用户名: 密码: 验证码:
Er~(3+),Tm~(3+),Yb~(3+)掺杂碱土锡酸盐化合物纳米晶的上转换发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,超细和纳米上转换材料在上转换荧光粉、红外探测器件、生物分子的荧光标记和双光子共聚焦显微成像、商标防伪等方面都显示出了巨大的应用前景。这些方面的应用特别需要环境友好、发光亮度高、粒度达到纳米级的上转换发光材料。钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点。其中,尤以ABO3(A=Ca,Sr,Ba;B=Ti,Sn)型物质为基质的发光材料更为重要。近年来,由于白光源在固态多色三维显示和背光灯等方面具有重要的应用前景而引起广泛关注。频率上转换可以将近红外光通过非线性多光子过程转变成各种颜色的可见光,是产生白光的有效方法之一。稀土离子具有丰富的电子能级和窄的发射谱线,十分适合作为上转换发射中心。因此,本论文中,我们采取共掺杂的手段有效地改善了样品的发光性质,重点讨论了ASnO3:Er3+(A=Ca,Sr和Ba)纳米晶的发光特性以及Bi3+离子掺杂对提高发光强度的影响。通过掺杂Er,Tm,Yb离子在CaSnO3纳米晶体中得到了较纯的白光,并分析了Tm离子浓度对绿光发射具有淬灭作用而对红光和蓝光发射却具有敏化作用。取得了一些有意义的结果,如下:
     1.采用水热法制得了较纯的ASnO3:Er3+ (A=Ca,Sr,Ba)纳米晶,所得样品均给出了来自于Er3+的4H11/2, 4S3/2→4I15/2能级跃迁产生的绿光发射(517-566 nm)和4F9/2→4I15/2能级跃迁产生的红光发射(650-680 nm)。其发射强度与Er3+离子的掺杂浓度密切相关,最佳摩尔掺杂浓度为2.0 mol%。从BaSnO3到SrSnO3到CaSnO3随着八面体扭曲越来越严重,上转换发射也越来越强,表明稀土离子的上转换发射强度强烈依赖于基质的晶体结构。
     2.水热法制备了不同Bi3+掺杂浓度的CaSnO3:Er3+Bi纳米晶,XRD图谱表明Bi3+的掺杂并没有改变样品的基本结构。掺Bi3+和不掺Bi3+的所有样品均具有相似的光谱形状,都表现出Er3+的特征发射。随着Bi3+掺杂浓度的不同,CaSnO3:Er3+纳米晶的发光强度得到了不同程度的增强,Bi3+离子的最佳掺杂浓度是7%。研究表明,Bi3+离子的加入大大增强了CaSnO3:Er纳米晶的发光强度,尤其是绿光的发射,这说明Bi3+和Er 3+离子之间存在一个很好的能量传递,Bi3+离子是一种很有效的敏化剂。
     3.成功制备了CaSnO3:Er,Tm,Yb纳米晶,在980nm激光激发下给出了明亮的肉眼可见的白光。白光由来自于Er3+离子的4F9/2→4I15/2能级的红光和(2H11/2, 4S3/2 )→4I15/2的绿光发射以及来自于Tm3+离子的1G4→3H6蓝光发射组成。从拉曼光谱中,可以看出CaSnO3纳米晶由于其具有声子能量低,稳定性好等多方面的优点将会是很有前途的上转换基质材料。
     4.研究发现,随着Tm3+离子的掺入对Er3+的绿光具有淬灭作用,而当Tm3+浓度小于0.3%时Tm3+离子的掺入对红光和蓝光发射具有敏化作用,我们从上转换发光机制方面给出了解释。
Rare-earth (RE)-doped upconversion luminescence materials for conversion of efficient infrared into visible or ultraviolet light are very attractive for modern technology. These materials have a variety of potential applications in several areas, such as color displays, sensors, detection of infrared radiation, and upconversion lasers. White UC luminescence has received great attention because of the sources for a variety of application purpose. So the generation of white UC luminescence would be particularly feasible and interesting. Perovskite alkaline-earth stannate ASnO3, where A = Ca, Sr and Ba, are extensively investigated due to their unusual dielectric and semiconducting properties, and extensive application in gas or humidity sensors, lithium ion batteries, thermally stable capacitors, and photocatalytic utilization. In this thesis, We report here on the preparation of pervoskite-type ASnO3:Er3+ (A = Ca, Sr, and Ba) and CaSnO3:Er3+-Bi3+ nanocrystals via hydrothermal synthesis and their upconversion luminescence properties.UC fluorescences in Er3+, Tm3+ and Yb3+ ions doped CaSnO3 crystals have been studied. The significant results are listed as follows:
     1. ASnO3:Er3+ (A = Ca, Sr, and Ba) were prepared by a hydrothermal method. It is seen that these three nanocrystals can give the green emission and red emission, which are attributed to the intra-4f transition of 4H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 of Er3+ ions, respectively. The order of the emission intensity (CaSnO3 > SrSnO3 > BaSnO3) is consistent with that of the tilting distortion of the SnO6 octahedral from CaSnO3 to SrSnO3 to BaSnO3, implying that the luminescence intensity of Er3+ is dependent on the structural distortion of stannates.
