用户名: 密码: 验证码:
碳纳米管增强镍基复合镀层的性能及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合电镀是指在电镀溶液中加入一种或几种不溶性固态增强体,在金属离子电沉积的同时将不溶性的固态增强体颗粒或纤维均匀牢固地结合到金属镀层中的方法。复合镀层是一类以基质金属为均匀连续相和以不溶性增强体为分散相的金属基复合材料。碳纳米管增强镍基复合镀层由于综合了碳纳米管的高强度、高模量、良好的自润滑效果和镍金属的耐高温、耐腐蚀等方面的作用而日益受到人们的关注。但已有文献仅对碳纳米管增强镍基复合镀层的部分性能有所简单描述,本文系统研究了各种工艺参数对碳纳米管增强镍基复合镀层性能的影响。在本文的工作中首次发现了一种电沉积过程镍金属的管状生长现象。
     本文在传统Watts镀液的基础上添加了经过表面处理的碳纳米管,通过阴极E-i曲线、表面观察、硬度测试、拉伸试验、极化曲线和交流阻抗等手段综合研究了各种因素对复合镀层性能的影响。研究发现通过前处理,本试验所采用的碳纳米管被有效的提纯、裁短、活化,碳纳米管在复合镀层内均匀分布,分散状态的碳纳米管与镍基体结合紧密。所得到复合镀层结构致密,厚度均匀。与纯镍镀层相比这种复合镀层具有更高的硬度和更好的结合力。镀液中碳纳米管浓度的增加有助于提高镀速,提高镀层的抗开裂性能、与基体的结合力,但CNTS浓度的增加降低了镀层硬度,同时却损害了镀层表面平整度,降低了镀层阻抗值,增大了阳极电流。随电流密度的增加复合镀层表面粗糙度增加,镀层硬度、抗开裂性、与基体附着力、以及耐蚀性都随电流的升高而增加,在8A/dm~2左右达到峰值后又开始下降。升高槽液温度可明显提高镀速和复合镀层硬度,较低温度和较高温度都可获得相对比较平整的Ni-CNTs复合镀层。搅拌速度对复合镀层性能影响不显著,提高搅拌速度可以轻微提高镀速、硬度,增加复合镀层表面粗糙度。
     本文首次将双向脉冲方法与碳纳米管增强复合材料结合起来,研究了脉冲参数与复合镀层性能之间的联系,结果表明负向工作比和脉冲频率的增加都可以通过反向工作过程中尖端放电的影响优先溶解复合镀层上的突起部分,使复合镀层表面粗糙度降低。负向工作比和脉冲频率的增加分别通过增加镍基体溶解过程持续的时间和迅速成核捕获碳纳米管来增加复合镀层内碳纳米管的含量。复合镀层的硬度主要受到镍基体的影响随负向工作比和脉冲频率的增加分别呈现上升和下降的趋势。在30%的负向工作比和100Hz的脉冲频率条件下获得的Ni-CNTs复合材料由于碳纳米管起到很好的增强增韧效果而具有最好的抗开裂性能和与基体的结合性力。脉冲参数对镍基体的影响和镀层中碳纳米管的影响共同作用下使得在30%的负向工作比和100Hz的脉冲频率条件下获得的复合镀层在3.5%中性NaCl溶液中具有最好的耐蚀性。
     综合研究了阴离子表面活性剂和阳离子表面活性剂对碳纳米管增强镍基复合镀层的碳纳米管含量、表面形貌、硬度、附着力、耐蚀性等性能并与未添加活性剂的镀层进行比较,发现阴离子活性剂能有效提高镀层的力学性能而阳离子的作用使得复合镀层的各种性能都有所下降。由于阴离子表面活性剂和阳离子表面活性剂能分别使碳纳米管表面带负电荷和正电荷,因此导致了它们与带负电的电极表面分别产生静电排斥和吸引,因此阴离子表面活性剂降低了镀层内碳纳米管的含量而阳离子表面活性剂提高了镀层内碳纳米管的含量。阴离子活性剂在碳纳米管表面的吸附会加速镍离子的还原从而导致镀层粗糙程度的增加,而吸附有阳离子活性剂的碳纳米更容易吸附在阴极表面造成团聚,也使复合镀层表面变得更加粗糙。阴离子表面活性剂和阳离子表面活性剂都能减小复合镀层晶粒的尺寸,它们也引起了镀层的晶面取向发生了改变。由于阴离子表面活性剂使得金属基体与镀层之间和碳纳米管增强体与镍基体之间的结合更加紧密所以提高了复合镀层的硬度和与基体之间的附着力。而阳离子表面活性剂破坏了金属基体与镀层之间和碳纳米与镍基体之间的结合所以使得镀层硬度和附着力都急剧下降。存在阴离子表面活性剂没有破坏碳纳米管增强镍基电沉积复合材料的耐蚀性能,而阳离子表面活性剂使得膜层致密性变差,失去对基体的保护效果。
     本文首次发现了一种碳纳米管增强镍基金属材料管状生长现象,这种生长方式与目前金属微管制备方法中的条件复杂、对模板的依赖性强的特点相比有一定优势。同时探讨了这种复合金属管的生长机理。研究过程中发现碳纳米管增强镍基金属管状复合材料内壁均匀,管壁结构致密,大部分金属管在生长过程中直径保持一致,金属管外径尺寸分布在200-300μm之间,管壁的厚度约为10-20μm左右。在复合金属管的生长过程中阴极表面析氢反应形成的氢气泡是复合金属管生长的重要原因。碳纳米管在氢气-镀液两相界面的吸附起到了稳定氢气和构建金属管生长基础框架的关键作用。
Composite electrodeposition is a process that introduces some solid reinforcers into a plating bath, and the reinforcers will combine into the metal matrix when the metal ions reduce on the cathode. So composite deposits is a metal matrix composite material, which include a metal continuous phase and reinforcer discontinuous phase. The Nickel-carbon nanotubes composite synthesize the high-intensity, high modulus and excellent self-lubricating properties of carbon nanotubes and the pyrolytic stability and corrosion resistance of nickel, so this composite has been paid more attention in these years. But the existed references only gave some partial and simple researches on this composite. So, a systematic research about the effect of each factor on the composite electrodeposit was performed in this thesis. Base on this research, the tubular growth of nickel-carbon nanotubes was firstly found during the electrodeposition.
     A traditional Watts bath with treated carbon nanotubes was used as the plating cell. The cathodic E-i curve, surface morphology, elements analysis, hardness test, tensile test, polarization curve and electrochemical impedance spectrum (EIS) were performed to find out the relationship between the factors and the composite coating's properties. The results showed that the carbon nanotubes had been purified, shortened and actived after the treatment. The carbon nanotubes uniformly distributed in composite coatings and the dispersed carbon nanotubes combined with nickel matrix tightly. The resultant composite coating has a compact structure and uniform thickness. This composite coating also keeps higher hardness and cohesion ability than pure nickel coating. In the following experiments it has been found that the increasing of carbon nanotubes concentration is helpful to improve the sedimentation velocity, cohesion of the composite coatings but decreases its hardness and surface smoothness. The increasing of deposit current density makes the coating's surface coarser. The hardness, cohesion and corrosion resistance increase firstly with the increasing of current density, and decrease after reaching their peak values at 8A/dm~2. Higher bath temperature can improve the sedimentation velocity and coating's hardness. A smooth surface can be performed in either higher temperature or lower temperature bath. The agitation keeps weak effects on composite coating's properties, and the increasing of agitation can improve the coating's sedimentation velocity and hardness slightly.
     The pulse reverse process and Ni-CNTs composite was firstly utilized together to gain a perfect composite in this thesis. The relationship between pulse reverse parameters and the composite coating's properties was studied. The results showed that the increasing of both reverse ratio and frequency made the coating's surface smoother because the selective solution of nickel on the bumps. The carbon nanotubes content in composite coatings increases with higher reverse ratio and frequency because the increasing of reverse ratio can make more nickel dissolved and higher frequency give more opportunities to combine carbon nanotubes in composite coatings. Harder composite coatings can be gained at higher reverse ratio and lower frequency, which is mainly effected by the nickel matrix. The coating formed at 30% reverse ratio and 100Hz keeps the best cohesion to the carbon steel because the carbon nanotubes' reinforce. The effect of nickel matrix and carbon nanotubes make the coating formed at 30% reverse ratio and 100Hz keep the best corrosion resistance.
     The effect of anion surfactant and cation surfactant on the carbon nanotubes content, surface morphology, hardness, cohesion and corrosion resistance of composite coatings was studied and compared with the coatings without the assistance of surfactant. The results showed the addition of anion surfactant improved the composite coatings' mechanical properties but the cation surfactant made the coatings worse. The anion surfactant makes the carbon nanotubes charged with anions so it decrease the carbon nanotubes content in coatings because of the electrostatic repulsion, and the cation surfactant makes the carbon nanotubes charged with cations so it increase the carbon nanotubes content because of the electrostatic attraction. The nanotubes with anion surfactant can accelerate the nickel ions reduction on the cathode, which make the composite coatings coarser, and the cation surfactant can also make composite surfaces coarser by the more tangled carbon nanotubes. Both anion surfactant and cation surfactant can decrease the nickel grain size and change the texture coefficient of crystal plane. The anion can increase the cohesion between the and subsequently improve coating's hardness and the cohesion between the composite coating and the carbon steel. The cation makes the cohesion between carbon nanotubes and nickel deposits worse, so the composite coatings keep low hardness and poor cohesion to the carbon steel. Corrosion resistance of coatings with anion surfactant is not decreased but coatings with the assistance of cation surfactant loss its corrosion resistance and can not protect the parent metal effectively.
     The tubular growth of nickel-carbon nanotubes was firstly found during the electrodeposition in this thesis. This process is different from the existed template auxiliary deposition process about its complex procedures and the dependence on template material. The deposition mechanics of this nickel matrix composite was also discussed in this thesis. The research on this metal tube shows that the inner surface of this tube is smooth and the tube wall is compact. The outside diameter of this tubule is about 200-300μm with a wall thickness of about 10-20μm. The hydrogen bubbles play a great part in the metal tube formation. The absorption of carbon nanotubes on the interface between the bubble and electrolyte is the key procedure to stabilize the bubble on the electrode surface and act as the frame construction of nickel ions reduce.
引文
[1] C.W. Bennett, C.C. Rose, L.G. Tinkler. Electrodeposition of Nickel [J]. Journal of Physical Chemistry, 1915,19(7): 564-568.
    
