用户名: 密码: 验证码:
纳米级氧化锆功能材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要以化学控制方法为主要手段,研究制备稳定化纳米氧化锆粉体和复合材料,利用各种有效控制方法和新的合成路线,探讨了其合成和原位分散技术,并进一步探讨了氧化锆做为陶瓷材料的应用性能。
     首先,采用新的方法,在液相中以氧氯化锆和硝酸钇作为锆源和钇源,以氢氧化钠水溶液作为沉淀剂和晶化反应的液相环境,合成钇稳定化氧化锆纳米晶体。讨论了反应过程中,液相中的各种离子、碱度和时间对于反应的影响,并且讨论和计算了,此种反应条件下氧化锆的反应机理和反应的活化能。接下来,以氧氯化锆和氯化镁作为锆源和镁源,利用此液相晶化方法又成功的制备了镁稳定化纳米氧化锆晶粒粉体,产物经XRD检测为立方相镁稳定化氧化锆。这种制备方法,避免了传统高温焙烧制备方法中产生的不可避免的纳米晶粒粉体的团聚现象,以及湿化学法制备所需时间较长的缺陷,有效缩短了反应时间短,并具有低能耗,高产率的特点,有利于今后的工业化推广。
     其次,以氧氯化锆和硝酸钇作为锆源和钇源,采用原位分散合成法,结合纳米碳酸钙合成过程中的化学和电化学特性,以纳米碳酸钙的前驱体氢氧化钙溶液为沉淀剂,利用生成的纳米碳酸钙作为干燥和高温焙烧过程中纳米氧化锆的阻聚剂,制备出了分散性良好的纳米钇稳定化氧化锆粉体。此方法的反应机理为液相中不同种粒子的表面电位正负电性不同,带有电负性的氧化锆前驱体吸附在具有正电性的纳米碳酸钙表面,从而有效的避免了干燥和焙烧过程中产物颗粒的团聚和生长,从而获得分散性良好的产品。
     最后,采用无水溶胶凝胶法与电泳沉积法相结合,以正丙醇锆和钇稳定化氧化锆粉体为锆源,以乙酰丙酮为介质,在金属基板上沉积钇稳定化氧化锆陶瓷粉体和氧化锆凝胶,经过高温烧结后获得微米/纳米复合氧化锆陶瓷涂层材料。由于引入无水溶胶凝胶方法控制纳米氧化锆在钇稳定化氧化锆粉体颗粒的沉积,使得获得的陶瓷涂层厚度有显著提高,并且通过微米压痕仪的检测证明,涂层的机械性能也得到大大提升。这种湿化学与电化学法的结合,使得电泳沉积的产品性能有了大幅度提高,为今后的应用推广打下良好基础。
The preparation of stabilized zirconia nanomarterials has been studied by chemical control strategies, in which all synthesis, reaction procedure, dispersion and application properties have been investigated.
     At first, we successfully synthesized tetragonal/cubic yttria stabilized zirconia and cubic magnesia stabilized zirconia particles in aqueous solution at low temperature. On YSZ, nanocrystalline particles were prepared in alkaline aqueous solution at temperature of 50-90 oC. The average crystal size of the YSZ particles is 3.7 nm. In this crystallization process, combination of Na+ and OH- is the most effective in promotion of YSZ crystallization, in comparison with the effect K+ and CO32+. With decrease in reaction temperature from 90 to 50 oC, complete crystallization time in the NaOH solution increased from 30 minutes to 7 days. The activation energy for crystallization of YSZ in the NaOH solution has been obtained as 145±10 kJ/mol, which is verified by the reaction at 50 oC for 7 days one, which YSZ product crystallized within the time fitted the calculated results.
