrothermal synthesis is considered as one of the useful and powerful pathways to prepare novel nanocrystals owing to high productivity, high purity, good dispersity, and so on.
     In this thesis, the main contents are as follows:
     1. Combining the advantages of Ionic liquids and hydrothermal method, a novel and easy synthesis-ionic liquids assisted hydrothermal process is reported. Here. Ionic liquid ([bmim]BF4) acts as both a co-solvent and a reactant. When [bmim]BF4 exceeds its boiling temperature as a result of superheating, it decomposes. The BF4-anions undergo fast hydrolysis at temperature higher than 120℃. The fluoride ion reacts with the REI and REI-doped fluoride nanocrystals formed.
     2. Highly luminescent, water-soluble LaF3:RE are prepared by ionic liquids assisted hydrothermal process. XRD, TEM and FE-SEM are used to characterize the structural properties of the LaF3:RE nanocrystals. The crystallite sizes of LaF3 nanocrystals are about 60 nm. Excited by 980 nm laser, intense green upconversion emissions are observed for LaF3:Er(1%) samples in the solid state and dispersion in solution. The quantum efficiency of LaF3:Ce(15%),Tb(5%) nanocrystals is about 34 %. The photoluminescent properties indicate that rare-earth ion-doped LaF3 nanocrystals may be applied as phosphors for high-resolution displays.
     3. A novel and easy synthesis of highly luminescent, water-soluble LaF3:Ce,Tb nanodiskettes by an ionic liquids-based hydrothermal process is reported. XRD patterns and TEM images show that highly monodisperse LaF3:Ce,Tb nanodiskettes with mean diameter of about 25nm and mean thickness of about 5 nm are elaborated. EDTA-2Na is found to play dual roles as achelating ligand and shape modifier for the formation of green LaF3:Ce,Tb nanodiskettes. The photoluminescent properties indicate that LaF3:Ce,Tb nanocrystals may be applied as phosphors for high-resolution displays and fluorescent labels for biomolecules.
     4. RE3+ ions doped CaF2 nanocrystals have been successfully synthesized by ionic liquids assisted hydrothermal process. The structural properties of samples are investigated by XRD, FE-SEM, TEM respectively. The luminescent properties of CaF2:Eu and CaF2:Ce,Tb are evaluated under ultraviolet excition.(397nm for Eu3+and 254nm for Ce3+, Tb3+). Under 980 nm laser excitation, weak blue (404-420 nm), green (513-564 nm) and red (643-676 nm) upconversion emissions have been observed in CaF2:Er,Yb. The laser power dependence of the upconverted emissions confirms that three-photon process for blue emission and two-photon process for green and red emission.
引文
[1]李建宇.稀土发光材料及其应用[M].北京:化学工业出版,2003:1-6.
    [2]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004:1-3.
    [3]苏锵.稀土化学[M].郑州:河南科学技术出版社,1993:1-50.
    [4]孙家跃,杜海燕.固体发光材料[M].北京:化学工业出版社,2004:590-610.
    [5]黄春辉.无机化学丛书[M].北京:化学工业出版社,1992:5-10.
    [6]中国科学院化学学部,国家自然科学基金委化学科学部组织.展望21世纪的化学[M].北京:化学工业出版社,2000:20-30.
    [7]《固体发光》编写组.固体发光[M].吉林:吉林物化所,1976:1-10.
    [8]Sivakumar R., Vanveggel F., Raudsepp M.. Bright white light through up-conversion of a single NIR source from sol-gel derived thin film made with Ln3+-Doped LaF3 nanoparticles [J] Journal of the American Chemical Society, 2005,127(36):12464-12465.
    [9]Stouwdam J. W., Vanveggel F.. Near-infrared emission of redispersible Er3+, Nd3+ and Ho3+ doped LaF3 nanoparticles [J]. NanoLetters,2002,2(7):733-737.
    [10]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社,2004:9-12.
    [11]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社,2003:1-20.
    [12]李作鹏,杜正银,顾彦龙,朱来英,邓友全.降低离子液体中卤素含量的方法[P].中国专利,申请号:200510129882.2.
    [13]张锁江,吕兴梅.离子液体-从基础研究到工业生产[M].北京:北京科学出版社,2006:10-20.
    [14]张锁江,徐春明,吕兴梅,周清.离子液体与绿色化学[M].北京:北京科学出版社,2009:20-25.
    [15]林建华,荆西平.无机材料化学[M].北京:北京大学出版社,2005:4-20.
    [16]苏勉曾.固体化学导论[M].北京:北京大学出版社,1987:30-40.
    [17]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001:24-43.
    [18]张克从,张乐潓.晶体生长[M].北京:科学出版社,1981:21-34.
    [19]Wang X., Zhuang J., Peng Q., et al. A general strategy for nanocrystal synthesis [J]. Nature,2005,437(7055):121-124.