    [2] M.M. Uplane, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, A.C. Sonavane, P.S. Patil. Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide [J]. Applied Surface Science, 2007, 253(24): 9365-9371.
    
    [3] Y.J. Li, J. Mueller, H.W. Hoppel, M. Goken, W. Blum. Deformation kinetics of nanocrystalline nickel [J]. Acta Materialia, 2007, 55(17): 5708-5717.
    
    [4] Y. Zhou, H. Zhang, B. Qian. Friction and wear properties of the co-deposited Ni-SiC nanocomposite coating [J]. Applied Surface Science, 2007, 253(20): 8335-8339.
    
    [5]T. Mahalingam, M. Raja, S. Thanikaikarasan, C. Sanjeeviraja, S. Velumani, Hosun Moon, Yong Deak Kim. Electrochemical deposition and characterization of Ni-P alloy thin films [J]. Materials Characterization, 2007, 58(8): 800-804.
    
    [6]T.H. Yim, S.C. Yoon, H.S. Kim. Tensile properties of electrodeposited nanocrystalline nickel [J].Materials Science and Engineering: A, 2007, 449(25): 836-840.
    
    [7] S.S. Kruglikov, N.T. Kudryavtsev, R.P. Sobolev. The effect of some primary and secondary brighteners on the double layer capacitance in nickel electrodeposition [J]. Electrochimica Acta,1967, 12(9): 1263-1271.
    
    [8] C.T. Walker, R.Walker. Effect of ultrasonic agitation on some properties of electrodeposits [J].Electrodeposition and Surface Treatment, 1973, 1(6): 457-469.
    
    [9] S. Nageswar. Crystal growth at the cathode [J]. Electrodeposition and Surface Treatment, 1975,3(5): 417-433
    
    [10] N. Fenineche, C. Coddet, A. Saida. Effect of electrodeposition parameters on the microstructure and mechanical properties of Co-Ni alloys [J]. Surface and Coatings Technology, 1990, 41(1): 75-81.
    