     In case of MSZ, nanocrystalline particles were prepared in alkaline aqueous solution at temperature of 95 oC. The average crystal size of 20MSZ particles is 4.3 nm. [OH-] plays the key role on crystallization for MSZ as MSZ crystallized faster in higher [OH-] solution, which is the same in that of YSZ. The synthesized 5MSZ, 10MSZ, 12MSZ and 15MSZ are all exhibit cubic phase without independent MgO occurred. This aqueous phase synthesis method is a low costing on energy and substance, promising to be expanded on prepare more nano materials to obtain better properties and functions.
     Second, In this work, we successfully synthesized YSZ nanoparticles with in situ dispersion method, in which CaCO3 nano particles acted as disperser. The particle size of obtained YSZ is 6.3 nm, with a standard deviation of 1.4 nm from TEM image, and the average grain size of as prepared YSZ is 6.6 nm from XRD. This YSZ has well dispersion stability in water and the suspension is homogeneous. In two weeks, the sedimentation phenomenon of this suspension is too light to be observed. This in situ dispersion method is advancer than previous one on preparing smaller and homogenous dispersed particles. Investigation on influence of calcination temperature indicates 600 oC is the optimal heating condition for the crystallization of this YSZ nanoparticle. The proportion of 1:5 (wt.) for YSZ: CaCO3 is the best for a well dispersion state of YSZ particles. The mechanism of this preparation process is investigated and discussed with theory of electrostatic force and double layer. The dynamic of this in situ dispersion is the electrostatic force, which makes a tight connection between opposite charged YSZ and CaCO3 particles in the whole preparing procedure.
     At last, using Zr(n-OPr)4, ZrO2 nanoparticles was prepared in acetylacetone by nonaqueous sol-gel method. Smaller ZrO2 particles derived from Zr(n-OPr)4 can be induced in EPD coating and the small ZrO2 particles combined with YSZ particles and transform to tetragonal phase in heat treatment process. The properties of the suspension showed the YSZ particle with a main size of 1μm agglomerated with Zr(n-OPr)4 in suspension, and the sedimentation results indicted the agglomeration is loose. Theζ-potential, electrical conductivity and current all increased with the addition of Zr(n-OPr)4 dramatically as the surface property of YSZ particle was changed with zirconium propyl-hydroxide adhered on the particle surface. The addition of Zr(n-OPr)4 in EPD suspension helps on making thicker and crack free coating. The mechanical properties detected by microhardness indicated the Young’s modulus of the EPD coatings is affected by Zr(n-OPr)4 addition, the hardness was improved as well. It shows a promising application of this wet-chemical and electric-chemical combined ways for further fabrication of functional materials.
引文
[1] Ed. Wang, Z. L., Characterization of Nanophase Materials. Viley-VCH Verlag GmbH: 2000.
    [2] Mayo, M. J., Processing of Nanocrystalline Ceramics from Ultrafine Particles. International Materials Reviews 1996, 41, (3), 85-115.
    [3] Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E., Size Effects in the Excited Electronic States of Small Colloidal CdS Crystallites. J. Chem. Phys. 1983, 80, (9), 4464-69.
    [4] Sterigerwald, M. L.; Brus, L. E., Synthesis, Stabilization and Electronic Structure of Quantum Semiconductor Nanoclusters. Annu. Rev. Mater. Sci 1989, 19, 471-95.
    [5] Reed, J. S., Principles of Ceramic Processing, 2nd Ed. John Wiley & Sons, Inc: USA, 1995.
    [6] Mayo, M. J.; Suresh, A.; Porter, W. D., Thermodynamics for Nanosystems:Grain and Particle-Size Dependent Phase Diagrams. Rev. Adv. Mater. Sci. 2003, 5, 100-09.
    [7] Kasuya, A.; Milczarek, G.; Dmitruk, I.; Barnakov, Y.; Czajka, R.; Perales, O.; Liu, X.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Ogawa, T.; Arai, T.; Hihara, T.; Sumiyama, K., Size- and Shape-Controls and Electronic Functions of Nanometer-Scale Semiconductors and Oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 202, 291-96.
