用户名: 密码: 验证码:
基于纳米材料构建过氧化氢生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢不仅是许多高选择性氧化酶的催化反应产物,又是食品、药物、环境分析中的重要成份。因此,快速、准确的检测过氧化氢具有非常重要的意义。目前用于检测过氧化氢的方法很多,如滴定法、分光光度法、化学发光法、高效液相色谱法以及电化学方法。其中,电流型酶生物传感器,由于其方法简单、灵敏度高以及选择性高等优点而被广泛应用于过氧化氢的测定。酶的氧化还原活性中心与电极间的电子传递是制备酶电化学传感器的基础,可以通过两种不同的途径得以实现。其一是借助电子介体,如何将电子介体有效固定于电极上,而不从电极的修饰层渗漏出来是非常重要的;其二是借助适合的材料实现酶与电极之间的直接电子传递。另一方面,生物活性分子的固定化是构筑生物传感器最关键的步骤,是影响生物传感器的稳定性、灵敏度和选择性的关键因素。基于此,本文利用比表面积大、表面自由能高的纳米金和甲苯胺蓝层层组装,利用戊二醛作交联剂使牛血清白蛋白与硫堇共价结合以实现了电子介体的有效固定,从而构建了性能优良的介体型过氧化氢传感器。同时,还对碳纳米管与纳米金、碳纳米管与核—壳型纳米球的复合物作为固酶基质在生物传感器领域的应用做了初步的探索和研究,基于酶在复合纳米材料基质上的直接电化学构建了无介体型的第三代过氧化氢传感器。具体研究工作如下:
     1.基于层层自组装纳米金/甲苯胺蓝膜修饰的过氧化氢生物传感器的研究
     在金电极表面自组装一层半胱氨酸,然后吸附纳米金(nano-Au),以此为基底,通过静电吸附作用和金—氮共价键合作用层层自组装nano-Au和甲苯胺蓝(TB),构建了以多层{nano-Au/TB}_n膜为载体固定辣根过氧化物酶(HRP)的过氧化氢生物传感器。用循环伏安法和石英晶体微天平(QCM)技术对{nano-Au/TB}_n膜的组装过程进行了表征,并用原子力显微镜(AFM)对膜的表面形貌进行了表征。探讨了工作电位、温度、pH值对电极响应的影响,考察了电极的重现性、稳定性及抗干扰能力。该传感器具有响应快、线性范围宽、检出限低等特点。对H_2O_2响应的线性范围为1.5x10~(-7)mol/L~8.6×10~(-3)mol/L,检测限为7.0x10~(-8)mol/L(S/N=3)。
     2.基于硫堇-牛血清白蛋白复合物和纳米金固定HRP的过氧化氢传感器的研究
     本文以戊二醛(GA)为交联剂,首先将硫堇(Th)与牛血清白蛋白(BSA)共价交联制备硫堇-牛血清白蛋白复合物(Th-BSA),然后用硫堇的自由氨基(-NH_2)固定纳米金(nano-Au),进一步再吸附HRP,从而构建出一种新型的过氧化氢生物传感器。nano-Au/Th-BSA复合物具有良好的生物相容性,可提供良好的微环境保持酶的生物活性。固定于复合物中的硫堇能在HRP与电极间有效地传递电子。利用原子力显微镜(AFM)、X射线光电子能谱(XPS)、红外光谱仪(IR)和电化学交流阻抗(EIS)表征了整个组装过程。该传感器对H_2O_2具有好的催化响应,且响应快。在优化的实验条件下,所制备的传感器对H_2O_2的线性范围为4.9x10~(-7)~1.6x10~(-3)mol/L,检测限为2.1×10~(-7)mol/L(S/N=3),表观米氏常数为0.023 mmol/L。
     3.基于多壁碳纳米管和纳米金固定血红蛋白的第三代过氧化氢传感器的研究
     本文以蛋白质为联接剂,通过静电吸附作用制得了碳纳米管和纳米金的复合材料。首先将纯化的多壁碳纳米管(MWNTs)修饰于玻碳电极(GC)表面,构建负电荷的修饰界面,基于静电吸附作用固定血红蛋白(Hb),然后再吸附纳米金(nano-Au),最后利用nano-Au再固定一层Hb,从而成功构建了基于MWNTs和nano-Au固定Hb的第三代过氧化氢传感器(Hb/nano-Au/Hb/MWNTs/GC)。用循环伏安法(CV)、电化学交流阻抗(EIS)以及透射电子显微镜(TEM)对修饰电极进行了表征。Hb在修饰电极上实现了直接电子转移。与仅基于碳纳米管构建的H_2O_2传感器相比,该传感器对H_2O_2的响应具有更宽的线性范围和更低的检测下限。其线性范围为2.1×10~(-7)~3.0x10~(-3)mol/L,检测限为8.0x10~(-8)mol/L(S/N=3),表观米氏常数为0.26mmol/L。此外,该传感器还具有较快的响应速率、较好的稳定性和重现性。
     4.基于多壁碳纳米管/壳聚糖复合物及多层纳米金,血红蛋白修饰的过氧化氢传感器
     将多壁纳米碳管(MWNTs)分散于壳聚糖(CS)中得到稳定的CS-MWNTs复合物,然后将其滴涂于玻碳(GC)电极表面。利用CS丰富的氨基固定nano-Au,进一步静电吸附血红蛋白(Hb)。利用层层自组装技术将带相反电荷的nano-Au和Hb固定于CS-MWNTs复合物上制备了基于MWNTs和多层Hb/nano-Au膜修饰电极。用循环伏安法(CV)、紫外可见(UV-vis)吸收光谱法以及透射电子显微镜(TEM)对修饰电极进行了表征。研究了传感器对H_2O_2的响应及动力学性质,表观米氏常数为0.19 mmol/L,线性响应范围为5.0x10~(-7)~2.0x10~(-3)mol/L,检测限为2.1×10~(-7)mol/L(S/N=3)。同时研究了pH值及应用电位对H_2O_2传感器的影响。
     5.基于有机硅/壳聚糖核-壳纳米球和多壁碳纳米管复合物固定HRP的过氧化氢传感器
     本文以多壁碳纳米管(MWNTs)和核-壳结构的有机硅/壳聚糖纳米球(organosilica@chitosan)复合物作为固酶基质,构建了一种新型的无介体型过氧化氢生物传感器。首先将MWNTs分散于荷正电荷的organosilica@chitosan的HAc悬浮液中,制备organosilica@chitosan/MWNTs复合材料,并将其直接滴涂在玻碳电极(GCE)表面。然后通过organosilica@chitosan与带相反电荷的辣根过氧化物酶(HRP)的静电吸附作用固定HRP制得HRP/organosilica@chitosan/MWNTs修饰电极。该传感器对H_2O_2具有较好的电催化活性。其线性范围为7.0x10~(-7)~2.8×10~(-3)mol/L,检测限为2.5x10~(-7)mol/L(S/N=3),表观米式常数为0.32 mmol/L。另外,该传感器对H_2O_2还具有较快的响应速度,较好的稳定性和重现性。将其应用于消毒液的检测时,其结果也令人满意。
The rapid and accurate determination of hydrogen peroxide(H_2O_2)is of great importance because it is not only the product of the reactions catalyzed by many highly selective oxidases but also an essential compound in food,pharmaceutical and environmental analyses.Among these techniques employed for hydrogen peroxide analysis,such as titrimetry,photometry, chemiluminescence,high performance liquid chromatography and electrochemistry,amperometric enzyme-based biosensors have received considerable interest,because this class of technique is characterized by sensitivity,convenience and high selectivity.Electron transfer between an electrode and the redox activity center of an enzy me is the basis for developing various enzyme-based biosensors.It can be achieved through two different pathways.One involves electron-shuttling mediators to establish an electrical communication between redox proteins and the underlying electrodes.In this scheme,there are still several challenges to keep mediators from diffusing away from the electrode surface into the bulk solution.The other pathway involves direct electron transfer between redox proteins and the electrode.On the other hand,the method and material used to immobilize biomolecules is one of the crucial factors for improving the stability,sensitivity and selectivity of biosensors.In this paper,nano-Au,with large surface area,high-surface free energy, was chosen to immobilize toluidine blue by layer-by-layer(LBL)assembly technique,and thionine was covalently bound onto the bovine serum albumin film with glutaraldehyde as cross-linker to achieve the immobilization of electron-shuttling mediators.For the leakage significantly decreases, the proposed mediator-based hydrogen peroxide biosensors exhibit good analytical performance.In addition,attention has been paid to the nano-Au/MWNTs composite and core-shell organosilica@chitosan/MWNTs composite.The application of these composites as an immobilization matrix for fabricating mediator-free hydrogen peroxide biosensors has been preliminarily investigated.The main points of this dissertation are summarized as follows:
     Part one:Study of the hydrogen peroxide biosensor based on the layer-by-layer assembly films of gold colloidal nanoparticles and toluidine blue
     The precursor film was first formed on the Au electrode surface based on the self-assembly of L-cysteine and the adsorption of gold colloidal nan oparticles(nano-Au).Layer-by-layer(LBL) assembly films of toluidine blue(TB)and nano-Au were fabricated by Au-N covalent bond and electrostatic adsorption between TB and nano-Au.Finally,horseradish peroxidase(HRP)was assembled onto {nano-Au/TB}_nmultilayer films to fabricate a novel hydrogen peroxide biosensor. Cyclic voltammeter(CV)and quartz crystal microbalance(QCM)were adopted to monitor the regular growth of {nano-Au/TB} bilayer films.Morphologies of the films were characterized with atomic force microscopy(AFM).The effects of applied potential,temperature and pH on the current response were investigated.Repeatability,stability and anti-interference were also researched.The proposed biosensor responds rapidly to H_2O_2 in the linear range from 1.5×10~(-7)mol/L to 8.6×10~(-3) mol/L with a detection limit of 7.0×10~(-8)mol/L(S/N=3).