    [11] A. Bai, C.C. Hu. Effects of electroplating variables on the composition and morphology of nickel-cobalt deposits plated through means of cyclic voltammetry [J]. Electrochimica Acta, 2002,47(21): 3447-3456.
    [12]S.T.Shiue,C.H.Yang,R.S.Chu,T.J.Yang.Effect of the coating thickness and roughness on the mechanical strength and thermally induced stress voids in nickel-coated optical fibers prepared by electroless plating method[J].Thin Solid Films,2005,485(1):169-175.
    [13]徐关庆,林胜荣.汽车防护性表面处理技术发展[J].电镀与精饰,2007,29(4):27-32.
    [14]屠振密,胡会利,程瑾宁,李宁.电沉积合金研究的新进展[J].电镀与涂饰,2007,26(7):42-47.
    [15]冯秋元,李廷举,金俊泽.复合电镀机理研究及最新进展[J].稀有金属材料与工程,2007,36(3):559-564.
    [16]吕柏林.耐磨复合镀层的研究进展[J].电镀与精饰,2007,29(1):27-31.
    [17]林中进,朱有兰.在电子行业应用电镀技术的现状利展望[J].广东工业大学学报(社会科学版),2003,3(z1):183-185.
    [18]lijima,Sumio.Helical Microtubules of Graphitic Carbon.Nature[J],1991,354:56-58.
    [19]L.Sun,F.Banhart,A.V.Krasheninnikov,J.A.Rodriguez-Manzo,M.Terrones,P.M.Ajayan.Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders[J].Science,2006,312:1199-1202.
    [20]M.Zhang,S.L.Fang,A.A.Zakhidov,S.B.Lee,A.E.Alley,C.D.Williams,K.R.Atkinson,R.H.Baughman.Strong,Transparent,Multifunctional,Carbon Nanotube Sheets[J].Science,2005,309:1215-1219.
    [21]D.Ciuparu,Y.Chert,S.Lira,G.L.Hailer,L.Pfefferle.Uniform Diameter Single Walled Carbon Nanotubes Catalytically Grown in Cobalt-Incorporated MCM-41[J].Phys.Chem.B.2004,108(28):10196-10196.
    [22]C.L.Cheung,A.Kurtz,H.Park,C.M.Lieber.Diameter-Controlled Synthesis of Carbon Nanotubes[J].J.Phys.Chem.B,2002,106(10):2429-2433.
    [23]P.Cherukuri,S.M.Bachilo,S.H.Litovsky,R.B.Weisman.Near-lnfrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells[J].J.Am.Chem.Soc,2004,126(48):15638-15639.
    [24]成会明.纳米碳管制备、结构、物性及应用[M].化学工业出版社,2002:32.
    [25]曾华梁,吴仲达.电镀工艺手册[M].机械工业出版社,1999:628-630.
    [26]L.Shi,C.F.Sun,P.Gao,F.Zhou,W.M.Liu.Mechanical properties and wear and corrosion resistance of electrodeposited N i-Co/SiC nanocomposite coating[J].Applied Surface Science,2006,252(10):3591-3599.
    [27]K.C.Chart,G.F.Wang,C.L.Wang,K.F.Zhang.Low temperature and high strain rate superplasticity of the electrodeposited Ni/Si3N4(W)composite[J].Scripta Materialia,2005,53(11):1285-1290.
    [28]W.Wang,F.Y.Hou,H.Wang,H.T.Guo.Fabrication and characterization of Ni-ZrO_2 composite nano-coatings by pulse electrodeposition[J].Scripta Materialia,2005,53(5):613-618.
    [29]汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998:10-13.
    [30]陈全寿.电镀技术的发展展望[J].表面技术,2000,29(3):1-3.
    [3l]亓新华,彭峰,王红娟.纳米复合电镀研究进展[J].电镀与涂饰,2005,24(11):51-55.
    [32]张凤桥,季孟波,李兰兰,魏子栋.纳米粒子复合镀的研究现状[J].电镀与精饰,2005,27(6):18-23,35.
    [33]Y.Haseko,N.K.Shrestha,S.Teruyama,T.Saji.Reversal pulsing electrodeposition of Ni/polypyrrole composite film[J].Electrochimica Acta,2006,51(18):3652-3657.
    [34]I.Petrov,P.Detkov,A.Drovosekov et al.,Nickel galvanic coatings co-deposited with fractions of detonation nanodiamond[J].Diamond and Related Materials,2006,15(11):2035-2038.
    [35]H.Z.Wang,S.W.Yao,S.J.Matsumura.Electrochemical preparation and characterization of Ni/SiC gradient deposit[J].Journal of Materials Processing Technology,2004,145(3):299-302.
    [36]Y.J.Xue,X.Z.Jia,Y.W.Zhou,W.Ma,J.S.Li.Tribological performance of Ni-CeO_2 composite coatings by electrodeposition[J].Surface and Coatings Technology,2006,200(20):5677-5681.
    [37]李卫东,周晓荣,左止忠,周运鸿.电沉积复合镀层的研究现状[J].电镀与涂饰,2000,19(5):45.
    [38]Z.C.Guo,R.D.Xu,X.Y.Zhu.Studies on the wear resistance and the structure of electrodeposited RE-Ni-W-P-SiC-PTFE composite materials[J].Surface and Coatings Technology,2004,187(2):141-145.
    [39]尹邦跃.纳米时代[M].中国轻工业出版社,2001:132.
    [40]蒋斌,徐滨七,董世运,王红美.纳米复合镀层的研究现状[J].材料保护,2002,35(6):1-3.
    [41]R.Narayana,S.K.Seshadri.Chromium-Ceria Electrodeposition Using Nitrate Additives[J].Metal Finishing,2001,99(2):84.
    [42]王红艳.稀土对Ni-P-SiC复合镀层的工艺及性能的研究[J].表面技术,2002,31(1):23-25.
    [43]徐强,何业东,齐慧滨,王德仁,李正伟,高唯.串联电脉冲沉积Co-Cr弥散Y2O3合金化微晶涂层[J].中国稀土学报,2002,20(4):334-338.