    [8] Hahn, H., Unique Features and Properties of Nanostructured Materials. Adv. Eng. Mater. 2003, 5, (5), 277-84.
    [9] Sakka, Y.; Suzuki, T. S.; Morita, K.; Nakano, K.; Hiraga, K., Colloidal Processing and Superplastic Properties of Zirconia- and Alumina-Based Nanocomposites. Scripta Mater. 2001, 44, 2075-78.
    [10] Rhodes, W. H., Agglomerate and Particle Size Effect on Sintering Yttria-Stabilized Zirconia. J. Am. Ceram. Soc. 1981, 64, (1), 19-22.
    [11] Hansen, J. D.; Rusin, R. P.; Teng, M. H.; Johnson, D. L., Combined-Stage Sintering Model. J. Am. Ceram. Soc. 1992, 75, (5), 1129-35.
    [12] Lewis, J. A., Colloidal Processing of Ceramics. J. Am. Ceram. Soc. 2000, 83, (10), 2341-59.
    [13] Binner, J. G. P., Advanced Ceramic Processing and Technology. Yoyes Publications: New Jersey, 1990.
    [14] Guo, J.; Lewis, J. A., Aggregation Effects on Compressive Flow Properties and Drying Behavior of Colloidal Silica Suspensions. J. Am. Ceram. Soc. 1999, 82, (9), 2345-58.
    [15] Ferkel, H.; Hellmig, R. J., Effect of Nanopowder Deagglomeration on the Densities of Nanocrystalline Ceramic Green Bodies and Their Sintering Behaviour. Nanostructured Mater. 1999, 11, (5), 617-22.
    [16] Vasylkiv, O.; Sakka, Y., Synthesis and Colloidal Processing of Zirconia Nanopowder. J. Am. Ceram. Soc. 2001, 84, (11), 2489-94.
    [17] Dell'Agli, G.; Mascolo, G., Agglomeration of 3mol% Y-TZP Powders Synthesized by Hydrothermal Treatment. J. Eur. Ceram. Soc. 2001, 21, 29-35.
    [18] Bowen, P.; Carry, C., From Powders to Sintered Pieces: Forming, Transformations and Sintering of Nanostructured Ceramic Oxides. Pow. Tech. 2002, 128, 248-55.
    [19] Lange, F. F., Powder Processing Science and Technology for Increased Reliability. J. Am. Ceram. Soc. 1989, 72, (1), 3-15.
    [20] Segal, D., Chemical Synthesis of Advanced Ceramic Materials. University Press: Cambridge, 1989.
    [21] Yanagida, H.; Koumoto, K.; Miyayama, M., The Chemistry of Ceramics. John Wiley & Sons Ltd.: Tokyo, 1996.
    [22] Ryshkewitch, E., Oxide Ceramics - Physical Chemistry and Technology. Academic Press: New York and London, 1960.
    [23] Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent Advances in the Liquid-Phase Synthesis of Inorganic Nanoparticles. Chem. Rev. 2004, 104, 3893-946.
    [24] Evans, A.G., Cannon, R.M.. "Toughening of brittle solids by martensitic transformations". Acta Met. 34 (1986) 761.
    [25] Clarke, D. R.; Levi, C. G., Materials Design for the next generation thermal barrier coatings. Annu. Rev. Mater. Sci. 2003, 33, 383-417.
    [26] Minh, N. Q., Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76, (3), 563-88.
    [27] Tanabe, K.; Yamaguchi, T., Acid-Base Bifunctional Catalysis by ZrO2 and Its mixed Oxides. Catal. Today 1994, 20, 185-98.
    [28] Garvie, C.; Hannink, R. H.; Pascoe, R. T., Ceramic Steel? Nature 1975, 258, 703-04.
    [29] Fergus, J. W., Doping and defect association in Oxides for use in oxygen sensors. J. Mater. Sci. 2003, 38, 4259-70.