     Part two:Study of the hydrogen peroxide biosensor based on immobilizing HRP on thionine-bovine serum albumin conjugate and gold colloidal nanoparticles
     A novel enzyme immobilization technique based on thionine-bovine serum albumin conjugate (Th-BSA)and gold colloidal nanoparticles(nano-Au)was developed.Thionine was covalently bound onto the BSA film with glutaraldehyde(GA)as cross-linker to achieve Th-BSA conjugate. The free amino groups of thionine were then used to attach nano-Au for the immobilization of horseradish peroxidase(HRP).Such nano-Au/Th-BSA matrix shows a favorable microenviment for retaining the native activity of the immobilized HRP and thionine immobilized in this way can effectively shuttle electrons between the electrode and the enzyme.Several techniques,including atomic force microscopy(AFM),X-ray photoelectron spectroscopy(XPS),Infrared spectra(IR)and electrochemical impedance spectroscopy(EIS)have been employed to characterize the assembly process.The proposed biosensor displays excellent catalytic activity and rapid response for H_2O_2. The linear range for the determination of H_O_2 is from 4.9×10~(-7)to 1.6×10~(-3)mol/L with a detection limit of 2.1×10~(-7)mol/L at 30 and a Michaelies-Menten constant value of 0.023 mmol/L.
     Part three:Amperometric third-generation hydrogen peroxide biosensors based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles
     A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes(MWNTs)and gold colloidal nanoparticles(nano-Au)by using proteins as linker is proposed.In such a strategy,Hemoglobin(Hb)was selected as model protein to fabricate third-generation H_2O_2 biosensor based on MWNTs and nano-Au.Acid-pretreated,negatively charged MWNTs was first modified on the surface of glassy carbon(GC)electrode,then,positively charged Hb was adsorbed onto MWNTs films by electrostatic interaction.Finally,nano-Au and Hb were successively assembled onto the modified electrode to obtain the Hb/nano-Au/Hb/MWNTs/GC electrode.The assembly of Hb and nano-Au was characterized with cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS)and transmission electron microscopy(TEM).The direct electron transfer of Hb is observed on the Hb/nano-Au/Hb/MWNTs/GC electrode,which exhibits excellent electrocatalytic activity for the reduction of H_2O_2 to construct a third generation mediator-free H_2O_2 biosensor.As compared to those H_2O_2 biosensors only based on carbon nanotubes,the proposed biosensor modified with MWNTs and nano-Au displays a broader linear range and a lower detection limit for H_2O_2 determination.The linear range is from 2.1×10~(-7)to 3.0×10~(-3)mol/L with a detection limit of 8.0×10~(-8)mol/L at 3σ.The Michaelies-Menten constant K_M~(app)value is estimated to be 0.26 mmol/L.Moreover,this biosensor displays rapid response to H_2O_2 and possesses good stability and reproducibility.
     Part four:A hydrogen peroxide biosensor based on multi-wall carbon nanotubes/chitosan composite and multilayer films of hemoglobin and colloidal gold nanoparticles
     An amperometric biosensor for H_2O_2 was developed based on multilayer assembly of hemoglobin(Hb)and colloidal gold nanoparticles(nano-Au)on multi-wall carbon nanotubes/chitosan composite.Chitosan(CS)was chosen for dispersing multi-wall carbon nanotubes(MWNTs)to form a stable CS-MWNTs composite.This composite was first coated on the surface of glassy carbon electrode to provide a containing amino groups interface for assembling nano-Au,followed by the adsorption of Hb to form a bilayer of {Hb/nano-Au}.Repeating the assembly step of nano-Au and Hb resulted in {Hb/nano-Au}_n multilayers.The resulting system brought a new platform for electrochemical devices by using the synergistic action of the electrocatalytic activity of nano-Au and MWNTs.The assembly of nano-Au onto CS-MWNTs was confirmed by transmission electron microscopy.The consecutive growth of {Hb/nano-Au}_n multilayers was confirmed by cyclic voltammetry and UV-vis absorption spectroscopy.The resulting electrode displays excellent electrocatalytic activity and rapid response for H_2O_2.The linear range for the determination of H_2O_2 is from 5.0×10~(-7)to 2.0×10~(-3)mol/L with a detection limit of 2.1×10~(-7)mol/L at 3σand a Michaelies-Menten constant K_M~(app)value of 0.19 mmol/L.At the same time,the effects of applied potential and pH on the sensor were examined.
     Part five:A hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica@chitosan nanospheres and multiwall carbon nanotubes composites
     The application of a composite of multiwall carbon nanotubes(MWNTs)and core-shell organosilica@chitosan crosslinked nanospheres as an immobilization matrix for a construction of a novel mediator-free amperometric hydrogen peroxide(H_2O_2)biosensor was described.MWNTs were dispersed in a suspension of positively charged organosilica@chitosan nanospheres in acetic acid solution(0.6 wt%)to achieve an organosilica@chitosan/MWNTs composite,which was cast onto a glass carbon electrode(GCE)surface directly.And then,horseradish peroxidase(HRP),as a model enzyme,was immobilized onto it through electrostatic interaction between oppositely charged organosilica@chitosan nanospheres and HRP.The direct electron transfer of HRP is achieved at the HRP/organosilica@chitosan/MWNTs/GCE,which exhibits an excellent electrocatalytic activity for the reduction of H_2O_2.The catalysis currents increased linearly to H_2O_2 concentration in a wide range of 7.0×10~(-7)tO 2.8×10~(-3)mol/L with a detection limit,of 2.5×10~(-7)mol/L at 3σ.A Michaelies-Menten constant K_M~(app)value is estimated to be 0.32 mmol/L,indicating a high-catalytic activity of HRP.Moreover,the proposed biosensor displays rapid response to H_2O_2 and possesses good stability and reproducibility.When used to detect H_2_2 concentration in disinfector sample,it shows satisfactory results.
引文
[1]张先恩.生物传感器.北京:化学工业出版社 现代生物技术与医药科技出版中心.2006,6-7.
    [2]Turner A P F.Biosensors:past,present and future,www.cranfield.ac.uk/biotech/chinap.htm.1996.
    [3]Clark L C Jnr,Lyons C.Electrode systems for continuous monitoring in cardiovascular surgery.Ann.New York Acad Sci.1962,102(1):29-45.
    [4]Clark L C Jnr.Monitor and control of blood and tissue oxygen tensions.Trans Am Soc Artif Intern Organs.1956,2:41-48.
    [5]Updike S.J,Hicks J.P.The enzyme electrode.Nature.1967,214:986-988.
    [6]Guilbault G G,Montalvo J G.Urea-specific enzyme electrode.J Am Chem Soc.1969,91(8):2164-2569.
    [7]Divies C.Ethanol oxidation by an acetobacter xylinum microbial electrode.Ann Microbial.1975,A126(2):175-186.
    [8]Rechnitz G A,Kobos R K,Riechel S J,Gebauer C R.A bio-selective membrane electrode prepared with living bacterial cells.Anal Chim Acta.1977,94(2):357-365.
    [9]Karube I,Matsunaga T,Mitsuda S,Suzuki S.Microbial electrode BOD sensors Biotechnol Bioeng.1977,19(10):1535-1547.
    [10]Janata J,Moss S D,Johnson C C.Selective chemical sensitive field effect transducers.USPatent,4020830,1977.
    [11]Rechnitz G A,Arnold M A,Meyerhoff M E.Bio-selective membrane electrode using tissue slices.Nature.1979,278:466-467.
    [12]Updike S,Treichel I.Antidiuretic hormone specific electrode.Anal Chem.1979,51(11):1643-1645.
    [13]Mascini M,Iannello M,Palleschi G.A liver tissue-based electrochemical sensor for hydrogen peroxide.Anal Chim Acta.1982,138:65-69.
    [14]Kuriyama S,Rechnitz G A.Plant tissue-based bioselective membrane electrode for glutamate.Anal Chim Acta.1981,131:91-96.
    [15]Mosbach K,Danielesson B.An enzyme thermistor.Biochem Biophys Acta.1974,364(1):140-145.
    [16]Arnold M.A.Enzyme based fiber optic sensor.Anal Chem.1985,57(2):565-566.
    [17]Caras S D,Janata J,Saupe D,et al.pH-based enzyme potentiometric sensors.Anal Chem.1985,57(9):1917-1920.
    [18]Guilbault G G.Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector.Anal Chem.1983,55(11):1682-1684;
    [19]Nylander C,Liedberg B,Lind T.Gas detection by means of surface plasmon resonance.Sensor Actuat.1982-1983,3:79-88.
    [20]Liedberg B,Nylander C,Lunstrom I.Surface plasmon resonance for gas detection and biosensing.Sensor Actuat.1983,4:299-304.
    [21]Cass A E G.,Davis G,Francis G D,et al.Ferrocene-mediated enzyme electrode for amperometric determination of glucose.Anal Chem.1984,56(4):667-671.
    [22]张先恩.生物传感器.北京:化学工业出版社现代生物技术与医药科技出版中心.2006,58.
    [23]司士辉.生物传感器.北京:化学工业出版社.2003,37-38.
    [24]布莱恩 R,埃金斯 著.罗瑞贤,陈亮寰,陈霭璠 译.化学传感器与生物传感器.北京:化学工业出版社工业装备与信息工程出版中心.2005,107.