     2.The investigation of the upconversion luminescence of Er3+-Bi3+ codoped CaSnO3 nanocrystals indicates that Bi3+ ions could largely sensitize the emission of Er3+ ions which was attributed to the efficient energy transfer from Bi3+ to Er3+ ions and the modification of the local symmetry of Er3+ ions. The results show that the CaSnO3:Er3+-Bi3+ nanocrystals have potential application for fabricating visible upconversion devices.
     3. Er3+, Tm3+ and Yb3+ ions codoped CaSnO3 nanocrystals are synthesized. Bright white upconversion luminescence in Er3+-Tm3+-Yb3+ doped CaSnO3 nanocrystals is obtained under diode laser excitation of 980 nm. The white light are composed of red, green and blue three primary colors which originate from the transitions of 4F9/2→4I15/2, (2H11/2, 4S3/2 )→4I15/2 of Er3+ ions and 1G4→3H6 of Tm3+ ions, respectively.
     4. It is observed that Tm3+ ions acts as the quenching center for green upconversion luminescence from Er3+ ions, but as sensitizer for red and blue luminescence when the doping concentration of Tm3+ ions less than 0.3 mol %. This is interpreted in terms of the efficient energy transfer between Tm3+ and Er3+ ions.
引文
[1]张希艳,卢利平等编著,稀土发光材料[M],北京:国防工业出版社,2005
    [2].徐叙瑢,苏勉曾,发光学与发光材料[M],化学工业出版社,2004.
    [3]李建宇,稀土发光材料及其应用[M],北京:化学工业出版社,2003.
    [4]杨建虎,戴世勋,姜中宏,稀土离子的上转换发光及研究进展[J],物理学进展,2003,9:284-298.
    [5] M. Tanaka, Y. Nishisu, M. Kobayashi, et al., Optical characterization of spherical fine particles of glassy Eu3+ doped yttrium basic carbonates [J], J. Non-crystal. Solids, 2003, 318:174-185.
    [6] K.S. Sohn, J.M. Lee, I.W. Jeon, et al., Combinatorial searching for Tb3+-activated phosphors of high efficiency at vacuum UV excitation [J], J. Electrochem. Soc., 2003, 150(8):H182-H186.
    [7] X.Y. Wu, H.P. You, H.T. Cui, et al., Vacuum ultraviolet optical properties of (La,Gd)PO4:RE3+ (RE=Eu,Tb) [J], Mater. Res. Bull, 2002, 37:1531-1538.
    [8] W.H. Di, X.J. Wang, B.J. Chen, et al., Preparation, characterization and VUV luminescence property of YPO4:Tb phosphor for a PDP [J], Opt. Mater., 2005, 27(8):1386-1390.
    [9]郭海,乔艳敏,稀土纳米上转换发光材料研究进展[J],浙江师范大学学报(自然科学版),2007, 11:377-382.f
    [10]张思远,毕宪章,稀土光谱理论[M],长春:吉林科学技术出版社,1991.
    [11]徐东勇,臧竞存.上转换激光和上转换发光材料的研究进展.人工晶体学报,2001,30(2):206-207.
    [12] R. Bazzi, M.A. Flores-Gonzalez, C. Louis, et al., Synthesis and luminescent properties of sub-5nm lanthanide oxides nanoparticles [J], J. Lumin., 2003, 102-103:445-450.
    [13] H.S. Peng, H.W. Song, B.J. Chen, et al., Spectral difference between nanocrystalline and bulk Y2O3:Eu3+ [J], Chem. Phys. Lett., 2003,370(3-4):485-489.
    [14] D.K. Williams, B. Bihari, B.M. Tissue, et al., Preparation and fluorescence spectroscopy of bulk monoclinic Y2O3:Eu3+ and comparison to Y2O3:Eu3+ nanocrystals [J], J. Appl. Phys., 1998, 102(6):916-920.