    [44]孔繁清,闫慧忠,赵增祺,黄继明.稀土发光材料在化学复合镀金中应用的研究[J].稀土,2002,23(4):43-45.
    [45]郭忠诚,邓纶浩,杨显万.电沉积RE-Ni-W-P-SiC-PTFE复合材料的耐磨性研究[J].材料保护,2001,34(1):4-5.
    [46]郭忠诚,朱晓云,杨显万.电沉积RE-Ni-W-P-SiC复合镀层的便度与耐磨性研究[J].电镀与环保,2002,22(4):12-15.
    [47]Z.C.Guo,X.Y.Zhu,R.D.Xu.Study on properties of pulse electrodeposited RE-Ni-W-P-SiC composite coatings[J].Acta Metallurgica Sinica(English Letters),2007,20(2):111-116.
    [48]Z.C.Guo,R.D.Xu,X.Y.Zhu.Studies on the wear resistance and the structure of electrodeposited RE-Ni-W-P-SiC-PTFE composite materials[J].Surface and Coatings Technology,2004,187(2):141-145.
    [49]郭忠诚,朱晓云,徐瑞东,薛方勤.电沉积RE-Ni-W-B-SiC复合镀层的性能[J].中国电镀材料信息,2002,2(7):50-53.
    [50]郭忠诚,朱晓云.电沉积RE-Ni-W-B-B_4C-MoS_2复合镀层的性能研究[J].中国电镀材料信息,2001,(2):19-24.
    [51]郭忠诚,翟大成,杨显万.电沉积CeO_2-Ni-W-P-SiC复合镀层组织结构的研究[J].电镀与涂饰,2000,19(1):5-8.
    [52]Q.Zhao,Y.liu.Graded Ni-P-PTFE coatings and their potential applications[J].Surface and Coatings technology,2002,155:279-284
    [53]王宏智,张卫国,姚素薇.电沉积梯度功能材料的研究进展[J].电镀与环保,2001,21(3):1-4.
    [54]王宙,陈伟荣,隋锦慧,胡萍,包胜华.电沉积镍-羟基磷灰石工艺研究[J].材料保护,2003,36(8):31-35.
    [55]肖秀峰,刘榕芳,左友松,林岚云,许道旋.电沉积羟基磷灰石/SiO2复合涂层[J].应用化学,2004,21(7):687-689.
    [56]R.Gricia,R.H.Dorcmus.Material Science,1992,3:154.
    [57]师春生,马铁军,李家俊,李国俊,方洞浦.镀金属碳毡/树脂复合材料的电磁屏蔽性能[J].功能材料,2001,32(3):330-331.
    [58]王丽丽.疏水性复合镀层工艺[J].电镀与精饰,2002,24(4):40.
    [59]王立平,高燕.憎水性Ni-PTFE复合镀层的制备及其摩擦磨损性能的研究[J].电镀与环保,2004,24(5):10-11.
    [60]蒋斌,徐滨士,董世运,王红美.纳米复合镀层的研究现状[J].材料保护,2002,35(6):1-3.
    [61]D.W.Snaith,P.D.Groves.Trans.IMF,1978,56(1):9.
    [62]N.Guglielmi.Kinetics of the deposition of inertparticle from electrolytic baths[J].J Electrochemcal Sociaty,1972,119(8):1009-1012.
    [63]黄新民,吴玉程,郑玉春.表面活性剂对复合镀层中TiO2纳米颗粒分散性的影响[J].表面技术,1999,28(6):10-12.
    [64]H.Matsuda et al.Effect of Cationic Surfactant on Deposition Behavior in Electroless Ni-P-PTFE Composite Plating[J].Trans IMF,1994,72(2):5599.
    [65]钱利华,黄新民,吴玉程,朱泓,卢昊,郭占州.Ni-P-SiO2/TiO2化学复合镀工艺研究[J].电镀与涂饰,2004,4(2):4-8.
    [66]王健,孙建春,丁培道,彭晓东.纳米复合镀工艺的研究现状[J].表面技术,2004,33(3):1-3.
    [67]H.Y.Lee,K.H.Nam,J.S.Yoon.Industrial application of WC-Ti_((1-x))Al_xN nanocomposite films synthesized by cathodic are ion plating process on a printed circuit board drill[J].Surface Coatings and Technology,2001,146:532-536.
    [68]王为,郭鹤桐.纳米复合镀技术[J].化学通报,2003,3:178.
    [69]N.V.Mandich,J.K.Dennis.Codeposition of nanodiamonds with chromium[J].Metal Finishing,2001,99(6):117.
    [70]程森,王昆林,赵高敏.纳米SiC复合镀层制备工艺的研究[J].材料保护,2002,35(8):24-26.
    [71]张玉峰.复合刷镀纳米Ni-ZrO_2高温耐磨性的研究[J].电镀与涂饰,2002,19(4):18-21.
    [72]徐滨士,董世运,马世宁,王红美.n-Al_2O_3-P-Ni复合刷镀层的组织和摩擦磨损特性[J].材料保护,2002,35(6):6-8.
    [73]刘先黎.Ni-名内米FeS复合镀层耐磨性的研究[J].电刷镀技术,2001,1:9.
    [74]赵海军,刘磊,朱建华,沈彬,胡文彬.复合电镀镍基自润滑材料的研究进展[J].机械工程材料,2004,28(7):1-3.
    [75]A.M.El-Sherik,U.Erb.Industrial applications of nanocrystalline nickel and nickel alloy electrodeposites[C].Proceedings of the Nickel-Cobalt 97 international Symposium.Canada:Sudbury Ontario,1997:257-268.
    [76]黄新民,吴玉程,郑玉春.纳米功能复合涂层[J].功能材料,2000,31(4):419-421.
    [77]彭晓.Ni-La_2O_3复合镀层中的质点弥散与组态[J].中国腐蚀与防护学报,1995,15(2):93-99.
    [78]欧忠文.纳米材料在表面工程中应用的研究进展[J].中国表面工程,2000,2:5-8.
    [79]P.Gyttou,E.A.Pavlato,N.Spyellis.Hardening modification of nickel matrix composite electrocoatings containing SiC nanoparticles[J].Electroplating&Surface Treatment,2001.9(1):23-28.
    [80]R.M.Alberici,F.J.Wilson.Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J].Applied Catalysis B:Environment,1997,14:55-68.
    [81]A.Fujishim.Titanium dioxide photocatalisis[J].J Photochem Photobiol C:Photochem Rev,2000,1(1):1-21.
    [82]M.Zhou,W.Y.Lin,N.R.Tacconi et al.Metal/semiconduc to relectro composite photoelectrodes behavior of Ni/TiO_2 photoanodes and comparision of photoactivity of anatase and rutilemo difications[J].J of Electroanalytical Chemistry,1996,402:221-224.
    [83]M.Zhou,N.R.Tacconi,K.Rajeshwar.Preparation and characterization of nanocrystalline composite(nanocomposite)films of titanium dioxide and nickel by occlusion electrodeposition[J].J of Electroanalytical Chem,1997,421:111-120.