    [30] S. Somiya, N. Y., N. Yanagida (eds), Science and Technology of Zirconia III. American Ceramic Society: Columbus, OH, 1988.
    [31] Clark, D. R.; Levi, C. G., Materials Design for the Next Generation Thermal Barrier Coatings. Annu. Rev. Mater. Sci. 2003, 33, 383-417.
    [32] Chiang, Y.-M.; BirnieIII, D.; Kingery, W. D., Physical Ceramics. John Wiley &Sons, Inc.: 1997.
    [33] Porter, D.L., Evans, A.G., Heuer, A.H. "Transformation toughening in PSZ". Acta Met. 27 (1979) 1649.
    [34] Somiya, S.; Akiba, T., Hydrothermal Zirconia Powders: a Bibliography. J. Eur. Ceram. Soc. 1999, 9, 81-87.
    [35] Tsukada, T.; Venigalla, S.; Morrone, A. A.; Adair, J. H., Low-Temperature Hydrothermal Synthesis of Yttrium-Doped Zirconia Powders. J. Am. Ceram. Soc. 1999, 82, (5), 1169-74.
    [36] Betz, U.; Sturm, A.; Loffler, J. F.; Wagner, W.; Wiedenmann, A.; Hahn, H., Microstructural Development during Final-Stage Sintering of Nanostructured Zirconia Based Ceramics. Mater. Sci. & Eng. A. 2000, 281, 68-74.
    [37] Srdic, V. V.; Winterer, M.; Hahn, H., Sintering Behavior of Nanocrystalline Zirconia Doped with Alumina Prepared by Chemical Vapor Synthesis. J. Am. Ceram. Soc. 2000, 83, (8), 1853-60.
    [38] Limaye, A. U.; Helble, J. J., Effect of Precursor and Solvent on Morphology of Zirconia Nanoparticles Produced by Combustion Aerosol Synthesis. J. Am. Ceram. Soc. 2003, 86, (2), 273-78.
    [39] Mueller, R.; Jossen, r.; Pratsinis, S. E., Zirconia Nanoparticles Made in Spray Flames at High Production Rates. J. Am. Ceram. Soc. 2004, 87, (2), 197-202.
    [40] Hu, M. Z.-C.; Harris, M. T.; Byers, C. H., Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis. J. Colloid Interface Sci. 1998, 198, 87-99.
    [41] Piticescu, R. R.; Monty, C.; Taloi, D.; Motoc, A.; Axinte, S., Hydrothermal Synthesis of Zirconia Nanomaterials. J. Eur. Ceram. Soc. 2001, 21, 2057-60.
    [42] Vasylkiv, O.; Sakka, Y., Hydroxide Synthesis, Colloidal Processing and Sintering of Nano-Sized 3Y-TZP Powder. Scripta Mater. 2001, 44, (8-9), 2219-23.
    [43] Bondioli, F.; Ferrari, A. M.; Leonelli, C.; Siligardi, C.; Pellacani, G. C., Microwave-Hydrothermal Synthesis of Nanocrystalline Zirconia Powders. J. Am. Ceram. Soc. 2001, 84, (11), 2728-30.
    [44] Monte, F. d.; Larsen, W.; Mackenzie, J. D., Chemical Interactions Promoting the ZrO2 Tetragonal Stabilization in ZrO2-SiO2 Binary Oxides. J. Am. Ceram. Soc. 2000, 83, (6), 1506-12.
    [45] Vasylkiv, O.; Sakka, Y., Nonisothermal Synthesis of Yttria-Stabilized Zirconia Nanopowder through Oxalate Processing: I, Characteristics of Y-Zr Oxalate Synthesis and Its Decomposition. J. Am. Ceram. Soc. 2000, 83, (9), 2196-202.
    [46] Laberty-Robert, C.; Ansart, F.; Deloget, C.; Gaudon, M.; Rousset, A., Powder Synthesis of Nanocrystalline ZrO2-8% Y2O3 via a Polymerization Route. Mater. Res. Bull. 2001, 36, 2083-101.