    [25]Zheng L Z,Xiong L Y,Li J H,et al.Synthesis of a novel β-cyclodextrin derivative with high solubility and the electrochemical properties of ferrocene-carbonyl-b-cyclodextrin inclusion complex as an electron transfer mediator.Electrochem Commun.2008,10(2):340-345.
    [26]Qiu J D,Peng H P,Liang R P.Ferrocene-modified Fe_3O_4@SiO_2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors.Electrochem Commun.2007,9(11):2734-2738.
    [27]Ballarin B,Cassani M C,Mazzoni R,et al.Enzyme electrodes based on sono-gel containing ferrocenyl compounds.Biosens Bioelectron.2007,22(7):1317-1322.
    [28]Shi A W,Qu F L,Yang M H,et al.Amperometric H_2O_2 biosensor based on poly-thionine nanowire/HRP/nano-Au-modified glassy carbon electrode.Sensor Actuat B.2008,129(2):779-783.
    [29]Wu L N,McIntosh M,Zhang X J,et al.Amperometric sensor for ethanol based on one-step electropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase.Talanta.2007,74(3):387-392.
    [30]Sun Y Y,Bai Y,Yang W W,et al.Controlled multilayer films of suifonate-capped gold nanoparticles/thionine used for construction of a reagentless bienzymatic glucose biosensor.Electrochim Acta.2007,52(25):7352-7361.
    [31]Liu Y,Lei J P,Ju H X.Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite.Talanta.2008,74(4):965-970.
    [32]Wang Y Z,Hu S S.A novel nitric oxide biosensor based on electropolymerization poly (toluidine blue)film electrode and its application to nitric oxide released in liver homogenate.Biosens Bioelectron.2006,22(1):10-17.
    [33]Yang X S,Chen X,Zhang X,et al.Intercalation of methylene blue into layered manganese oxide and application of the resulting material in a reagentless hydrogen peroxide biosensor.Sensor Actuat B.2008,129(2):784-789.
    [34]Lai G S,Zhang H L,Han D Y.A novel hydrogen peroxide,biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode.Sensor Actuat B.2008, 129(2):497-503.
    [35]Santo A S,Pereira A C,Duran N,et al.Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube.Electrochim Acta.2006,52(1):215-220.
    [36]Pereira A C,Aguiar M R,Kisner A,et al.Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube.Sensor Actuat B.2007,124(1):269-276.
    [37]Vidal J C,Espuelas J,Castillo J R.Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor.Anal Biochem.2004,333(1):88-98.
    [38]马全红,邓家祺.苯醌介体修饰的葡萄糖生物传感器.复旦学报(自然科学版).2000,39(4):400-404.
    [39]Gamella M,Campuzano S,Reviejo A J,et al.Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.Anal Chim Acta.2008,609(2):201-209.
    [40]Hale P D,Lan H L,Boguslavsky L I,et al.Amperometric glucose sensors based on ferrocene-modified poly(ethylene oxide)and glucose oxidase.Anal Chim Acta.1999,251(1-2):121-128.
    [41]Koide S,Yokoyama K.Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymers.J Electroanal Chem.1999,468(2):193-201.
    [42]Losada J,Cuadrado I,Moran M,et al.Ferrocenyl silicon based dendrimers as mediators in amperometdc biosensors.Anal Chim Acta.1997,338(3):191-198.
    [43]阳明辉,李春香,杨云慧等.基于静电吸附多层膜固定酶的过氧化氢生物传感器的研究.化学学报.2004,62(5):502-507.
    [44]Ruan C M,Yang R,Chen X H,et al.A reagentless amperometric hydrogen peroxide biosensor based on covalently binding horseradish peroxidase and thionine using a thiol-modified gold electrode.J Electroanal Chem.1998,455(1-2):121-125.
    [45]Ruan C M,Yang F,Lei C H,Deng J Q.Thionine Covalently Tethered to Multilayer Horseradish Peroxidase in a Self-Assembled Monolayer as an Electron-Transfer Mediator.Anal Chem.1998,70(9):1721-1725.
    [46]Schuhmann W.Electron-transfer pathways in amperometric biosensors.Ferrocene-modified enzymes entrapped in conducting-polymer layers.Biosens Bioelectron.1995,10(1-2):181-193.
    [47]Badia A,Carlini R,Fernandez A,et al.Intramolecular electron-transfer rates in ferrocene-derivatized glucose oxidase.J Am Chem Soc.1993,115(16):7053-7060.
    [48]Padeste C,Grubelnik A,Tiefenauer L.Ferrocene-avidin conjugates for bioelectrochemical applications.Biosens Bioelectron.2003,15(9-10):431-438.
    [49]Tripathi V S,Kandimalla V B,Ju H X.Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite.Biosens Bioelectron.2006,21(8):1529-1535.
    [50] Yeh P, Kuwana T. Reversible electrode reaction of cytochrome c. Chem Lett. 1977, 10(6): 1145 -1148.
    [51] Eddowes M J, Hill H A O. Novel method for the investigation of the electrochemistry of metalloproteins: Cytochrome c. J Chem Soc Chem Commun. 1977,21: 771 -772.
    [52] Tarasevich M R, Yaropolov A I, Bogdanovskaya V A, et al. 293 - Electrocatalysis of a cathodic oxygen reduction by laccase. Bioelectrochem. Bioenerg.1979,6(3): 393-403.
    [53] Xiang C, Zou Y, Sun L X, et al. Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem Commun. 2008,10(1): 38-41.
    [54] Ding S F, Wei W, Zhao G C. Direct electrochemical response of cytochrome c on a room temperature ionic liquid, N-butylpyridinium tetrafluoroborate, modified electrode. Electrochem Commun. 2007,9(9): 2202-2206.
    [55] Yu J J, Ma J R, Zhao F Q, et al. Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al_2O_3. Electrochim Acta. 2007, 53(4): 1995-2001.
    [56] Zhang R Y, Wang X M, Shiu K K, et al. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly. J Colloid Interf Sci. 2007, 316(2): 517-522.
    [57] Xu J M, Li W, Yin Q F, et al. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode. J Colloid Interf Sci. 2007, 315(1): 170-176.
    [58] Sun Y X, Wang S F. Direct electrochemistry and electrocatalytic characteristic of heme proteins immobilized in a new sol-gel polymer film. Bioelectrochemistry. 2007, 71(2): 172-179.
    [59] Yang W W, Li Y C, Bai Y, et al. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film. Sensor Actuat B. 2006,115(1): 42-48.
    [60] Zong S Z, Cao Y, Zhou Y M, et al. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosens Bioelectron. 2007,22(8): 1776-1782.
    [61] Zhao X J, Mai Z B, Kang X H, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron. 2008, 23(7): 1032-1038.
    [62] Yan R, Zhao F Q, Li J W, et al. Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films. Electrochim Acta. 2007, 52(26): 7425-7431.
    [63] Song Y H, Wang L, Ren C B, et al. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sensor Actuat B. 2006, 114(2): 1001-1006.
    [64] Chen X H, Ruan C M, Kong J L, et al. Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode. Anal Chim Acta.2000,412(1-2):89-98.
    [65]Xu S Y,Peng B,Han X Z.A third-generation H_2O_2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres.Biosens Bioelectron.2007,22(8):1807-1810.
    [66]Cai W Y,Xu Q,Zhao X N,et al.Porous goid-nanoparticle CaCO_3 hybrid material:preparation,characterization,and application for horseradish peroxidase assembly and direct electrochemistry.Chem.Mater.2006,18(2):279-284.
    [67]Zhu X L,Yuri I,Gan X,et al.Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation.Biosens Bioelectron.2007,22(8):1600-1604.
    [68]Behera S.,Raj C R.Mercaptoethyipyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid.Biosens Bioelectron.2007,23(4):556-561.
    [69]Deng C Y,Chen J H,Chen X L,et al.Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.Biosens Bioelectron.2008,23(8):1272-1277.
    [70]Muguruma H,Shibayama Y,Matsui Y.An amperometric biosensor based on a composite of single-walled carbon nanotubes,plasma-polymerized thin film,and an enzyme.Biosens Bioelectron.2008,23(6):827-832.
    [71]张先恩.生物传感器.北京:化学工业出版社.现代生物技术与医药科技出版中心.2006,141-142.
    [72]Kong Y T,Boopathi M,Shim Y B.Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode.Biosens Bioelectron.2003,19(3):227-232.
    [73]Liu H Y,Hu N F.Heme protein-gluten films:voltammetric studies and their electrocatalytic properties.Anal.ytica Chim.Acta.2003,481(1):91-99.
    [74]Huang R,Hu N F.Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films.Bioelectrochemistry.2001,54(1):75-81.
    [75]周波,孙润光,王丽华等.蛋白质直接电化学研究及其应用.化学进展.2006,18(7/8):1009-1013.
    [76]刘慧宏,陈显堂,李俊等.辣根过氧化物酶在表面活性剂膜中的直接电化学.分析化学.2001,29(5):511-515.
    [77]Chattopadhyay K,Mazumdar S.Direct electrochemistry of heme proteins:effect of electrode surface modification by neutral surfactants.Bioelectrochemistry.2000,53(1):17-24.
    [78]Xiao Y,Ju H X,Chen H Y.Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode.Anal Biochem.2000,278(1):22-28.
    [79]Jia J B,Wang B Q,Wu A G,et al.A method to construct a third-Generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network.Anal Chem.2002,74(9):2217-2223.
    [80]Zong S Z,Zhou Y M,Ju H X.Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide.Langmuir.2006,22(21):8915-8919.
    [81]Zhang L,Zhang Q,Lu X B,et al.Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets.Biosens Bioelectron.2007,23(1):102-106.