    [15] W.W. Zhang, W.P. Zhang, P.B. Xie, et al. Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure [J], J. Colloid. Inter. Sci., 2003, 262:588-593.
    [16]谢平波,段昌奎,张慰萍等,纳米晶Y2SiO5:Eu的浓度猝灭研究[J],发光学报,1998, 19(1):19-23.
    [17]李丹,吕少哲,张继业等,Eu3+:Y2O3纳米微粒的尺寸效应和表面态效应的研究[J],发光学报,2000, 21(2):134-138.
    [18] P. Xie, W. Zhang, M. Yin, et al., Preparation of nanocrystalline Ln2O3:Eu (Ln=Gd,Y) by combustion synthesis and photoluminescence [J], J. Inorg. Mater., 1998, 13(1):53-58.
    [19] R.K. Sharma, M .H. Jilavi, R. Nass, et al., The particle size fromμm-nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria [J], J. Lumin., 1999, 82:187-193.
    [20] M.G. Ou, B. Mutelet, M. Martini, R. Bazzi, S. Roux, Gi. Ledoux, O. Tillement, P. Perriat, Optimization of the synthesis of nanostructured Tb3+-doped Gd2O3 by in-situ luminescence following up [J], J. Colloid Interface Sci., 2009, 333: 684-689.
    [21] S. Seo, H. Yang, P. H. Holloway, Controlled shape growth of Eu- or Tb-doped luminescent Gd2O3 colloidal nanocrystals [J], J. Colloid Interface Sci., 2009, 331: 236-242.
    [22] S.K. Singh, K. Kumar, S.B. Rai, Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry [J], Sens. Actuators, A, 2009, 149: 16-20.
    [23] G.S. Liu, Y. Zhang, J. Yin, W.F. Zhang, Enhanced photoluminescence of Sm3+/Bi3+ co-doped Gd2O3 phosphors by combustion synthesis [J], J. Lumin, 2008, 128: 2008-2012.
    [24] Y.F. Bai, Y.X. Wang, G.Y. Peng, W. Zhang, Y.K. Wang, K. Yang, X.R. Zhang, Y.L. Song, Enhanced white light emission in Er/Tm/Yb/Li codoped Y2O3 nanocrystals [J], Opt. Commun., 2009, 282: 1922-1924.
    [25] C.N. Wang, W.P. Zhang, M. Yin, Preparation and spectroscopic properties of Y2O3:Eu3+ nanopowders and ceramics [J], J. Alloys Compd., 2009, 474: 180-184.
    [26] J.T. Chen, F. Gu, W. Shao, C.Z. Li, Hydrothermal synthesis of ordered nanolamella-composed Y2O3:Eu3+ architectures and their luminescent properties [J], Physica E: Low-dimensional Systems and Nanostructures, 2008, 41: 304-308.
    [27] Y.M. Zhang, Y.H. Li, Y. Zhang, G.Y. Hong, Y.N. Yu, Effect of Yb3+ concentration on the structures and upconversion luminescence properties of Y2O3:Er3+ ultrafine phosphors [J], Rare Metals, 2008, 27: 603-607.
    [28] R. Fujiwara, H. Sano, M. Shimizu, M. Kuwabara, Quantitative analysis of UV excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting [J], J. Lumin., 2009, 129: 231-237.
    [29] M.A. Meneses-Nava, O. Barbosa-García, J.L. Maldonado, et. al., Yb3+ quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+ [J], Opt. Mater., 2008, 31: 252-260.
    [30]赵谡玲,侯延冰,董金凤,稀土离子上转换发光的研究[J],半导体光电,2000,8:241-244.
    [31] H.X. Zhang, Visible up-conversion luminescence in Er3+:BaTiO3 nanocrystals, Opt. Mater., 2000, 15:47-50.
    [32] Y.H. Wang, Synthesis and photoluminescence of Eu3+-doped (Y,Gd)BO3 phosphors by a mild hydrothermal process [J], J. Cryst. Growth, 2004, 268:568-574.
    [33] Y.H. Wang, Identification of charge transfer (CT) transition in (Gd,Y)BO3:Eu phosphor under 100-300 nm [J], J. Solid State Chem., 2004, 177:2242-2248.
    [34] L.L. Wang, The luminescent properties of CaYBO4: Ln (Ln = Eu3+, Tb3+) under UV-VUV range [J], J. Lumin., 2007, 126:160-164.