    [47] Theunissen, G. S. A. M.; Winnubst, A. J. A.; Burggraaf, A. J., Sintering Kinetics and Microstructure Development of Nanoscale Y-TZP Ceramics. J. Eur. Ceram. Soc. 1993, 11, 315-24.
    [48] Vasylkiv, O.; Sakka, Y.; Borodians'ka, H., Nonisothermal Synthesis of Yttria-Stabilized Zirconia Nanopowder through Oxalate Processing: II, Morphology Manipulation. J. Am. Ceram. Soc. 2001, 84, (11), 2484-88.
    [49] Hrdina, K.; Zhen, Y. S. Uniform Sub-Micron or Nano-Size Ceramic or Metal Powders - Are Prepared by Calcining Polymeric Foam Containing Product Precursor. US5338334-A, 1994.
    [50] Zhen, Y. S.; Hrdina, K. Production of Uniform Non-Agglomerated Submicron-Nano-Size Ceramic Powders - Comprises Calcining a Polymeric Foam Containing Metal Cations at 400-1200 Deg. C for 30 Minutes to 8 hours. US5240493-A, 1993.
    [51] Hrdina, K.; Zhen, Y. S. Production of at least one of ceramic and metal powders, involves incorporating metal cation into polymeric foam and calcining metal-containing foam cell structure. US6093234-A, 2000.
    [52] Kaliszewski, M. S.; Heuer, A. H., Alcohol Interaction with Zirconia Powders. J. Am. Ceram. Soc. 1990, 73, (6), 1504-09.
    [53] Mercera, P. D. L.; VanOmmen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R. H., Influence of Ethanol Washing of the Hydrous Precursors on the Textural and Structural Properties of Zirconia. J. Mater. Sci 1992, 27, 4890-98.
    [54] Sagel-Ransijn, C. D.; Winubst, A. J. A.; Burggraaf, A. J.; H.Verweij, The Influence of Crystallization and Washing Medium on the Characteristics of Nanocrystalline Y-TZP. J. Eur. Ceram. Soc. 1996, 16, 159-66
    [55] Matsui, K.; Ohgai, M., Formation Mechanism of Hydrous Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions: III, Kinetics Study for the Nucleation and Crystal-Growth Processes of Primary particles. J. Am. Ceram. Soc. 2001, 84, (10), 2303-12.
    [56] Matsui, K.; Ohgai, M., Formation Mechanism of Hydrous-Zirconia Particles Produced by Hydrolysis of ZrOCl2 solutions: II. J. Am. Ceram. Soc. 2000, 83, (6), 1386-92.
    [57] Matsui, K.; Ohgai, M., Formation Mechanism of Hydrous Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions: IV, Effects of ZrOCl2 Concentration and Reaction Temperature. J. Am. Ceram. Soc. 2002, 85, (3), 545-53.
    [58] Wu, N.; Wu, T., Enhanced Phase Stability for Tetragonal Zirconia in Precipitation Synthesis. J. Am. Ceram. Soc. 2000, 83, (12), 3225-27.
    [59] Hirano, M.; Miwa, T.; Inagaki, M., Low-Temperature Direction Synthesis of Nanoparticles of Fluorite-Type Ceria-Zirconia Soid Solutions by "Forced Cohydrolysis" at 100oC. J. Solid State Chem. 2001, 158, 112-17.
    [60] Lin, J.-D.; Duh, J.-G., Crystallite Size and Microstrain of Thermally Aged Low-Ceria- and Low-Yttria-Doped Zirconia. J. Am. Ceram. Soc. 1998, 81, (4), 853-60.
    [61] Monte, F. d.; Larsen, W.; Mackenzie, J. D., Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides. J. Am. Ceram. Soc. 2000, 83, (3), 628-34.