    [84]熊忠华,魏锡文,黄锋.化学复合镀Ni-P-TiO2光催化降解次甲基蓝[J].材料开发与应用,2002.17(1):11-13.
    [85]D.Takenori,I.Kiyohisa.Photocatalytilly highly active nanocomposite films conxisting of P-TiO2 articles and ZnO whiskers formed on steel plates[J].J Electronchemcal Sociaty,2000,147(6):2263-2267.
    [86]T.Deguchi,K.Imai,H.Matsui et al.Rapid electroplating of photocatalytically highly active nanocomposite films consisting of TiO_2 particles[J].J of Material Science,2001,36:4723-4729.
    [87]吴元康.金刚石纳米晶体在材料保护中的作用[J].材料保护,1995,28(4):15-17.
    [88]马洁,蒋雄,江琳才.球磨形成的Ni-Mo纳米晶复合镀层上的析氢反应[J].物理化学学报,1996,12:22-26.
    [89]D.Takenori,I.Kiyohisa,I.Mitsunobu.Photocatalytically highly active nanocomposite films consisting of TiO_2 particles[J].Journal of the Electrochmical Society,2000,147(6):2263-2267.
    [90]P.L.Bonora,A.Borello.Wear corrosion properties of nano-sturctured SiC-nickel composite coatings obtained by electroplating[J].Wear,2002,249:995.
    [91]王健雄,陈小华,彭景翠,张振华.碳纳米管镍基复合镀层材料耐腐蚀性的初步研究[J].腐蚀与防护,2002,23(1):6-9.
    [92]彭元芳.电沉积Ni-α-Al_2O_3纳米复合镀层的研究[D].广州:华南理工大学.2003:13-14.
    [93]陈准,谭澄宁.Ni-Al_2O_3纳米复合电镀工艺[J].新技术新工艺,2003(4):41-42.
    [94]李辉,戴峻.纳米材料在复合电镀中的应用[J].电镀与环保,2004,24(1):20-21.
    [95]曹铁华,成旦红,桑付明.脉冲复合电镀Ni-P纳米微粒SiO2工艺[J].电镀与精饰,2005,27(6):27-30.
    [96]王吉会,尹玫.Ni-P-WC纳米微粒复合电镀的研究[J].电镀与精饰,005,27(1):1-3.
    [97]陈小华,李德意,李学谦,张振华,王健雄,李文铸.碳纳米管增强镍基复合镀层的型貌及摩擦磨损行为研究[J].摩擦学学报,2002,22(1):6-9.
    [98]李声泽.纳米电沉积技术最新发展简介[J].中国电镀材料信息,2002,2(1):1-3.
    [99]季需波,洪燕,何安国,蔡杭锋,魏子栋.功能梯度材料及其复合电镀制备现状与进展[J].电镀与精饰.2005,27(5):15-20.
    [100]常立民,安茂忠,石淑云.复合镀研究的新进展[J].吉林师范大学学报(自然科学版),2005年5月第2期:13-16.
    [101]徐惠,翟钧,李梦柯.碳纳米管的制备及其在纳米复合镀层中的应用研究[J].兰州理工大学学报.2004,30(6):70-74.
    [102]陈传盛,陈小华,李绍禄.碳纳米管复合镀层在不同摩擦组合下的摩擦学行为[J].中国有色金属学报.2005,15(7):1062-1065.
    [103]X.H.Chen,F.Q.Cheng,S.L.Li,L.P.Zhou,D.Y.Li.Electrodeposited nickel composites containing carbon nanotubes[J].Surface and Coatings Technology,2002,(155):274-278.
    [104]O.Lourie,D.M.Coxl,H.D.Wagner.Buckling and Collapse of Embedded Carbon Nanotubes [J].Phys.Rev.Lett.1998,81:1638-1641.
    [1]陈小华,李德意,李学谦,张振华,王健雄,李文铸.碳纳米管增强镍基复合镀层的型貌及摩擦磨损行为研究[J].摩擦学学报,2002,22(1):6-9.
    [2]陈传盛,陈小华,李绍禄.碳纳米管复合镀层在不同摩擦组合下的摩擦学行为[J].中国有色金属学报.2005,15(7):1062-1065.
    [3]X.H.Chen,F.Q.Cheng,S.L.Li,L.P.Zhou,D.Y.Li.Electrodeposited nickel composites containing carbon nanotubes[J].Surface and Coatings Technology,2002,(155):274-278.
    [4]季孟波,洪燕,何安国,蔡杭锋,魏子栋.功能梯度材料及其复合电镀制备现状与进展[J].电镀与精饰.2005,27(5):15-20.
    [5]王健雄,陈小华,彭景翠,张振华.碳纳米管镍基复合镀层材料耐腐蚀性的初步研究[J].腐蚀与防护,2002,23(1):6-9.
    [6]林文松,周细应,王思瑁,李轶.镍/碳纳米管复合镀层在NaCI和H2SO4溶液中的腐蚀特性[J].材料科学与工程学报,2005,23(2):218-220.
    [7]张刚,李绍禄,陈小华,王健雄,陈传盛,易国军,孙心瑗.碳纳米管/镍基复合镀层的腐蚀行为[J].中国有色金属学报,2003,13(4):996-1000.
    [8]X.H.Chen,C.S.Chen,H.N.Xiao,F.Q.Cheng,G.Zhang,G.J.Yi.Corrosion behavior of carbon nanotubes-Ni composite coating[J].Surface and Coatings Technology,2005,(191):351-356.
    [9]Chao Guo,Yu Zuo,Jingmao Zhao,Xuhui Zhao,Jinping Xiong.Characterization of anodized and sealed cast Al-Cu alloy by means of electrochemical impedance spectroscopy[C].AICAM会议,2005,11;advanced materials research,2006:665-668.
    [10]郭超,石铁,左禹,赵景茂,熊金平.铝合金稀土转化膜成膜因素对膜层性能的影响[J].电镀与涂饰,2006,25(9):44-47.
    [11]曾华梁,吴仲达.电镀工艺手册[M].机械工业出版社,1999:628-630.
    [12]王为,郭鹤桐.纳米复合镀技术[J].化学通报,2003,3:178.
    [13]孙伟,张覃轶,叶卫平,黄尚宇.纳米复合电沉积技术及机理研究的现状[J].材料保护,2005,48(6):41-44.
    [1]林文松,周细应,王思瑁,李轶.镍/碳纳米管复合镀层在NaCI和H2SO4溶液中的腐蚀特性[J].材料科学与工程学报,2005,23(2):218-220.
    [2]张刚,李绍禄,陈小华,王健雄,陈传盛,易国军,孙心瑗.碳纳米管/镍基复合镀层的腐蚀行为[J].中国有色金属学报,2003,13(4):996-1000.
    [3]X.H.Chen,C.S.Chen,H.N.Xiao,F.Q.Cheng,G.Zhang,G.J.Yi.Corrosion behavior of carbon nanotubes-Ni composite coating[J].Surface and Coatings Technology,2005,(191):351-356.
    [4]X.F.Xie,L.Gao,J.Sun.Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,308(1):54-59.
    [5]成会明.纳米碳管制备、结构、物性及应用[M].化学工业出版社,2002:32.
    [6]N.Guglielmi.Kinetics of the deposition of inertparticle from electrolytic baths[J].J Electrochem Soc,1972,119(8):1009-1012.
    [7]J.P.Celis,J.R.Roos,C.Buelens.Analysis of the electrolytic codeposition of non-brownian particles with a metals[J].J Electrochem Soc,1987,134(6):1402-1408.