    [82]Yamamoto K,Shi G Y,Zhou T S,et al.Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors.Analyst.2003,128(3):249-254.
    [83]朱亚琦,武海,刘辉等.纳米二氧化钛对辣根过氧化酶催化作用.电化学.2007,13(2):140-144.
    [84]Zimmenuann H,Lindgren A,Schuhmann W,et al.Anisotropic Orientation of Horseradish Peroxidase by Reconstitution on a Thiol-Modified Gold Electrode.Chemistry-A European Journal.2000,6(4):592-599.
    [85]Varma S.Electrochemical studies on reconstituted horseradish peroxidase modified carbon paste electrodes.Bioelectrochemistry.2002,56(1-2):107-111.
    [86]Hong J,Moosavi-Movahedi A A,Ghourchian H,et al.Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode.Electrochim Acta.2007,52(21):6261-6267.
    [87]Yang J,Hu N F.Hu.Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes.Bioelectrochem Bioenerg.1999,48(1):117-127.
    [88]Han X J,Huang W M,Jia J B,et al.Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H_2O_2.Biosens Bioelectron.2002,17(9):741-746.
    [89]Wang Q L,Lu G X,Yang B J.Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film.Biosens Bioelectron.2004,19(10):1269-1275.
    [90]Fan C H,Li G X,Zhu J Q,et al.A reagentless nitric oxide biosensor based on hemoglobin-DNA films.Anal Chim Acta.2000,423(1):95-100.
    [91]Zhou Y L,Li Z,Hu N F,et al.Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity.Langmuir.2002,18(22):8573-8579.
    [92]Gu H Y,Yu A M,Chen H Y.Direct electron transfer and characterization of hemoglobin immobilized on a Au coiloid-cysteamine-modified gold electrode.J Electroanal Chem.2001,516(1-2):119-126.
    [93]高玉莲,田燕妮.血红蛋白在纳米羟基磷灰石修饰的热解石墨电极上的直接电化学.化学研究与应用.2007,19(6):589-593.
    [94]Wang F,Chen X X,Xu Y X,et al.Enhanced electron transfer for hemoglobin entrapped in a cationic gemini surfactant films on electrode and the fabrication of nitric oxide biosensor. Biosens Bioelectron.2007,23(2):176-182
    [95]Lu Q,Zhou T,Hua S S.Direct electrochemistry of hemoglobin in PHEA and its catalysis to H_2O_2.Biosens Bioelectron.2007,22(6):899-904.
    [96]Kim M A,Lee W Y.Amperometric phenol biosensor based on sol-gel silicate/Nation composite film.Anal Chim Acta.2003,479(2):143-150.
    [97]Zhang T,Tian B Z,Kong J L,et al.A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix.Anal Chim Acta.2003,489(2):199-206.
    [98]Yu J H,Ju H X.Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film.Anal Chim Acta.2003,486(2):209-216.
    [99]Wang G,Xu J J,Chen H Y,et al.Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix.Biosens Bioelectron.2003,18(4):335-343.
    [100]Chen X H,Hu Y B,Wilson G S.Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane.Biosens Bioelectron.2002,17(11-12):1005-1013.
    [101]Di J W,Cheng J J,Xu Q,et al.Direct electrochemistry of lactate dehydrogenase immobilized on silica sol-gel modified gold electrode and its application.Biosens Bioelectron.2007,23(5):682-687.
    [102]Yang F,Jiao L S,Shen Y F,et al.Enhanced response induced by polyelectrolytefunctionalized ionic liquid in glucose biosensor based on sol-gel organic-inorganic hybrid material.J Electroanai Chem.2007,608(1):78-83.
    [103]李彤,姚子华.普鲁士蓝修饰电极结合硅溶胶-凝胶技术制备高灵敏葡萄糖传感器.分析化学.2004,32(2):237-230.
    [104]刘志敏,胡乐乾,沈国励等.基于ZnO溶胶-凝胶固定的酪氨酸酶传感器的研制.分析科学学报.2007,23(5):555-558.
    [105]Di J W,Peng S H,Shen C P,et al.One-step method embedding superoxide dismutase and gold nanoparticles in silica sol-gel network in the presence of cysteine for construction of third-generation biosensor.Biosens Bioelectron.2007,23(1):88-94.
    [106]雷存喜,沈国励,俞汝勤.基于硅溶胶-凝胶/褐藻酸钠复合膜包埋酪氨酸酶的苯酚传感器研制.分析化学.2007,35(2):273-276.
    [107]Zou Y,Xiang C,Sun L X,et al.Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO_2 sol-gel.Biosens Bioelectron.2008,23(7):1010-1016.
    [108]Kang X H,Mai Z B,Zou X Y,et al.Glucose biosensors based on platinum nanoparticlesdeposited carbon nanotubes in sol-gel chitosan/silica hybrid.Talanta.2008,74(4):879-886.
    [109]Sun Y X,Zhang J T.,Huang S W,et al.Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film.Sensor Actuat B.2007,124(2):494-500.
    [110]Huang Q D,Lu Z Q,Rusling J F.Composite films of surfactants,Nation,and proteins with electrochemical and enzyme activity.Langmuir.1996,12(22):5472 -5480.
    [111]Qian J D,Liu Y C,Liu H Y,et al.Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalene-mediating H_2O_2sensor.Biosens Bioelectron.1997,12(12):1213-1218.
    [112]Liu Y C,Zhang X H,Liu H Y,et al.Deng immobilization of glucose oxidase onto the blend membrane of poly(vinyl alcohol)and regenerated silk fibroin:morphology and application to glucose biosensor.J Biotechnol.1996,46(2):131-138.
    [113]Zhang Y Q,Shen W D,Gu R A,et al.Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane.Anal Chim Acta.1998,369(1-2):123-128.
    [114]朱玉奴,彭图治,李建平.碳纳米管负载铂颗粒酶电极葡萄糖传感器.分析化学.2004,32(10):1299-1303.
    [115]张国林,潘献华,阚锦晴等.导电复合材料葡萄糖氧化酶传感器的研究.物理化学学报.2004,32(10):1299-1303.
    [116]Vidal J C,Espuelas J,Garcia-Ruiz E,et al.Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers.Talanta.2004,64(3):655-664.
    [117]Mu S L,Xue H G,Qian B D,et al.Bioelectrochemical responses of the polyaniline glucose oxidase electrode.J Electroanal Chem.1991,304(1-2):7-16.
    [118]Bartlett P N,Whitaker R G.Electrochemical immobilisation of enzymes:Part Ⅱ.Glucose oxidase immobilised in poly-N-methylpyrrole.J Electroanal Chem.1987,224(1-2):37-48.
    [119]McMahon C P,O'Neill R D.Polymer-enzyme composite biosensor with high glutamate sensitivity and low oxygen dependence.Anal Chem.2005,77(4):1196-1199.
    [120]Ianniello R M.,Yacynych A M.Immobilized enzyme chemically modified electrode as an amperometric sensor.Anal Chem.1981,53(13):2090-2095.
    [121]朱如瑾,殷弘浩,刘永盛等.聚乙烯-葡萄糖氧化酶膜的制备和性能研究.高分子学报.1996.17(1):97-101.
    [122]Zhang S X,Wang N,Yu H J,et al.Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor.Bioelectrochemistry.2005,67(1):15-22.
    [123]Bora U,Sharma P,Kannanb K,et al.Photoreactive cellulose membrane-A novel matrix for covalent immobilization of biomolecules.J.Biotechnol.2006,126(2):220-229.
    [124]Zhou Y L,Zhi J F.Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode.Electrochem.Commun.2006,8(12):1811-1816.
    [125]Rajesh,Bisht V,Takashima W,et al,An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole)film.Biomaterials.2005,26(17):3683-3690.
    [126]Bora U,Kannanb K,Nahar Pradip.A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules.J Membrane Science.2005,250(1-2):215-222.
    [127]刘兵,阳明辉,杨海峰等.基于等离子体聚合膜固定酶的生物传感器.高等学校化学学报.2004,25(10):1820-1824.
    [128]马洁,武海,朱亚琦.以新亚甲蓝为介体的过氧化氢传感器的电化学行为研究.化学通报.2006,12:916-920.
    [129]Singh S,Solanki P R,Pandey M K,et al.Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor.Anal Chim Acta.2006,568(1-2):126-132.
    [130]王雅琴.共价修饰的辣根过氧化物酶及其在酶传感器中的应用.北京化工大学学报.1999,26(1):5-7.
    [131]Villalonga R,Fujii A,Shinohara H,et al.Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction.Sensor Actuat B.2008,129(1):195-199.
    [132]Kang X H,Mai Z B,Zou X Y,et al.A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes.Anal Biochem.2007,369(1):71-79.
    [133]应太林,孙康,刘海英等.用Nation膜固定的N-甲基吩嗪为介体的过氧化氢生物传感器.上海大学学报(自然科学版).1997,3(2):188-93.
    [134]Yu J J,Yu D L,Zhao T,et al.Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix.Talanta.2008,74(5):1586-1591.
    [135]侯宪全,任湘菱,唐芳琼等.纳米ZnO增强葡萄糖生物传感器的制备和应用.分析化学.2006,34(3):303-306.
    [136]Ghica M E,Pauliukaite R,Marchand N et al.An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutrai red)modified carbon film electrodes.Anal Chim Acta.2007,591(1):80-86.
    [137]薛怀国,沈之荃,李永舫.胺氧化酶修饰聚苯胺电极的生物电化学响应特性.高等学校化学学报.2002,23(4):730-733.
    [138]Kizilyar N,Akbulut U,Toppare L,et al.Immobilization of invertase in conducting polypyrrole/polytetrahydrofuran graft polymer matrices.Synthetic Met.1999,104(1):45-50.