    [62] Tang, J.; Fabbri, J.; Robinson, R. D.; Zhu, Y.; Herman, I. P.; Steigerwald, M. L.; Brus, L. E., Solid-Solution Nanoparticles: Use of a Nonhydrolytic Sol-Gel Synthesis to Prepare HfO2 and HfxZr1-xO2 Nanocrystals. Chem. Mater. 2004, 16, 1336-42.
    [63] Dell'Agli, G.; Colantuono, A.; Mascolo, G., The Effect of Mineralizers on the Crystallization of Zirconia Gel under Hydrothermal Conditions. Solid StateIonics 1999, 123, 87-94.
    [64] Dell'Agli, G.; Mascolo, G., Hydrothermal Synthesis of ZrO2-Y2O3 Solid Solutions at Low Temperature. J. Eur. Ceram. Soc. 2000, 20, 139-45.
    [65] Piticescu, R. R.; Monty, C.; Taloi, D.; Motoc, A.; Axinte, S., Hydrothermal Synthesis of Zirconia Nanomaterials. J. Eur. Ceram. Soc. 2001, 21, 2057-60.
    [66] Tani, E.; Yoshimura, M.; Somiya, S., Formation of Ultrafine Tetragonal ZrO2 Powder under Hydrothermal Conditions. J. Am. Ceram. Soc. 1983, 66, (1), 11-14.
    [67] Tsukada, T.; Venigalla, S.; Morrone, A. A.; Adair, J. H., Low-Temperature Hydrothermal Synthesis of Yttrium-Doped Zirconia Powders. J. Am. Ceram. Soc. 1999, 82, (5), 1169-74.
    [68] Kolen'ko, Y. V.; Maximov, V. D.; Burukhin, A. A.; Muhanov, V. A.; Churagulov, B. R., Synthesis of ZrO2 and TiO2 Nanocrystalline Powders by Hydrothermal Process. Mater. Sci. Eng. C 2003, 23, 1033-38.
    [69] Nishizawa, H.; Yamasaki, N.; Matsuoka, K., Crystallization and Transformation of Zirconia under Hydrothermal Conditions. J. Am. Ceram. Soc. 1982, 65, (7), 343-46.
    [70] Dell'Agli, G.; Mascolo, G., Zirconia-Yttria (8 mol%) Powder Hydrothermally Synthesized from Different Y-Based Precursors. J. Eur. Ceram. Soc. 2004, 24, 915-18.
    [71] Cheng, H.; Wu, L.; Ma, J.; Zhang, Z.; Qi, L., The Effects of pH and Alkaline Earth Ions on the Formation of Nanosized Zirconia Phases under Hydrothermal Conditions. J. Eur. Ceram. Soc. 1999, 19, 1675-81.
    [72] Khollam, Y. B.; Deshpande, A. S.; Patil, A. J.; Potdar, H. S.; Deshpande, S. B.; Date, S. K., Synthesis of Yttria Stabilized Cubic Zirconia (YSZ) Powders by Microwave-Hydrothermal Route. Mater. Chem. Phy. 2001, 71, 235-41.
    [73] Kaya, C.; He, J. Y.; Gu, X.; Butler, E. G., Nanostructured Ceramic Powders by Hydrothermal Synthesis and Their Application. Microporous and Mesoporous Mater. 2002, 54, 37-49.
    [74] Stefanic, G.; Popovic, S.; Music, S., Influence of pH on the HydrothermalCrystallization Kinetics and Crystal Structure of ZrO2. Thermochimica Acta 1997, 303, 31-39.
    [75] Piticescu, R. R.; Malic, B.; Kosec, M.; Motoc, A.; Motoc, C.; Monty, C.; Soare, I.; Kosmac, T.; Daskobler, A., Synthesis and Sintering Behaviour of Hydrothermal Synthesized YTZP Nanopowders for Ion-Conduction Applications. J. Eur. Ceram. Soc. 2004, 24, 1941-44.