    [8]J.L.Valdes.Electrodeposmon of colloidal particles[J].J Electrochem Soc,1987,134(4):223-225.
    [9]J.Fransaer,J.P.Celis,J.R.Roos.A mathematical model for the electrolytic codeposition of particles with a metallic matrix[J].J Electrochem Soc,1992,139(2):413-425.
    [10]B.J.Hwang,C.S.Hwang.Mechanism of codeposition of silicon carbide with electrolytic cobalt [J].J Electrochem Soc,1993,140(4):979-984.
    [11]S.H.Yeh,C.C.Wan.A study of SiC/Ni composite plating in the Watts bath[J].Plating and Surface Finishing,1997,84(3):54-57.
    [12]A.R.Boccaccini,J.Cho,J.A.Roether.Electrophoretic deposition of carbon nanotubes[J].carbon,2006,44(15):3149-3160.
    [13]X.L.Nan,Z.N.Gu,Z.F.Liu.Immobilizing Shortened Single-Walled Carbon Nanotubes (SWNTs)on Gold Using a Surface Condensation Method[J].Journal of Colloid and Interface Science,2002,245(2):311-318.
    [14]王建林,冯辉,邵晨,冯硕,赖玉添,王艳平.MWNTs-Ni及MWNTs复合电沉积机理和工艺研究[J].郑州轻工业学院学报:自然科学版,2005,20(3):22-25.
    [15]Y.Tokura,Y.Tsunawaki,N.Ohigashi et al.Field emission from entangled carbon nanotubes coated on/in a hollow metallic tube[J].Nuclear Instruments and Methods in Physics Research A,2001,475:458-461.
    [16]O.Lourie,D.M.Coxl,H.D.Wagner.Buckling and Collapse of Embedded Carbon Nanotubes [J].Phys.Rev.Lett.1998,81:1638-1641.
    [17]B.F.Levin,J.N.DuPont,A.R.Marder.The effect of second phase volume fraction on the erosion resistance of metal-matrix composites.Wear,2000,238:160-167.
    [18]George Di Bari.ASM Handbook[M].ASM International,Materials Park,OH 44073,1994:201.
    [19]A.A.Aal,K.M.Ibrahim,Z.A.Hamid.Enhancement of wear resistance of ductile cast iron by Ni-SiC composite coating[J].Wear,2006,260:1070-1075.
    [20]Y.W.Yao,S.W.Yao,L.Zhang,H.Z.Wang.Electrodeposition and mechanical and corrosion resistance properties of Ni-W/SiC nanocomposite coatings[J].Materials Letters,2007,61:67-70.
    [21]S.X.Wen,J.A.Szpunar.Nucleation and growth of tin on low carbon steel[J].Electrochimica Acta,2005,50(12):2393-2399.
    [1]D.Thiemig,R.Lange,A.Bund.Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites[J].Electrochimica Acta,2007,52(25):7362-7371.
    [2]向国朴.脉冲电镀的原理与应用[M].天津:天津科学技术出版社,1989.
    [3]刘勇,罗义辉,魏子栋.脉冲电镀的研究现状[J].电镀与精饰,2005,27(5):25-29.
    [4]S.Mohan,R.Venkatachalam,K.Srividhya,Bull.Electrochem,1999,15:257.
    [5]J.Y.Fei,G.D.Wilcox.Electrodeposition of Zn-Co alloys with pulse containing reverse current [J].Electrochim.Acta,2005,50:2693.
    [6]N.S.Qu,K.C.Chan,D.Zhu.Pulse co-electrodeposition of nano Al_2O_3 whiskers nickel composite coating[J].Scripta Materialia,2004,50:1131-1134.
    [7]C.Yang,Z.Yang,M.An.The effect of direct-reverse pulse parameters on the morphology and corrosion resistance of nickel deposits[J].Plating and Surface Finishing.2001,88(5):116-118.
    [8]E.J.Podlaha.Selective Electrodeposition of Nanoparticulates into Metal Matrices[J].Nano Letters.2001,1(8):413-416.
    [9]J.Steinbach,H.Ferkel.Nanostructured Ni-Al2O3 films prepared by DC and pulsed DC electroplating[J].Scr.Mater,2001,44:1813.
    [10]Y.Haseko,N.K.Shrestha.Reversal pulsing electrodeposition of Ni/polypyrrole composite film [J].Electrochimica Acta.2006,(51):3652-3657.
    [11]K.C.Chan,N.S.Qu,D.Zhu.Effect of reverse pulse current on the internal stress of electroformed nickel[J].Journal of Materials processing technology,1997,(63):819-822
    [12]F.Wang,S.Arai,M.Endo.Preparation of nickel-carbon nanofiber composites by a pulse-reverse electrodeposition process[J].Electrochemistry Communications,2005,7:674-678.
    [13]O.Lourie,D.M.Coxl,H.D.Wagner.Buckling and Collapse of Embedded Carbon Nanotubes [J].Phys.Rev.Lett.1998,81:1638-1641.
    [14]N.S.Qu,K.C.Chan,D.Zhu.Surface roughening in pulse current and pulse reverse current electroforming of nickel[J].Surface and coatings technology,1997,(91):220-224.
    [15] B. Szczygiel, M. Kolodziej. Composite Ni/Al2O3 coatings and their corrosion resistance [J].Electrochimica Acta, 2005, (50): 4188-4195.
    