    [35] M.D. Drami?anin, B. Viana, ?. Andri?, V. Djokovi?, A.S. Luyt, Synthesis of Y2SiO5:Eu3+ nanoparticles from a hydrothermally prepared silica sol [J], J. Alloys Compd., 2008, 464: 357-360.
    [36] A. Denoyer, Y. Lévesque, S. Jandl, Ph. Goldner, O. Guillot-No?l, B. Viana, F. Thibault, D. Pelenc, Cooperative emission study in ytterbium-doped Y2SiO5 [J], J. Lumin., 2008, 128: 1389-1393.
    [37] L. Zhou, B. Yan, Synthesis, microstructure and photoluminescence of Eu3+/Tb3+ activated Y2SiO5 nanophosphors by new silicate sources [J], Appl. Surf. Sci., 2008, 254: 1847-1851.
    [38] E. Coetsee, Degradation of Y2SiO5: Ce phosphor powders [J], J. Lumin., 2007, 126:37-42.
    [39]陈晓波,张光寅,N, Sawanobori等. Tm,Yb共掺氟氧化物玻璃的间接上转换发光[J].物理学报,1999,20(4):290-293.
    [1]. H.M. Yang, J.X. Shi, M.L. Gong, A novel red emitting phosphor Ca2SnO4: Eu3+
    [2] K.N. Kim, H-K. Jung, H.D. Park, D. Kim, High luminance of new green emitting phosphor, Mg2SnO4:Mn [J], J. Lumin., 2002, 99: 169[J], J. Solid State Chem., 2005, 178: 917
    [3] U. Rambabu, P.K. Khanna, I.C. Rao, Fluorescence spectra of Eu3+-doped lanthanide oxybromide-based powder phosphors [J], Mater. Lett., 1998, 34: 269.
    [4] R. Bazzi, M.A. Flores, C. Louis, Synthesis and properties of europium based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, Y2O3:Eu [J], J. Colloid Interface Sci., 2004, 273: 191.
    [5] X.H. Liu, S.J. Chen, X.D. Wang, Synthesis and photoluminescence of CeO2:Eu3+ phosphor powders [J], J. Lumin., 2007, 127: 650.
    [6] Y.Q. Lei, H.W. Song, L.M. Yang, L.X. Yu, Z.X. Liu, G.H. Pan, X. Bai, L.B. Fan, Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3: Er3+,Yb3+ nanowires [J], J. Chem. Phys., 2005, 123: 174710.
    [7] D.D. Jia, X-J. Wang, Alkali earth sulfide phosphors doped with Eu2+ and Ce3+ for LEDs [J], Opt. Mater., 2007, 30: 375.
    [8] L.B. Su, J. Xu, H.J. Li, D. Zhang, X.D. Xu, G.J. Zhao, Quaternary doping to improve 1.5μm quantum efficiency of Er3+ in CaF2 single crystal [J], J. Lumin., 2007, 122 -123: 17.
    [9] N. Rakov, G.S. Maciel, W.B. Lozano, C.B. de Araújo, Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis [J], Appl. Phys. Lett., 2006, 88: 081908.
    [10] J.A. Capobianco, F. Vetrone, T. D. Alesio, G. Tessari, A. Speghini, M. Bettinelli, Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis [J], Phys. Chem. Chem. Phys., 2000, 2: 3203.
    [11] Y.C. Kang, S.B. Park, I.W. Lenggoro, K. Okuyama, Gd2O3:Eu Phosphor Particleswith Sphericity, Submicron Size and Non-aggregation [J], J. Phys. Chem. Solids., 1999, 60: 379.
    [12] L.Y. Hu, H.W. Song, G.H. Pan, B. Yan, R.F. Qin, Q.L. Dai, L.B. Fan, S.W. Li, X. Bai, Photoluminescence properties of samarium-doped TiO2 semiconductor nanocrystalline powders [J], J. Lumin., 2007, 127: 371.
    [13] H. Hakala, P. Liitti, J. Peuralahti, J. Karvinen, V.-M. Mukkala, J. Hovinen, Development of luminescent Sm(III) chelates containing hexadentate to nonadentate ligands: synthesis, photophysical properties and coupling to biomolecules [J], J. Lumin., 2005, 113: 17.
    [14] Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, Z.M. Yu, G. Z. Qiu, Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation [J], J. Mater. Sci., 2007, 42: 9194.
    [15] A.T. de Figueiredo, V.M. Longo, S. de Lazaro, V.R. Mastelaro, F.S. De Vicente, A.C. Hernandes, M.S. Li, J.A. Varela, E. Longo, Blue-green and red photoluminescence in CaTiO3:Sm [J], J. Lumin., 2007, 126: 403.