    [139]Thanaehasai S,Rokutanzono S,Yoshida S,et al.Novel hydrogen peroxide sensors based on peroxidase-carrying poly{pyrrole-co-[4-(3-pyrrolyl)butanesulfonate]} copolymer films.Analytical Sci.2002,18(7):773-777.
    [140]Ramanavicius A,Ramanaviciene A,Malinauskas A.Electrochemical sensors based on conducting polymer-polypyrrole.Electrochim Acta.2006,51(27):6025-6037.
    [141]严少华,应太林,刘海鹰.再生丝心蛋白和羧甲基纤维素复合膜的特性及其在有机相葡萄糖生物传感器中的应用.上海大学学报.1998,5:506-512.
    [142]周纪宁,金浩,江体乾等.抗癌酶制剂L-天冬酰胺酶在甲壳素上的固定化.华东理工大学学报.1999.5:438-441.
    [143]Xiao D,Choi M M F.Aspartame optical biosensor with bienzyme-immobilized eggshell membrane and oxygen-sensitive optode membrane.Anal Chem.2002,74(4):863-870.
    [144]Rusling J F,Nassar A E F.Enhanced electron transfer for myoglobin in surfactant films on electrodes.J.Am.Chem.Soc.1993,115(25):11891-11897.
    [145]Cullison J K,Hawkridge F M,Nakashima N,et al.A study of cytochrome c oxidase in lipid bilayer membranes on electrode surfaces.Langmuir.1994,10(3):877-882.
    [146]Fantuzzi A,Fairhead M,Gilardi G.Direct Electrochemistry of Immobilized Human Cytochrome P450 2E1.J Am Chem Soc.2004,126(16):5040-5041.
    [147]Jeanty G,Wojciechowska A,Marty J L.Flow-injection amperometric determionation of pesticides on the basis of their inhibition of immobilized acetylcholinesterases of different origin.Anal Bioanal Chem.2002,373(8):691-695.
    [148]Gogol E V,Evtugyn G A,Marty J L,et al.Amperometric biosensors based on nation coated screen-printed electrodes for the determination of cholinesterase inhibitots.Talanta.2000,53(2):379-389.
    [149]Liu Z J,Deng J Q,Li D.A new tyrosinase biosensor based on tailoring the porosity of Al_2O_3sol-gel to co-immobilize tyrosinase and the mediator.Anal Chim Acta.2000,407(1-2):87-96.
    [150]Konig A,Reul T,Harmeling C,et al.Multimicrobial sensor using microstructured threedimensional electrodes based on silicon technology.Anal Chem.2000,72(9):2022-2028.
    [151]Imanaka N,Kamikawa M,Adachi G Y.A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode.Anal.Chem.2002,74(18):4800-4804.
    [152]Su M,Li S Y,Dravid V P.Miniaturized Chemical Multiplexed Sensor Array.J Am Chem Soc.2003,125(33):9930-9931.
    [153]李花子,张悦,施汉昌等.BOD生物传感器在海洋监测中的应用.海洋环境科学.2002,21(3):14-17.
    [154]曹焕生,徐明芳.生物传感器在渔业监测中的研究进展.海洋环境科学.2002,21(1):75-80.
    [155]Morales M D,Morante S,Escarpa A,et al.Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food.Talanta.2002,57(6):1189-1198.
    [156]Tkac J,Vostiar I,Gemeiner P,et al.Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity.Bioelectrochemistry.2002,56(1-2):127-129.
    [157]Niculescu M,Erichsen T,Sukharev V,et al.Quinohemoprotein alcohol dehydrogenase-based reagentless amperometric biosensor for ethanol monitoring during wine fermentation.Anal Chim Acta.2002,463(1):39-51.
    [158]王深琪,李世普,闫玉华.测定胆固醇含量的生物传感器研究进展.传感器技术.1998,17(5):1-3.
    [159]郭鼎力,谢国雄,曾义.高灵敏度双介体基胆固醇/葡萄糖生物传感器的研制及其临床试验结果.传感技术学报.1999,1:29-34.
    [160]Kim E J,Yanagida Y,Haruyama T,et al.Immunosensing system for α-fetoprotein coupled with a disposable amperometric glucose oxidase sensor.Sensor Actuat B.2001,79(2-3):87-91.
    [161]干宁,李天华,侯琳熙等.自组装CA125免疫传感器的研制及其对血清中CA125的分析.传感技术学报.2007,20(8):1687-1691.
    [162]Birringer R,Gleiter H,Klein H P,et al.Nanocrystalline materials:an approach to a novel solid structure with gas-like disorder? Phys lett.1984,102A(8):365-369.
    [163]张全勤,张继文.纳米技术新进展.北京:国防工业出版社.2005,46-102.
    [164]刘吉平,廖莉玲.无机纳米材料.北京:科学出版社.2004,17-22.
    [165]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社.2006,7-10.
    [166]曹茂盛,蒋成禹,田永君.纳米材料导论.哈尔滨:哈尔滨工业大学出版社.2001,12-14.
    [167]邓永沛,赵红秋,江龙.纳米金颗粒在仿生工程中的应用.中国基础科学.2000,9:11-17。
    [168]吴维明,蔡强,陈裕泉.纳米金在生物检测中的应用.国外医学生物医学工程分册.2003,26(5):193-197.
    [169]李巧铃,Burgi Thomas.金纳米粒子的合成和应用.现代化工.27卷增刊(1):378-381.
    [170]Faraday M.Preparation of Colloidal gold.Philos Trans Roy Soc London,1857,147:145-181.
    [171]Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Natature:Phys.Sci.1973,241(105):20-22.
    [172]Mirkin C A,Letsinger R L,Mucic R C,et al.A DNA-based method for rationally assembling nanopartieles into macroscopic materials.Nature.1996,382:607-609.
    [173]缪谦,金葆康,林祥钦.ss-DNA在纳米金上固载和杂化的电化学传感研究.高等学校化学学报.2000,21(1):27-30.
    [174]李金花,胡劲波.功能化纳米金增强的DNA电化学检测和序列分析.化学学报.2004,62(20):2081-2088.
    [175]李金花,胡劲波,丁小勤等.功能化纳米金放大的DNA电化学传感器研究.高等学校化学学报.2005,26(8):1432-1436.
    [176]Cai H,Xu C,He P,et al.Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA.J Electroanal Chem.2001,510,78-85.
    [177]Lei C X,Yang Y,Wang H,et al.Amperometric immunosensor for probing complement Ⅲ(C_3)based on immobilizing C_3 antibody to a nano-Au monolayer supported by sol-gel-derived carbon ceramic electrode.Anal Chim Acta.2004,513(2):379-384.
    [178]许媛媛,边超,陈绍凤等.基于微机电系统技术和纳米金自组装膜的安培型免疫传感器研究.分析化学.2006,,34(5):608-612.
    [179]黎雪莲,袁若,柴雅琴等.基于多层酶/纳米金固定甲胎蛋白免疫传感器的研究.化学学报.2006,64(4):325-330.
    [180]唐点平,袁若,柴雅琴等.纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫传感器 的研究.化学学报.2004,62(20):2062-2066.
    [181]Zhuo Y,Yuan R,Chai Y Q,etal.A tris(2,2-bipyridyl)cobalt(Ⅲ)-bovine serum albumin composite membrane for biosensors.Biomaterials.2006,27(31):5420-5429.
    [182]Li N,Yuan R,Chai Y Q,et al.New antibody immobilization strategy based on gold nanoparticles and azure I/multi-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor.J Phys Chem C.2007,111(24):8443-8450.
    [183]Grabar,K C,Freeman R G,Hommer,M B,et al.Preparation and characterization of Au colloid monolayers.Anal Chem.1995,67(4):735-743.
    [184]Grabar K C,Smith P C,Musick M D,et al.Kinetic control of interparticle spacing in Au colloid-based surfaces:rational nanometer-scale architecture,J Am Chem Soc.1996,118(5):1148-1153.
    [185]陈贤光,钱莹,张素娟等.基于纳米金和硫堇固定酶的过氧化氢生物传感器.化学学报.2007,65(4):337-343.
    [186]李春香,阳明辉,沈国励等.基于2,6-吡啶二甲酸聚合膜固定纳米金胶的过氧化氢传感器的研究.化学学报.2004,62(17):1663-1667.
    [187]唐芳琼,孟宪伟,陈东等.纳米颗粒增强的葡萄糖生物传感器.中国科学(B).2000,30(2):199-124.
    [188]Liu S,Peng L,Yang X,et al.Electrochemistry of cytochrome P450 enzyme on nanoparticlecontaining membrane-coated electrode,and its applications for drug sensing.Anal Biochem.2008,375(2):209-216.
    [189]Xu Q,Mao C,Liu N N,et al.Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite.Biosens Bioelectron.2006,22(5):768-773.
    [190]Shumyantseva V V,Carrara S,Bavastrello V,et al.Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes.Biosens Bioelectron.2005,21(1):217-222.
    [191]Liu S Q,Ju H X.Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode.Anal Biochem.2002,307(1):110-116.
    [192]Xu S,Han X.A novel method to construct a third-generation biosensor:self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid)nanospheres.Biosens Bioelectron.2004,19(9):1117-1120.
    [193]Zhang J D,Oyama M.Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization:direct electrochemistry and catalysis to hydrogen peroxide.J Electroanal Chem.2005,577(2):273-279.
    [194]Wang L,Wang E.A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode.Electrochem Commun.2004,6(2):225-229.
    [195]Iijima S.Helical microtubules of graphitic carbon.Nature.1991,354,56-58.