    [16] F. Hu, K.C. Chan. Equivalent circuit modelling of Ni-SiC electrodeposition under ramp-up and ramp-down waveforms [J]. Materials Chemistry and Physics, 2006, 99(2): 424-430.
    
    [17] N.S. Qu, D. Zhu, K.C. Chan, W.N. Lei. Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulsewidth and high peak current density [J]. Surface and Coatings Technology, 2003,168:123-128.
    
    [18] R. Ramanauskas, et al., Electrochim. Acta (2007), doi:10.1016/j.electacta.2007.08.036.
    [1]M.Graca,H.H.Bongaerts,J.R.Stokes,S.Granick.Friction and adsorption of aqueous polyoxyethylene(Tween)surfactants at hydrophobic surfaces[J].Journal of Colloid and Interface Science,2007,315(2):662-670.
    [2]B.Simoncic,M.Kert.Influence of the chemical structure of dyes and surfactants on their interactions in binary and ternary mixture[J].Dyes and Pigments,2008,76(1):104-112.
    [3]Y.C,Lin,J.G.Duh.Effect of surfactant on electrodeposited Ni-P layer as an under bump metallization[J].Journal of Alloys and Compounds,2007,439(1):74-80.
    [4]C.F.Malfatti,H.M.Veit,T.L.Menezes et al.The surfactant addition effect in the elaboration of electrodepositated NiP-SiC composite coatings[J].Surface and Coatings Technology,2007,201(14):6318-6324.
    [5]N.K.Shrestha,M.Kawai,T.Saji.Co-deposition of B_4C particles and nickel under the influence of a redox-active surfactant and anti-wear property of the coatings[J].Surface and Coatings Technology,2005,200(7):2414-2419.
    [6]曾祥德.十二烷基硫酸钠导致的镀层故障[J].材料保护,1993,26(9):35-36.
    [7]C.Filiatrea,C.Pignolet,A.Foissy,M.Zembala,P.Warszynski.Electrodeposition of particles at nickel electrode surface in a laminar flow cell[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,222(3):55-63.
    [8]A.Gomes,M.I.da Silva Pereira.Pulsed electrodeposition of Zn in the presence of surfactants[J].Electrochimica Acta,2006,51(7):1342-1350.
    [9]C.F.Malfatti,H.M.Veit,T.L.Menezes,J.Zoppas Ferreira,J.S.Rodrigues and J.-P.Bonino.The surfactant addition effect in the elaboration of electrodepositated NiP-SiC composite coatings[J].Surface and Coatings Technology,2007,201(14):6318-6324.
    [10]O.Ozdemir,M.Cinar,E.Sabah,F.Arslan,M.S.Celik.Adsorption of anionic surfactants onto sepiolite.Journal of Hazardous Materials,2007,147(1):625-632.
    [11]E.Yu.Bryleva et al.Interfacial properties of cetyltrimethylammonium-coated SiO_2 nanoparticles in aqueous media as studied by using different indicator dyes[J],J.Colloid Interface Sci.(2007),doi:10.1016/j.jcis.2007.07.036.
    [12]D.Grujicic,B.Pesic.Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions[J].Electrochimica Acta.2006(51):2678-2690.
    [13]H.L.Seet,X.P.Li,K.S.Lee,H.Y.Chia.Nanocrystalline grain size control for Ni_(80)Fe_(20)/Cu micro-composite wires by different electrodeposition methods[J].Journal of Materials Processing Technology,2007,192(1):225-228.
    [14]L.Chen,L.P.Wang,Z.X.Zeng,T.Xu.Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-Al_2O_3 composite coatings[J].Surface and Coatings Technology,2006,201(3):599-605.
    [15]M.Kita,O.Nomura.J Electrochem Soc,1964,12:107.
    [16]H.Kita.J Electrochem Soc,1966,113:1095.
    [17]王为,郭鹤桐,高建平,覃奇贤.复合镀层中ZrO2微粒对基质Ni晶体结构的影响[J].应用化学,1997,14(1):6-10.
    [18]C.Guo,Y.Zuo,J.M.Zhao,X.H.Zhao,J.P.Xiong.Characterization of anodized and sealed cast Al-Cu alloy by means of electrochemical impedance spectroscopy[C].AICAM会议,2005,11;advanced materials research,2006:665-668.
    [1] S. Avery. Carbon and Hydrogen Determinations Using a Metal Tube [J]. Industrial and engineering chemistry, 1928,20(11): 1232-1234.
    