    [20]Li C. X., Liu X. M., Yang P. P., et al.. LaF3, CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 (core-shell) nanoplates:Hydrothermal synthesis and luminescence properties [J]. Journal of Physical Chemistry C,2008,112(8): 2904-2910.
    [21]Wang Z. L., Quan Z. W., Jia P. Y., et al.. Facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles [J]. Chemistry of Materials,2006,18(8):2030-2037.
    [22]Liu Y. F., Chen W., Wang S. P., et al.. X-ray luminescence of LaF3:Tb3+and LaF3:Ce3+, Tb3+ water-soluble nanoparticles [J]. Journal of Applied Physics, 2008,103(6):063105-063109.
    [23]Liu C. H., Sun J., Wang H., et al.. Size and morphology controllable synthesis of oil-dispersible LaF3:Yb, Er upconversion fluorescent nanocrystals via a solid-liquid two-phase approach [J]. Scripta Materialia,2008,58(2):89-92.
    [24]Diamente P. R., Burke R. D., Vanveggel F.. Bioconjugation of Ln3+-doped LaF3 nanoparticles to Avidin [J]. Langmuir,2006,22(4):1782-1788.
    [25]Stouwdam J. W., Vanveggel F.. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by Surface Modification [J]. Langmuir,2004,20(26):11763-11771.
    [26]Zhu L., Meng I., Cao X. Q. Facile synthesis and photoluminescence of europium ion doped LaF3 nanodisks [J]. European Journal of Inorganic Chemistry,2007,2007(24):3863-3867.
    [27]Zhang Y, Lu M. H.. Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals [J]. Nanotechnology,2007,18(27): 275603-2705607.
    [28]Nunez N.O., Ocana M.. An ionic liquid based synthesis method for uniform luminescent lanthanide fluoride nanoparticles [J]. Nanotechnology,2007, 18(45):455606-455612.
    [29]Meng J. X., Zhang M. F., Liu Y. L., et al. Hydrothermal preparation and luminescence of LaF3:Eu3+ nanoparticles [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2007,66(1):81-85.
    [30]Liu C. H., Chen D. P.. Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence [J]. Journal of Materials Chemistry,2007,17(37):3875-3880.
    [31]Wang F., Zhang Y., Fan X. P., et al.. One-pot synthesis of chitosan/LaF3:Eu3+ nanocrystals for bio-applications [J]. Nanotechnology,2006,17(5):1527-1532.
    [32]Wang F., Zhang Y, Fan X. P., et al.. Facile synthesis of water-soluble LaF3:Ln3+ nanocrystals [J]. Journal of Materials Chemistry,2006,16(11):1031-1034.
    [33]Zhang Y W., Sun X., Si R., et al.. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor [J]. Journal of the American Chemical Society,2005,127(10):3260-3261.
    [34]Pi D. B., Wang F., Fan X. P., et al.. Luminescence behavior of Eu3+ doped LaF3 nanoparticles [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2005,61(11-12):2455-2459.
    [35]Zhang J., Qin W., Zhao D., et al.. Energy transfer processes on both Er3+ ion concentration and excitation densities in Yb3+-Er3+ codoped LaF3 matrix [J]. Journal of Luminescence,2006,119-120 (SPEC. ISS.):341-345.
    [36]Mai H. X., Zhang Y. W., Sun L. D., et al.. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals [J]. Journal of Physical Chemistry C, 2007,111(37):13721-13729.
    [37]Boyer J. C., Cuccia L. A., Capobianco J. A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano Letters, 2007,7(3):847-852.
    [38]Buhler G, Feldmann C.. Microwave-assisted synthesis of luminescent LaP04:Ce,Tb nanocrystals in ionic liquids [J]. Angewandte Chemie-International Edition,2006,45(29):4864-4867.
    [39]Jacob D. S., Bitton L., Grinblat J., et al.. Are Ionic Liquids Really a Boon for the Synthesis of Inorganic Materials? A general method for the fabrication of nanosized metal fluorides [J]. Chemistry of Materials,2006,18(13): 3162-3168.
    [40]Zhu Y. J., Wang W. W., Qi R. J.. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids [J]. Angewandte Chemie International Edition,2004,43(0):1410-1414.
    [41]Wang J. S., Bo S. H., Song L. M., et al.. One-step synthesis of highly water-soluble LaF3:Ln3+ nanocrystals in methanol without using any ligands [J]. Nanotechnology,2007,18(46):465606-465609.
    [42]Guo H., Dong N., Yin M., et al.. Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals [J] Journal of Physical Chemistry B,2004,108(50): 19205-19209.
    [43]Xia T., Li Q., Liu X. D., et al.. Morphology-controllable cynthesis and characterization of single-crystal molybdenum trioxide [J]. The Journal of Physical Chemistry B,2006,110(5):2006-2012.
    [44]Li C. X., Yang J., Quan Z. W., et al.. Different microstructures of β-NaYF4 fabricated by hydrothermal Process:effects of pH values and fluoride sources [J]. Chemistry of Materials,2007,19(20):4933-4942.