    [16] Y.H. Zhou, J. Lin, S.B. Wang, Energy transfer and upconversion luminescence properties of Y2O3:Sm and Gd2O3:Sm phosphors [J], J. Solid State Chem., 2003, 171: 391.
    [17] C. Chen, K.L. Teo, T.C. Chong, D.M. Newman, J.P. Wu, Analysis of the Thermal Behavior of Photoluminescent Optical memory based on CaS:Eu, Sm media [J], Phys. Rev. B, 2005, 72: 195108.
    [18] H.Q. Liu, L.L. Wang, S.Q. Chen, B.S. Zou, Effect of concentration on the luminescence of Eu3+ ions in nanocrystalline La2O3 [J], J. Lumin., 2007, 126: 459.
    [19] Z.G. Lu, L.M. Chen, Y.G. Tang, Y.D. Li,Prepraration and luminescence properties of Eu3+-doped MSnO3(M=Ca, Sr and Ba) perovskite materials [J], J. Alloy. Compd, 2005, 387: L1-L4.
    [20] J.J. Kingsley, K.C. Patil, A novel combustion prices for the synthesis of fine particle-aluminum and related oxide materials [J], Mater. Lett., 1988, 6(11-12): 427-432.
    [21] C.A. Kodaira, R. Stefani, A.S. Maia, M.C.F.C. Felinto, H.F. Brito, Opticalinvestigation of Y2O3:Sm3+ nanophosphor prepared by combustion and Pechini methods [J], J. Lumin., 2007, 127: 616-622.
    [22] Z.M. Qi, C.S. Shi, W.W. Zhang, W.P. Zhang, T.D. Hu, Local structure and luminescence of nanocrystalline Y2O3:Eu [J], Appl. Phys. Lett. 2002, 81: 2857.
    [23]吴刚,材料结构表征及应用[M],北京:化学工业出版社, 2001.
    [24]张建中,杨传铮,晶体的X射线衍射基础[M],南京:南京大学出版社,1992.
    [25]刘粤惠,刘平安编著,x射线衍射分析原理与应用[M],北京:化学工业出版社,2003.
    [26] G.Y. Chen, G. Somesfalean, Y. Liu, Z.G. Zhang, Q. Sun, F.P. Wang, Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals [J], Phys. Rev. B. 2007, 75: 195204.
    [27] H.Q. Liu, L.L. Wang, W.Q. Huang, Z.W. Peng, Preparation and luminescence properties of nanocrystalline La2O3:Eu phosphor [J], Mater. Lett., 2007, 61: 1968.
    [28]石春山,稀土离子激活磷光体的化学与物理[J],稀土,1984,1:65-69.
    [29]郭海,Er3+,Yb3+共掺杂SrTiO3超细粉末的可见上转换发光[J],发光学报,2006, 27:53-56.
    [30]赵谡玲,侯延冰,董金凤,稀土离子上转换发光的研究[J],半导体光电,2000,8:241-244.
    [31] X. Z. Zhang, Room-temperature blue luminescence from ZnO:Er thin films [J], Thin Solid Films, 2002,413:257-261.
    [32] Hikmat Najafov, Luminescence properties of Y2O3:Tm3+ Whiskers produced by chemical vapor deposition [J], J. Appl. Phys.,2003, 42:4363-4368.
    [1] R.N. Bhargava, Optical properties of manganese-doped nanocrystals of ZnS, Phys. Rev. Lett., 1994, 72:416-419.
    [2] R.N. Bhargava, Doped nanocrystalline materials—Physics and applications, J. Lumin., 1996, 70:85-94.
    [3] C. He, Synthesisand photoluminescence of nano-Y2O3:Eu3+phosphors, Materials Research Bulletin, 2003, 38:973-979.
    [4] H.S. Peng, Spectral difference between nanocrystalline and bulk Y2O3:Eu3+, Chem. Phys. LETT., 2003, 370:485-489.
    [5] O.A. Lopez, J.McKittrick, L.E. Shea, Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+/Li+ co-activated Y3Al5O12 in the visible and near IR ranges [J], J. Lumin., 1997, 71:1-11.
    [6] S.S. Yi, J. S. Bae,K.S. Shim,et al., Enhanced luminescence of Gd2O3:Eu3+ thin-film phosphors by Li doping [J], Appl. Phys. Lett., 2004, 84:353-355.