    [196]Iijima S,Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter.Nature.1993,363,603-605.
    [197]Bethune D S,Klang C H,de Vries M S,et al.Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls.Nature.1993,363,605-607.
    [198]韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社.2006,5-23.
    [199]Ivanov V,Nagy J B,Lambin P H,et al.The study of carbon nanotubules produced by catalytic method.Chem Phys Lett.1994,223:329-335.
    [200]lijima S,Ichihashi T,Ando Y'.Pentagons,heptagons and negative curvature in graphite microtubule growth.Nature.1992,356:776-778.
    [201]Ebbesen T W,Ajayan P M.Large-scale synthesis of carbon nanotubes.Nature.1992,358:220-222.
    [202]Journet C,Maser W K,Bemier P,et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique.Nature.1997,388:756-758.
    [203]Ando Y,Zhao X,Hirahara K,et al.Mass production of single-wall carbon nanotubes by the arc plasma jet method.Chem Phys Lett.2000,323:580-585.
    [204]Thess A,Lee R,Nikolaev P,et al.Crystalline ropes of metallic carbon nanotubes.Science.1996,273:483-487.
    [205]Yudasaka M,Komatsu T,Ichihashi T,et al.Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal.Chem Phys Lett.1997,278:102-106.
    [206]Guo T,Nikolaev P,Thess A,et al.Catalytic growth of single-nanotubes by laser vaporization,Chem Phys Lett.1995,243:49-54.
    [207]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社.2006,153-154.
    [208]朱宝华.碳纳米管的制备工艺与生长机理.山西建筑.2007,33(33):174-175.
    [209]曹清,陈召勇,李言荣等.碳纳米管纯化的研究进展.电子元件与材料.2004,23(9):37-40.
    [210]张露,梁永仁,张太蔚等.纳米金/碳纳米管复合材料的研究进展.材料导报.2006,20:191-195.
    [211]郭铁波,杨庆祥.碳纳米管复合材料的研究应用现状与展望.燕三大学学报.2006,30(1):30-33.
    [212]Jiang K Y,Eitan A,Schadler L S,et al.Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes.Nano Lett.2003,3(3):275-277.
    [213]Sainsbury T,Stolarczyk J,Fitzmaurice D.An experimental and theoretical study of the self-assembly of gold nanoparticles at the surface of functionalized multi-walled carbon nanotubes.J Phys Chem B.2005,109(34):16310-16325.
    [214]赵琨,宋海燕,常竹等.铂纳米颗粒修饰直立碳纳米管电极的葡萄糖生物传感器.高等学校化学学报.2007,28(7):1251-1254.
    [215]时巧翠,彭图治,陈金媛.碳纳米管负载铂修饰电极结合溶胶-凝胶技术制备胆固醇传感器.分析化学.2005,33(3):329-332.
    [216]Manso J,Mena M L,Yanez-Sedeno P,et al.Alcohol dehydrogenase amperometric biosensor based on a colloidal gold-carbon nanotubes composite electrode.Electrochim Acta.2008,53(11):4007-4012.
    [217]Kang X H,Mai Z B,Zou X Y,et al.A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes.Anal Biochem.2007,369(1):71-79.
    [218]Lim S H,Wei J,Lin J,et al.A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode.Biosens Bioelectron.2005,20(11):2341-2346.
    [219]孙晓刚.碳纳米管/聚合物复合材料研究和应用进展.塑料.2003,32(5):1-7.
    [220]肖军华,曹有名,周彦豪.碳纳米管/聚合物复合材料的研究进展.塑料.2007,36(4):78-84.
    [221]Kum M C,Joshi K A,Chen W,et al.Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application.Talanta.2007,74(3):370-375.
    [222]Luo X,Killard A J,Morrin A,et al.Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline.Anal Chim Acta.2006,575(1):39-44.
    [223]徐静.[碳纳米管基杂化材料的制备及其性能研究学位论文].安徽:安徽师范大学.2006,3-5.
    [224]李达钱,陈金媛.碳纳米管/TiO_2电极光电催化测定耐兰方法探讨.浙江工业大学学报.2006,34(4):369-372.
    [225]高晓红,张登松,施利毅等.碳纳米管/SnO_2复合电极的制备及其电催化性能研究.化学学报.2007,65(7):589-594.
    [226]Hieu N V,Thuy L T B,Nguyen D C,et al.Highly sensitive thin film NH_3 gas sensor operating at room temperature based on SnO_2/MWCNTs composite.Sensor Actuat B.2008,129(2):888-895.
    [227]Zhang Y Z,Cai Y J,Su S.Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid)sodium salt/single-wall carbon nanotube film modified glassy carbon electrode.Anal Biochem.2006,350(2):285-291.
    [228]Wang G Y,Liu X J,Yu B,et al.Electrocatalytic response of norepinephrine at β-cyclodextrin incorporated carbon nanotube modified electrode.J Electroanal Chem.2004,567(2):227-231.
    [229]Gong K P,Dong Y,Xiong S X,et al.Novelelectrochemicalmethod forsensitive determination of homocysteine withcarbon nanotube-based electrodes.Biosens Bioelectron.2004,20(2)253-259.
    [230]Yogeswaran U,Chen S M.Multi-walled carbon nanotubes with poly(methylene blue)composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid.Sensor Actuat B.2008,130(2):739-749.
    [231]Yogeswaran U,Chen S M.Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbie acid,dopamine and uric acid at f-MWCNTs incorporated with poly(neutral red)composite films.Electrochim Acta.2007,52(19):5985-5996.
    [232]Shahrokhian S,Zare-Mehrjardi H R.Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid.Electrochim Acta.2007,52(22):6310-6317.
    [233]杜攀,石彦茂,吴萍等.1,2-萘醌修饰的碳纳米管对β-烟酰胺腺嘌呤二核苷酸电化学氧化的催化作用.2006,34(12):1688-1692.
    [234]Zhu L,Zhai J,Yang R,et al.Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.Biosens Bioelectron.2007,22(11):2768-2773.
    [235]Davis J J,Coles R J,Hill H A O.Protein electrochemistry at carbon nanotube electrodes.J Electroanal Chem.1997,440(1-2):279-282.
    [236]Zhao Y D,Zhang W D,Chen H,et al.Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode.Sensor Actuator B.2002,87(1):168-172.
    [237]蔡称心,陈静,陆天虹.碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移.中国科学(B辑).2003,33(6):511-518.
    [238]Zhao G C,Zhang L,Wei X W,et al.Myoglobin on multi-walled carbon nanotubes modified electrode:direct electrochemistry and electrocatalysis.Electrochem Commun.2003,5(9):825-829.
    [239]Cai C X,Chen J.Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode.Anal Biochem.2004,325(2):285-292.
    [240]Wang L,Wang J X,Zhou F M.Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes.Electroanalysis.2004,16(8):627-632.
    [241]Wang M,Shen Y,Liu Y,et al.Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes.J Electroanal Chem.2005,578(1):121-127.
    [242]Qi H L,Zhang C X,Li X R.Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin.Sensor Actuat B.2006,114(1):364-370.
    [243]Yao Y L,Shiu K K.Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O)film.Electrochim Acta.2007,53(2):278-284.
    [244]Zhu L,Yang R,Zhai J,et al.Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode.Biosens Bioelectron.2007,23(4):528-535.
    [245]Tsai Y C,Chen S Y,Liaw H W.Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors.Sensor Actuat B.2007,125(2):474-481.
    [246]Tsai Y C,Chiu C C.Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds.Sensor Actuat B. 2007,125(1): 10-16.
    [247]Tsai Y C, Huang J D, Chiu C C. Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite. Biosens Bioelectron. 2007,22(12): 3051-3056.
    [248] Li G, Liao J M, Hu G Q, et al. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens Bioelectron. 2005,20(10): 2140-2144.
    [249] Du D, Huang X, Cai J, et al. Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensor Actuat B. 2007,127(2): 531-535.
    [250] Li J, Liu Q, Liu Y, et al. DNA biosensor based on chitosan film doped with carbon nanotubes. Anal Biochem. 2005, 346(1): 107-114.
    [251] Jiang C, Yang T, Jiao K, et al. A DNA electrochemical sensor with poly-1-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim Acta. 2008, 53(6): 2917-2924.
    [252] Wang J, Kawde A N, Jan R M. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosens Bioelectron. 2004, 20(5): 995-1000.
    [253] Cheng G, Zhao J, Tu Y, e al. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in Polypyrrole. Anal Chim Acta. 2005, 533(1): 11-16.
    [254] Panini N V, Messina G A, Salinas E, et al. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Biosens Bioelectron. 2008,23(7): 1145-1151.
    [255] Okuno J, Maehashi K, Kerman K, et al. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron. 2007, 22(9-10): 2377-2381.
    [256] Sanchez S, Pumera M, Fabregas E, et al. Carbon nanotube/polysulfone screen-printed electrochemical immunosensor. Biosens Bioelectron. 2007,23(3): 332-340.
    [257] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films. 1992,210-211(2): 831-835.
    [258] Lvov Y, Decher G, Mohwald H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir. 1993, 9(2): 481-486.
    
    [259] Her R K. Multilayers of colloidal particles. J Colloid Interf Sci. 1966, 21(6): 569-594.
    [260] Lvov Y, Ariga K, Ichinose I, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc. 1995,117(22): 6117-6123.
    [261] Ma H Y, Hu N F, Rusling J F. Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodes. Langmuir. 2000,16(11): 4969-4975.
    [262] Lvov Y M, Lu Z Q, Schenkman J B, et al. Direct electrochemistry of myoglobin and cytochrome P450_(cam) in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc. 1998,120(17): 4073-4080.