    [45]Sun Y.G., Xia Y.N.. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298(5601):2176-2179.
    [46]Kim S. W., Kim M., Lee W. Y, et al.. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions [J]. Journal of the American Chemical Society,2002, 124(26):7642-7643.
    [47]Jia G, You H. P., Liu K., et al.. Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties [J]. Langmuir,2010, 26(7):5122-5128.
    [48]Li C. X., Yang J., Yang P. P., et al.. Two-dimensional β-NaLuF4 hexagonal microplates [J]. Crystal Growth & Design,2008,8(3):923-929.
    [49]Yi G. S., Lu H. C., Zhao S. Y, et al.. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion fhosphors [J]. Nano Letters.,2004,4(11):2191-2196.
    [50]Guo H.. Photoluminescent properties of CeF3:Tb3+ nanodiskettes prepared by hydrothermal microemulsion [J]. Applied Physics B:Lasers and Optics,2006, 84(1-2):365-369.
    [51]Feldmann C., Roming M.,Trampert K.. Polyol-mediated synthesis of nanoscale CaF2 and CaF2:Ce,Tb [J]. Small,2006,2(11):1248-1250.
    [52]Feng W., Sun L. D., Zhang Y W., et al.. Solid-to-hollow single-particle manipulation of a self-assembled luminescent NaYF4:Yb,Er nanocrystal monolayer by electron-beam lithography [J]. Small,2009,5(18):2057-2060.
    [53]Heer S., Kompe K., Gudel H. U., et al.. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals [J]. Advanced Materials,2004,16(23-24):2102-2105.
    [54]Kumar G. A., Chen C. W., Riman R. E.. Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals. [J] Applied Physics Letters,2007,90(9):093123.
    [55]Kumar R., Nyk M., Ohulchanskyy T. Y, et al.. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals [J]. Advanced Functional Materials,2009,19(6):853-859.
    [56]Mai H. X., Zhang Y W., Si R., et al.. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties [J]. Journal of the American Chemical Society,2006,128(19):6426-6436.
    [57]Schafer H., Ptacek P., Eickmeier H., et al.. Synthesis of Hexagonal Yb3+,Er3+-doped NaYF4 nanocrystals at low temperature [J]. Advanced Functional Materials,2009,19(19):3091-3097.
    [58]Sun X. M., Li Y D.. Size-controllable luminescent single crystal CaF2 nanocubes [J]. Chemical Communications,2003,19(14):1768-1769.
    [59]Suyver J. F., Aebischer A., Biner D., et al.. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion [J]. Optical Materials,2005,27(6):1111-1130.
    [60]Vetrone F., Naccache R., Mahalingam V., et al.. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Advanced Functional Materials,2009, 19(18):2924-2929.
    [61]Zhang T., Guo H., Qiao Y. M.. Facile synthesis, structural and optical characterization of LnF3:RE nanocrystals by ionic liquid-based hydrothermal process [J]. Journal of Luminescence,2009,129(8):861.
    [62]Zhang Y., Li Z. Q.. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission [J]. Angewandte Chemie International Edition,2006,45(46):7732-7735.
    [63]Du Y. P., Sun X., Zhang Y. W., et al.. Uniform alkaline earth fluoride nanocrystals with diverse shapes grown from thermolysis of metal trifluoroacetates in hot surfactant solutions [J]. Crystal Growth & Design,2009, 9(4):2013-2019.
    [64]Quan Z. W., Yang D. M., Yang P. P., et al.. Uniform colloidal alkaline earth metal fluoride nanocrystals:nonhydrolytic synthesis and luminescence properties [J] Inorganic Chemistry,2008,47 (20):9509-9517.
    [65]Wang G. F., Peng Q., Li Y. D.. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals [J]. Journal of the American Chemical Society, 2009,131(40):14200-14201.
    [66]Wang J. S., Miao W. R., Li Y. X., et al.. Water-soluble Ln3+-doped calcium fluoride nanocrystals:controlled synthesis and luminescence properties [J]. Materials Letters,2009,63(21):1794-1796.
    [67]Wang W. S., Zhen L., Xu C. Y., et al.. Aqueous solution synthesis of CaF2 hollow microspheres via the ostwald ripening process arRoom temperature [J]. Applied Materials & Interfaces,2009,1(4):780-788.
    [68]Zhang X. M., Quan Z. W., Yang J., et al.. Solvothermal synthesis of well-dispersed MF2 (M=Ca, Sr, Ba) nanocrystals and their optical properties [J]. Nanotechnology,2008,19(7):075603-075609.
    [69]Wang F., Fan X. P., Pi D. P., et al.. Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles [J]. Solid State Communications,2005,133(12): 775-779.
    [70]Hua R. N., Shi C. S.. Synthesis of barium fluoride nanoparticles from microemulsion [J]. Nanotechnology,2003,14(23):588-591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700