    [7] F. Gu, S.F. Wang, M.K. Lü, Structure evaluation and highly enhanced luminescence of Dy3+-doped ZnO nanocrystals by Li+ doping via combustion method [J], Langmuir, 2004, 20:3528-3531.
    [8] Q.H. Xu, B.C. Lin, Y.L. Mao, Photoluminescence characteristics of energy transfer between Er3+ and Bi3+ in Gd2O3:Er3+,Bi3+ [J], J. Lumin., 2008, 128:1965-1968.
    [9] Y.C. Kang, M.A. Lim, H.D. Park, et al., Ba2+ co-doped Zn2SiO4:Mn phosphor particles Prepared by spray pyrolysis process [J], J. Electrochem. Soc., 2003, 150:H7-H11.
    [10] H.S. Jang, W.B. Im, D.C. Lee, D.Y. Jeon, S.S. Kim, Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs [J], J. Lumin., 2007, 126:371-377.
    [11] A.M. van de Craats, G. Blasse, The quenching of bismuth(III) luminescence in yttrium oxide (Y2O3) [J], Chem. Phys. Lett., 1995, 243:559-563.
    [12] G. Blasse, A. Bril, Investigations on Bi3+-Activated Phosphors [J], J. Chem. Phys.,1968, 48 :217-222.
    [13] A.M. Van den CRAATS, G. Blasse, The influence of d10 ions on the luminescence of bismuth (III) in solids [J], Mater. Res. Bull., 1996, 31:381-387.
    [14] X.Q. Zeng, S.J. Im, S.H. Jang, et al., Luminescent properties of (Y,Gd)BO3 :Bi3+,RE3+ (RE=Eu,Tb) phosphor under VUV-UV excitation [J], J. Lumin., 2006,121:1-6.
    [15] X.M. Liu, J. Lin, Enhanced luminescence of gadolinium niobates by Bi3+ doping for field emission display [J], J. Lumin., 2007, 122–123 :700-703.
    [16] B.N. Mahalley, S.J. Dhoble, R.B. Pode, G. Alexander, Photoluminescence in GdVO4:Bi3+, Eu3+ red phosphor [J], Appl. Phys. A, 2000, 70: 39.
    [17] R.B. Pode, S.J. Dhoble, Photoluminescence in CaWO4:Bi3+, Eu3+ Material [J], Phys. Status Solidi B, 1997, 203: 571.
    [18] X.Q. Zeng, S.J. Im, S.H. Jang, Y.M. Kim, et al., Luminescent properties of (Y,Gd)BO3:Bi3+,RE3+ (RE=Eu, Tb) phosphor under VUV/UV excitation [J], J. Lumin., 2006, 121: 1.
    [19] Z.M. Qi, C.S. Shi, W.W. Zhang, W.P. Zhang, T.D. Hu, Local structure and luminescence of nanocrystalline Y2O3 : Eu [J], Appl. Phys. Lett., 2002, 81: 2857.
    [20] H.Q. Liu, L.L. Wang, W.Q. Huang, Z.W. Peng, Preparation and luminescence properties of nanocrystalline La2O3:Eu phosphor [J], Mater. Lett., 2007, 61: 1968.
    [21] Y. Porter-Chapman, E. Bourret-Courchesne, S.E. Derenzo, Bi3+ luminescence in ABiO2Cl (A=Sr, Ba) and BaBiO2Br [J], J. Lumin., 2008, 128: 87.
    [22] Y.H. Wang, C.F. Wu, J. Wei, Hydrothermal synthesis and luminescent properties of LnPO4:Tb,Bi (Ln=La,Gd) phosphors under UV/VUV excitation [J], J. Lumin., 2007, 126: 503.
    [23] J.H. Hong, Z.G. Zhang, C.J. Cong, K.L. Zhang, Energy transfer from Bi3+ sensitizing the luminescence of Eu3+ in clusters embedded into sol–gel silica glasses [J], J. Non-Cryst. Solids., 2007, 353: 2431.
    [24] A.A. Setlur, A.M. Srivastava, The nature of Bi3+ luminescence in garnet hosts [J], Opt. Mater., 2006, 29: 410.
    [25] D.L. Dexter, A Theory of Sensitized Luminescence in Solids [J], J. Chem. Phys.,1953, 21: 836.
    [26] G. Blasse, A. Bril, Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+ [J], J. Chem. Phys., 1967, 47: 1920.
    [27] H.C.Yang, C.Y. Li, H. He, G.B. Zhang, Z.M. Qi, Q. Su, Luminescent properties of RE3+-activated CaAl2B2O7 (RE=Tb, Ce) in VUV-visible region [J], J. Lumin., 2007, 124: 235.