    [2] S. Avery, D. Hayman. Carbon, Hydrogen, and Nitrogen Determinations Using a Metal Tube [J].Industrial and engineering chemistry, 1930, 2(3): 336-337.
    
    [3] S. Avery, J. Brackenbury, W. D. Maclay. The Metal Tube in Micro- and Semi-microcombustion Analysis [J]. Industrial and engineering chemistry, 4(2): 238-239.
    
    [4] G.J. Heynderickx, G.F. Froment. A Pyrolysis Furnace with Reactor Tubes of Elliptical Cross Section [J]. Ind. Eng. Chem. Res. 1996, 35, 2183-2189.
    
    [5] R. Bakry, D. Gjerde, G. K. Bonn. Derivatized Nanoparticle Coated Capillaries for Purification and Micro-extraction of Proteins and Peptides [J]. Journal of Proteome Research 2006, 5,1321-1331.
    
    [6] H. Zhang, S.X. Dong, S.Y. Zhang, T.H. Wang, Z.N. Zhang, L. Fan. Ultrasonic micro-motor using miniature piezoelectric tube with diameter of 1.0 mm [J]. Ultrasonics 44 (2006) e603-e606.
    
    [7] C.J. Brumlik, C.R. Martin. Template Synthesis of Metal Microtubules [J]. J. Am. Chem. SOC.1991, 113,3174-3175.
    
    [8] X.W. Wang, G.T. Fei, X.J. Xu. Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays [J]. J. Phys. Chem. B 2005, 109, 24326-24330.
    
    [9] M. Markowitz, S. Baral, S. Brandow, Alok Singh. Palladium ion assisted formation and metallization of lipid tubules [J]. Thin Solid Films, 1993, 224(2): 242-247.
    
    [10] C.C. Han, M.Y. Bai, J.T. Lee. A New and Easy Method for Making Ni and Cu Microtubules and Their Regularly Assembled Structures [J]. Chem. Mater. 2001, 13, 4260-4268.
    
    [11] F. Ochanda, W.E. Jones. Sub-Micrometer-Sized Metal Tubes from Electrospun Fiber Templates [J]. Langmuir, 2005, 21:23.
    
    [12] M.S. Sander, H. Gao. Aligned Arrays of Nanotubes and Segmented Nanotubes on Substrates Fabricated by Electrodeposition onto Nanorods. J. Am. Chem. Soc. 2005,127(35):12158-12159.
    [13] R.J. Jackman, S.T. Brittain, A. Adams. Design and Fabrication of Topologically Complex, Three-Dimensional Microstructures [J]. Science, 1998,280(26): 2089-2091.
    
    [14] M. Kita, O. Nomura. J Electrochem Soc, 1964, 12: 107.
    
    [15] H. Kita. J Electrochem Soc, 1966, 113: 1095.
    
    [16] F.D. McDaniel, F.U. Naab, O.W. Holland, M. Dhoubhadei, L.J. Mitchell, J.L. Duggan.Low-energy ion irradiation effects on hydrogen absorption and desorption in carbon nanotubes. Surf.Coat. Technol, 2007, doi:10.1016/j.surfcoat.2006.09.328
    
    [17] O. Lourie, D. M. Coxl, H. D. Wagner. Buckling and Collapse of Embedded Carbon Nanotubes [J]. Phys. Rev. Lett. 1998, 81: 1638- 1641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700