    [263] Jin Y D, Shao Y, Dong S J. Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-assembled DNA-myoglobin thin films on chemically modified gold surfaces. Langmuir. 2003,19(11): 4771-4777.
    [264] He P L, Hu N F, Rusling J F. Driving forces for layer-by-layer self-assembly of films of SiO_2 nanoparticles and Heme proteins. Langmuir. 2004, 20(3): 722-729.
    [265] Zhou Y L, Li Z, Hu N F, et al. Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity. Langmuir. 2002, 18(22): 8573-8579.
    [266] Lu M, Li X H, Yu B Z, et al. Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly. J Colloid Interf Sci. 2002, 248(2): 376-382.
    [267] Tedeschi C, Caruso F, Mohwald H, et al. Adsorption and desorption behavior of an anionic pyrene chromophore in sequentially deposited polyelectrolyte-dye thin films. J Am Chem Soc. 2000, 122(24): 5841-5848.
    [268] Shinbo K, Onishi K, Miyabayashi S, et al. Fabrication and electrochemical properties of layer-by-layer deposited films containing phthalocyanine dyes. Thin Solid Films. 2003, 438-439: 177-181.
    [269] Ariga K, Lvov Y, Kunitake T. Assembling alternate dye-polyion molecular film by electrostatic layer-by-layer adsorption. J Am Chem Soc. 1997,119(9): 2224-2231.
    [270] Fukumoto H, Yonezawa Y. Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye.Thin Solid Films. 1998, 327-329: 748-751.
    [271] Chen X D, Lang J, Liu M H. Layer-by-layer assembly of DNA-dye complex films. Thin Solid Films. 2002, 409(2): 227-232.
    [272] Dante S, Advincula R, Frank C W, et al. Photoisomerization of polyionic layer-by-layer films containing azobenzene. Langmuir. 1999,15(1): 193-201.
    [273] Cooper T M, Campbell A L, Crane R L. Formation of polypeptide-dye multilayers by electrostatic self-assembly technique. Langmuir. 1995,11(7): 2713-2718.
    [274] Zhang X, Gao M, Kong X, et al. Build-up of a new type of ultrathin film of porphyrin and phthalocyanine based on cationic and anionic electrostatic attraction. J Chem Soc, Chem Commun. 1994, 9: 1055-1056.
    [275] Lvov Y M, Kamau G N, Zhou D L, et al. Assembly of electroactive ordered multilayer films of cobalt phthalocyanine tetrasulfonate and polycations. J Colloid Interf Sci. 1999, 212(2): 570-575.
    [276] Zhang M N, Gong K P, Zhang H W, et al. Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens Bioelectron. 2005,20(7): 1270-1276.
    [277] Huang H Z, Yang X R. Chitosan mediated assembly of gold nanoparticles multilayer. Colloids and Surfaces A: Physicochem Eng Aspects. 2003,226(1-3): 77-86.
    [278] McKenzie K J, Marken F. Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO_2 Phytate. Langmuir. 2003,19(10): 4327-4331.
    [279] Tang D P, Yuan R, Chai Y Q, et al. New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2'-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations Biosens Bioelectron. 2005,21(4): 539-548.
    [280] Yuan R, Zhang L Y, Li Q F, et al: A label-free amperometric immunosenor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B encephalitis vaccine. Anal Chim Acta. 2005,531(1): 1-5.
    [281] Li J, Xiao L T, Liu X M, et al. Amperometric biosensor with HRP immobilized on a sandwiched nano-Au polymerized m-phenylenediamine film and ferrocene mediator. Anal Bioanal Chem. 2003, 376(6): 902-907.
    [282] Enustun B V, Turkevich J. Coagulation of colloidal gold. J Am Chem Soc. 1963, 85(21): 3317-3328.
    [283] Zhu M, Liu M, Shi G Y. et al. A novel NO microsensor and its application in the detection of in myocardial cells. Chem J Chinese U. 2003,24(2):245-248.
    [284] Yoon H C, Hong M Y, Kim H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Anal Chem. 2000, 72(18): 4420-4427.
    [285] Tian F M, Zhu G Y. Toluidine blue modified self-assembled silica gel coated gold electrode as biosensor for NADH. Sensor Actuat B. 2004,97(1): 103-108.
    [286] Persson B, Gorton L. A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH. J Electroanal Chem. 1990, 292(1-2): 115-138.
    [287] Hale P D, Boguslavsky L I, Inagaki T, et al. Amperometric glucose biosensors based on redox polymer-mediated electron transfer. Anal Chem. 1991,63(7): 677-682.
    [288] Nassar A E F, Rusling J F. Electron transfer between electrodes and heme proteins in protein-DNA films. J Am Chem Soc. 1996, 118(12): 3043-3044.
    [289] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO_2 electrodes. J Am Chem Soc. 1996, 118(5): 1154-1157.
    [290] Wang J X, Li M X, Shi Z J, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem. 2002, 74(9): 1993-1997.
    [291] Schubert F, Saini S, Turner A P F. Mediated amperometric enzyme electrode incorporating peroxidase for the determination of hydrogen peroxide in organic solvents. Anal Chim Acta. 1991,245(2): 133-138.
    [292] Tatsuma T, Okawa Y, Watanabe T. Enzyme monolayer-and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose. Anal Chem. 1989,61(21): 2352-2355.
    [293] Mulchandani A, Wang C L, Weetall H H. Amperometric detection of peroxides with poly(anilinomethylferrocene)-modified enzyme electrodes. Anal Chem. 1995,67(1): 94-100.
    [294] Wendzinski F, Grundig B, Renneberg R, et al. Highly sensitive determination of hydrogen peroxide and peroxidase with tetrathiafulvalene-based electrodes and the application in immunosensing. Biosens Bioelectron. 1997,12(1): 43-52.
    [295] Sanchez P D, Blanco P T, Alvarez J M F, et al. Flow-injection analysis of hydrogen peroxide using a horseradish peroxidase-modified electrode detection system. Electroanalysis. 1990, 2(4): 303-308.
    [296] Karyakin A A, Strakhova A K, Karyakina E E, et al. The electrochemical polymerization of methylene blue and bioelectrochemical activity of the resulting film. Bioelectrochem Bioenerg. 1993, 32(1): 35-43.
    [297] Sorunmu Y E, Nguyen M, Sapp J B, et al. Study of factors affecting molecular behaviors in phenothiazine-mediated biosensing by electrochemical and spectroscopic methods. Electroanalysis. 2006,18(23): 2375-2380.
    [298] Ramirez Molina C, Boujtita M, El Murr N. A carbon paste electrode modified by entrapped toluidine blue-O for amperometric determination of L-lactate. Anal Chim Acta. 1999, 401(1-2): 155-166.
    [299] Lei C H, Deng J Q. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin- glutaraldehyde matrix on a glassy carbon electrode surface. Anal Chem. 1996, 68(19): 3344-3349.
    [300] Chen X, Zhang J Z, Wang, B Q, et al. Hydrogen peroxide biosensor based on sol-gel-derived glasses doped with Eastman AQ polymer. Anal Chim Acta. 2001,434(2): 255-260.
    [301] Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/ redox mediators-biopolymer system. J Am Chem Soc. 2005,127(7): 2058-2059.
    [302] Zhang M G, Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes. Anal Chem. 2005,77(13): 3960-3965.
    [303] Chen H Y, Zhou D M, Xu J J, et al. Electrocatalytic oxidation of NADH at a gold electrode modified by thionine covalently bound to self-assembled cysteamine monolayers. J Electroanal Chem. 1997,422(1-2): 21-25.
    [304] Dai Z, Chen J, Yan F, et al. Electrochemical sensor for immunoassay of carcinoembryonic antigen based on thionine monolayer modified gold electrode. Cancer Detect Prev. 2005, 29(3): 233-240.
    [305] Losada J, Cuadrado I, Moran M, et al. Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors. Anal Chim Acta. 1997,338(3): 191-198.
    [306] Zhuo Y, Yuan R, Chai Y Q, et al. A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion-membrane-modified gold electrode for determination of α-1-fetoprotein. Electrochem Commun. 2005, 7(4): 355-360.
    [307] Zhuo Y, Yuan R, Chai Y Q, et al. A tris(2,2'-bipyridyl)cobalt(III)-bovine serum albumin composite membrane for biosensors. Biomaterials. 2006,27(31): 5420-5429.
    [308] Durliat H, Courteix A, Comtat M. Reactions of horseradish peroxidase on a platinum cathode. Bioelectrochem Bioenerg. 1989,22(3): 197-209.
    [309] Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem. 1980, 52(8): 1198-1205.
    [310] Xiao Y, Ju H X, Chen H Y. A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Anal Chim Acta. 1999, 391(3): 299-306.
    [311] Xu J J, Zhou D M, Chen H Y. A reagentless hydrogen peroxide biosensor based on the coimmobilization of thionine and horseradish peroxidase by their cross-linking with glutaraldehyde on glassy carbon electrode. Electroanalysis. 1998,10(10): 713-716.
    [312] Qian J H, Liu Y C, Liu H Y, et al. Characterization of regenerated silk fibroin membrane for immobilizing peroxidase and construction of an amperometric hydrogen peroxide sensor employing phenazine methosulphate as electron shuttle. J Electroanal Chem. 1995, 397(1-2): 157-162.
    [313] Wang B Q, Dong S J. Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film. Talanta. 2000, 51(3): 565-572.
    [314] Nassar A E F, Willis W S, Rusling J F. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem. 1995, 67(14): 2386-2392.
    [315] Huang W M, Jia J B, Zhang Z L, et al. Hydrogen peroxide biosensor based on microperoxidase-11 entrapped in lipid membrane. Biosens Bioelectron. 2003, 18(10): 1225-1230.