    [28] H. Jiao, N. Zhang, X.P. Jing, D.M. Jiao, Influence of rare earth elements (Sc, La, Gd and Lu) on the luminescent properties of green phosphor Y2SiO5:Ce,Tb [J], Opt. Mater., 2007, 29: 1023.
    [29] H.S. Yoo, W.B. Im, J.H. Kang, D.Y. Jeon, Preparation and photoluminescence properties of YAl3(BO3)4:Tb3+, Bi3+ phosphor under VUV/UV excitation [J], Opt. Mater., 2008, 31: 131.
    [30] F. Kellendonk, T. van den Belt, G. Blasse, On the luminescence of bismuth, cerium, and chromium and yttrium aluminium borate [J], J. Phys. Chem. Solid., 1982, 76: 1194.
    [1] Liu H Q, Wang L L, Chen S Q, Zou B S. Effect of concentration on the luminescence of Eu3+ ions in nanocrystalline La2O3 [J], J. Lumin., 2007, 126:459.
    [2] Qi Z M, Shi C S, Zhang W W, Zhang W P, Hu T D. Local structure and luminescence of nanocrystalline Y2O3: Eu [J], Appl. Phys. Lett., 2002, 81:2857.
    [3] Yu R J, Wang J, Zhang M, Zhang J H, Yuan H B, Su Q. A new blue-emitting phosphor of Ce3+ -activated CaLaGa3S6O for white-light-emitting diodes [J], Chem. Phys. Lett., 2008, 453:197.
    [4] G. Stryganyuk, D.M. Trots, A. Voloshinovskii, T. Shalapska, V. Zakordonskiy, V. Vistovskyy, M. Pidzyrailo, G. Zimmerer. Luminescence of Ce3+ doped LaPO4 nanophosphors upon Ce3+ 4f–5d and band-to-band excitation [J], J. Lumin., 2008, 128:355.
    [5] E. Zych, A. Walasek, A. Szemik-Hojniak. Variation ofemission color of Y3Al5O12: Ce induced by thermal treatment at reducing atmosphere [J], J. Alloys Compd., 2008, 451:582.
    [6] D. Wang, Y.H. Wang. Luminescence properties of LaPO4: Tb3+, Me3+ (Me = Gd, Bi, Ce) under VUVexcitation [J], Mater. Res. Bull., 2007, 42:2163.
    [7] Y. Mayama, T. Masui, K. Koyabu, N. Imanaka. Enhancement of the luminescent intensity of the green emitting Gd2O2CO3: Tb phosphor [J], J. Alloys Compd., 2008, 451:132.
    [8] Z.W. Yang, J. Zhou, X.G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, L.T. Li. Photonic band gap and photoluminescence properties of LaPO4: Tb inverse opal [J], Chem. Phys. Lett., 2008, 455:55.
    [9] R. Bazzi, M.A. Flores, C. Louis. Synthesis and properties of europium-based phosphors on the nanometer scale Eu2O3, Gd2O3: Eu, and Y2O3: Eu [J], J. Colloid Interface Sci. 2004, 273:191.
    [10] H.M. Yang, J.X. Shi, M.L. Gong. A novel red emitting phosphor Ca2SnO4: Eu3+ [J], J. Solid State Chem., 2005, 178:917.
    [11] O.A. Petrenko, M.R. Lees, G. Balakrishnan, D.McK. Paul, Magnetic phase diagramof the antiferromagnetic pyrochlore Gd2Ti2O7 [J], Phys. Rev. B, 2004, 70: 012402.
    [12] J.E. Greedan, Frustrated rare earth magnetism: Spin glasses, spin liquids and spin ices in pyrochlore oxides [J], J. Alloys Compd., 2006, 408-412: 444-455.
    [13] B.Z. Malkin, A.R. Zakirov, M.N. Popova, S.A. Klimin, E.P. Chukalina, E. Antic-Fidancev, Ph. Goldner, P. Aschehoug, G. Dhalenne, Optical spectroscopy of Yb2Ti2O7 and Y2Ti2O7: Yb3+ and crystal-field parameters in rare-earth titanate pyrochlores [J], Phys. Rev. B, 2004, 70: 075112.
    [14] F.X. Zhang, S.K. Szxena, Structural changes and pressure-induced amorphization in rare earth titanates RE2Ti2O7 (RE: Gd, Sm) [J], Chem. Phys. Lett., 2005, 413: 248-251.