    [316] Liu X J, Xu Y, Ma X, et al. A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and TritonX-100. Sensor Actuat B. 2005,106(1): 284-288.
    [317] Zhang Z, Nassar A E, Lu Z, et al. Direct electron injection from electrode to cytochrome P450cam in biomembrane-like films. J Chem Soc Faraday Trans. 1997,93(9): 1769-1774.
    [318] Huang H, He P L, Hu N F, et al. Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry. 2003, 61(1-2): 29-38.
    [319] Huang H, Hu N F, Zeng Y H, et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem. 2002, 308(1): 141-151.
    [320] Fan C, Wang H, Sun S, et al. Electron transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane. Anal Chem. 2001, 73(13): 2850-2854.
    [321] He P L, Hu N F. Electrocatalytic properties of heme proteins in layer-by-layer films assembled with SiO_2 nanoparticles. Electroanalysis. 2004,16(13-14): 1122-1137.
    [322] Li Q W, Luo G A, Feng J. Direct electron transfer for heme proteins assembled on nanocrystalline TiO_2 film. Electroanalysis. 2001,13(5): 359-363.
    [323] Zhao G, Feng J J, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO_2 film. Electrochem Commun. 2005,7(7): 724-729.
    [324] Yao S J, Xu J H, Wang Y, et al. A highly sensitive hydrogen peroxide amperometric sensor based on MnO_2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta. 2006, 557(1-2): 78-84.
    [325] Liu S Q, Dai Z H, Chen H Y, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens Bioelectron. 2004, 19(9): 963-969.
    [326] Zhang L, Jiang X, Wang E, et al. Attachment of gold nanoparticles to glassy carbon electrodeand its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens Bioelectron 2005,21(2): 337-345.
    [327] Zhao G C, Zhang L, Wei, X W. An unmediated H_2O_2 biosensor based on the enzyme-like activity of myoglobin on multi-walled carbon nanotubes. Anal Biochem. 2004, 329(1): 160-161.
    [328] Zhao G C, Yin Z Z, Zhang L, et al. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2 Electrochem Commun. 2005, 7(3): 256-260.
    [329] Zhao Y D, Bi Y H, Zhang W D, et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H_2O_2. Talanta. 2005,65(2): 489-494.
    [330] Fu Q, Lu C G, Liu J. Selective coating of single wall carbon nanotubes with thin SiO_2 layer. Nano Lett. 2002, 2(4): 329-332.
    [331] Banerjee S, Wong S S. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett. 2002, 2(3): 195-200.
    [332] Shi J H, Qin Y J, Wu W, et al. In situ synthesis of CdS nanoparticles on multi-walled carbon nanotubes. Carbon. 2004,42(2): 455-458.
    [333] Guo D J, Li H L. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon. 2005, 43(6): 1259-1264.
    [334] Yu R, Chen L, Liu Q, et al. Platinum deposition on carbon nanotubes via chemical modification. Chem Mater. 1998,10(3): 718-722.
    [335] Liu L Q, Wang T X, Li J X, et al. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett. 2003, 367(5-6): 747-752.
    [336] Yang M H., Yang Y H, Liu Y L, et al. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensorsand biosensors. Biosens Bioelectron 2006, 21(7): 1125-1131.
    [337] Tang H, Chen J H, Yao S Z, et al. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode.Anal Biochem.2004,331(1):89-97.
    [338]Zhu N N,Chang Z,He P A,et al.Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes.Anal Chim Acta.2005,545(1):21-26.
    [339]Yang M H,Yang Y,Yang H F,et al.Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles withpolyelectrolyte for the fabrication of biosensors.Biomaterials.2006,27(2):246-255.
    [340]Liu Y,Wang M K,Zhao F,et al.Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film.J Electroanal Chem.2005,581(1):1-10.
    [341]Jitianu A,Cacciaguerra T,Berger M H,et al.New carbon multiwall nanotubes -TiO_2nanocomposites obtained by the sol-gel method.J Non-Cryst Solids.2004,345-346:596-600.
    [342]Jiang L Q,Gao L,Sun J.Production of aqueous colloidal dispersions of carbon nanotubes.J Colloid Interf Sci.2003,260(1):89-94.
    [343]Richard C,Balavoine F,Schultz P,et al.Supramolecular self-assembly of lipid derivatives on carbon nanotubes.Science.2003,300(5620):775-778.
    [344]Guo M L,Chen J H,Nie L H,et al.Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride.Electrochim Acta.2004,49(16):2637-2643.
    [345]Chen X,Hu N,Zeng Y,et al.Ordered electrochemically active films of hemoglobin,didodecyldimethylammonium ions,and clay.Langmuir.1999,15(20):7022-7030.
    [346]Valentini F,Amine A,Orlanducci S,et al.Carbon nanotube purification:preparation and characterization of carbon nanotube paste electrodes.Anal Chem.2003,75(20):5413-5421.
    [347]Wang J,Musameh M.Carbon nanotube/Teflon composite electrochemical sensors and biosensors.Anal Chem.2003,75(9):2075-2079.
    [348]Chakraborty S,Raj C R.Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes-biopolymer nanocomposite.J Electroanal Chem.2007,609(2):155-162.
    [349]Xiang C L,Zou Y J,Sun L X,et al.Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes- modified electrode.Talanta.2007,74(2):206-211.
    [350]Gooding J J,Wibowo R,Liu J Q,et al.Protein electrochemistry using aligned carbon nanotube arrays.J Am Chem Soc.2003,125(30):9006-9007.
    [351]Tkac J,Whittaker J W,Ruzgas T.The use of single walled carbon nanotubes dispersed in achitosan matrix for preparation of a galactose biosensor.Biosens Bioelectron.2007,22(8):1820-1824.
    [352]Hrapovic S,Liu Y,Male K B,et al.Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes.Anal Chem.2004,76(4):1083-1088.
    [353]Calvo E J,Etchenque R,Pietrasanta L,et al.Layer-by-layer self-assembly of glucose oxidase and os(Bpy)2CIPyCH2NH-poly(allylamine) bioelectrode. Anal Chem. 2001, 73(6): 1161-1168.
    [354] Lvov Y, Munge B, Giraldo O, et al. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption. Langmuir. 2000,16(23): 8850-8857.
    [355] Kimizuka N, Tanaka M, Kunitake T. Spatially controlled synthesis of protein/inorganic nano-assembly: alternate molecular layers of Cyt c and TiO_2 nanoparticles. Chem Lett. 1999, 28(12): 1333-1334.
    [356] Patosky F, Gabriel T, Willner I. Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J Electroanal Chem. 1999, 479(1): 69-73.
    
    [357] Yang J, Hu N F, Rusling J F. Enhanced electron transfer for hemoglobin in poly (ester sulfonic acid) films on pyrolytic graphite electrodes. J Electroanal Chem. 1999,463(1): 53-62.
    [358] Gao L Z, Zhang X T, Dai S X, et al. Preparation of PyDDP-modified gold nanoparticles and mechanism for red-shift in the surface plasma resonance absorption. Acta Phys -Chim Sin. 2004, 20(6): 647-650.
    [359] Zhao J, Henkens R W, Stonchuerner J, et al. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes. J Electroanal Chem. 1992, 327(1-2): 109-119.
    [360] Crumbliss A L, Stonchuerner J G, Henkens R W, et al. A carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosens Bioelectron. 1993, 8(6): 331-337.
    [361] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science. 1997,275(5303): 1102-1106.
    [362] Kim J, Lee J E, Lee J Y, et al. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. Angew Chem Int Ed. 2006,45(29): 4789-4793.
    [363] Kim J, Park S, Lee J E, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed. 2006, 45(46): 7754-7758.
    [364] Stoeva S I, Huo F W, Lee C, et al. Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc. 2005,127(44): 15362-15363
    [365] Soppimath K S, Liu L H, Seow W Y, et al. Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery, Adv Funct Mater. 2007,17(3): 355-362.
    [366] Zhang Y, Zeng G M, Tang L, et al. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosens Bioelectron. 2007, 22(9-10): 2121-2126.
    [367] Gong J L, Liang Y, Huang Y, et al. Ag/SiO_2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools.Biosens Bioelectron.2007,22(7):1501-1507.
    [368]Tang D P,Yuan R,Chai Y Q,et al.Magnetic-core/porous-shell CoFe_2O_4/SiO_2 composite nanoparticles as immobilized affinity supports for clinical immunoassays.Adv.Funct Mater.2007,17(6):976-982.
    [369]Tang D P,Yuan R,Chai Y Q.Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays.Clin Chem.2007,53(7):1323-1329.
    [370]Luo H X,Shi Z J,Li N Q,et al.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode.Anal Chem.2001,73(5):915-20.
    [371]Zhang J,Feng M,Tachikawa H.Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes.Biosens Bioelectron.2007,22(12):3036-3041.
    [372]Male K B,Hrapovic S,Liu Y,et al.Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes.Anal Chim Acta.2004,516(1-2):35-41.
    [373]Yang M H,Jiang J H,Yang Y H,et al.Carbon nanotube/cobalt hexacyanoferrate nanoparticlebiopolymer system for the fabrication of biosensors.Biosens Bioelectron.2006,21(9):1791-1797.
    [374]Qu S,Huang F,Chen G,et al.Magnetic assembled electrochemical platform using Fe_2O_3filled carbon nanotubes and enzyme.Electrochem Commun.2007,9(12):2812-2816.
    [375]Fei B,Lu F H,Xin J H.One-step preparation of organosilica@chitosan crosslinked nanospheres.Polymer.2006,47(4):947-950.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700