    [15] K.J. Moreno, R.S. Rodrigo, A.F. Fuentes, Direct synthesis of A2(Ti(1 ? y)Zry)2O7 (A = Gd3+, Y3+) solid solutions by ball milling constituent oxides[J], J. Alloys Compd., 2005, 390: 230-235.
    [16] J. Lian, S.V. Yudintsev, S.V. Stefanovsky, L.M. Wang, R.C. Ewing, Ion beam irradiation of U-, Th- and Ce-doped pyrochlores [J], J. Alloys Compd., 2007, 444-445: 429-433.
    [17] H.L. Zhu, D. Jin, L.M. Zhu, H. Yang, K.H. Yao, Z.Q. Xi, A general hydrothermal route to synthesis of nanocrystalline lanthanide stannates: Ln2Sn2O7 (Ln = Y, La–Yb) [J], J. Alloys Compd., 2008, 464: 508-513.
    [18] K-M. Lin, C-C. Lin, Y-Y. Li, Luminescent properties and characterization of Gd2O3:Eu3+@SiO2 and Gd2Ti2O7:Eu3+@SiO2 core–shell phosphors prepared by a sol–gel process [J], Nanotechnol., 2006, 17: 1745-1751.
    [19] M.L. Pang, J. Lin, J. Fu, Z.Y. Cheng. Luminescent properties of Gd2Ti2O7:Eu3+ phosphor films prepared by sol-gel process [J], Mater. Res. Bull., 2004, 39: 1607.
    [20] Weifeng Zhang, Junwang Tang, and Jinhua Yea*, Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts [J], J. Mater. Res., 2007, 7:1859-1871.
    [21] T. Zhang, W.F. Zhang, Y.H. Chen, J. Yin, Third-order optical nonlinearities of lead-free (Na1-xKx)0.5Bi0.5TiO3 thin films [J], Opt. Commun., 2008, 281: 439-443.
    [22] G.Y. Chen, G. Somesfalean, Y. Liu, Z.G. Zhang, Q. Sun, F.P. Wang. Upconversionmechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals [J], Phys. Rev. B., 2007, 75:195204.
    [23] X. Shen, Q.H. Nie, T.F. Xu, T. Peng, Y. Gao, Green and red upconversion emission and energy transfer between Er3+ and Tm3+ Fions in tellurite glasses [J], Physice Letters A, 2004, 332:101-106.
    [24] M.S. Liao, L.L. Hu, Y.Z. Fang, J.J. Zhang, H.T. Sun, S.Q. Xu, L.Y. Zhang [J], Upconversion properties of Er3+, Yb3+ and Tm3+ codoped fluorophosphates glasses. Shectrochimica Acta Part A, 2007, 68:531-535.
    [25] Y. Porter-Chapman, E. Bourret-Courchesne, S.E. Derenzo, Bi3+ luminescence in ABiO2Cl (A=Sr, Ba) and BaBiO2Br [J], J. Lumin., 2008, 128: 87.
    [26] Y.H. Wang, C.F. Wu, J. Wei, Hydrothermal synthesis and luminescent properties of LnPO4:Tb,Bi (Ln=La,Gd) phosphors under UV/VUV excitation [J], J. Lumin., 2007, 126: 503.
    [27] J.H. Hong, Z.G. Zhang, C.J. Cong, K.L. Zhang, Energy transfer from Bi3+ sensitizing the luminescence of Eu3+ in clusters embedded into sol–gel silica glasses [J], J. Non-Cryst. Solids., 2007, 353: 2431.
    [28] Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, Z.M. Yu, G. Z. Qiu, Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation [J], J. Mater. Sci., 2007, 42: 9194.
    [29] A.T. de Figueiredo, V.M. Longo, S. de Lazaro, V.R. Mastelaro, F.S. De Vicente, A.C. Hernandes, M.S. Li, J.A. Varela, E. Longo, Blue-green and red photoluminescence in CaTiO3:Sm [J], J. Lumin., 2007, 126: 403.
    [30] Y.H. Zhou, J. Lin, S.B. Wang, Energy transfer and upconversion luminescence properties of Y2O3:Sm and Gd2O3:Sm phosphors [J], J. Solid State Chem., 2003, 171: 391.
    [31] C. Chen, K.L. Teo, T.C. Chong, D.M. Newman, J.P. Wu, Analysis of the Thermal Behavior of Photoluminescent Optical memory based on CaS:Eu, Sm media [J], Phys. Rev. B, 2005, 72: 195108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700