    [76] Noh, H.-J.; Seo, D.-S.; Kim, H.; Lee, J.-K., Synthesis and Crystallization of Anisotropic Shaped ZrO2 Nanocrystalline Powders by Hydrothermal Process. Mater. Lett. 2003, 57, 2425-31.
    [77] Murase, Y., Preparation of Zirconia Whiskers from Zirconium Hydroxide in Sulfuric Acid Solutions under Hydrothermal Conditions at 200 oC. J. Am. Ceram. Soc. 2001, 84, (11), 2705-06.
    [78] Komarneni, S.; Roy, R.; Li, Q. H., Microwave-Hydrothermal Synthesis of Ceramic Powders. Mater. Res. Bull. 1992, 27, 1393-405
    [79] Chen, D.; Xu, R., Solvothermal Synthesis and Characterization of PbTiO3 Powders. J. Mater. Chem. 1998, 8, 965-68.
    [80] Chen, D.; Jiao, L., Solvothermal Synthesis and Characterization of Barium Titanate Powders. J. Am. Ceram. Soc. 2000, 83, (10), 2637-39.
    [81] Zhang, Y.; Xu, G.; Yan, Z.; Yang, Y.; Liao, C.; Yan, C., Nanocrystalline Rare Earth Stabilized Zirconia: Solvothermal Synthesis via Heterogeneous Nucleation-Growth Mechanism, and Electrical Properties. J. Mater. Chem. 2002, 12, 970-77.
    [82] Pang, G.; Sominska, E.; Colfen, H.; Mastai, Y.; Avivi, S.; Koltypin, Y.; Gedanken, A., Preparing a Stable Colloidal Solution of Hydrous YSZ by Sonication. Langmuir 2001, 17, 3223-26.
    [83] Hunter, R. J., Foundations of Colloidal Science (Second Edition). Oxford University Press: New York, 2001.
    [84] Hunter, R. J., Foundations of Colloidal Science. Clarendon Press: Oxford, 1987; Vol. 1.
    [85] Hamaker, H. C., The London-van der Waals Attraction between SphericalParticles. Physica (Amsterdam) 1937, 4, 1058-72.
    [86] Wang, G.; Nicholson, P. S., Heterocoagulation in Ionically Stabilized Mixed-Oxide Colloidal Dispersions in Ethanol. J. Am. Ceram. Soc. 2001, 84, (6), 1250-56.
    [87] Ruckenstein, E., On the Stability of Concentrated, Non-Aqueous Dispersions. Colloids and Surfaces 1993, 69, 271-75.
    [88] Lange, F. F., Powder Processing Science and Technology for Increased Reliability. J. Am. Ceram. Soc. 1989, 72, (1), 3-15.
    [89] Wang, G.; Nicholson, P. S., Heterocoagulation in Ionically Stabilized Mixed-Oxide Colloidal Dispersions in Ethanol. J. Am. Ceram. Soc. 2001, 84, (6), 1250-56.
    [90] Napper, D. H., Polymeric Stabilization of Colloidal Dispersions. In Academic Press: London, UK, 1983; pp 4-13.
    [91] Vincent, B.; Edwards, J.; Emmett, S.; Jones, A., Depletion Flocculation in Dispersions of Sterically Stabilized Particles ("Soft Spheres"). Colloids Surf. 1986, 18, 261.
    [92] Biggs, S.; Healy, T. W., Electrosteric Stabilization of Colloidal Zirconia with Low Molecular Weight Polyacrylic Acid. J. Chem. Soc. Faraday Trans. 1994, 90, (22), 3415-21.
    [93] Walz, J. Y.; Sharma, A., Effect of Long-Range Interactions on the Depletion Force Between Colloidal Particles. J. Colloid Interface Sci. 1994, 168, 485.
    [94] Ogden, A. L.; Lewis, J. A., Effect of Nonadsorbed Polymer on the Stability of Weakly Flocculated Nonaqueous Suspensions. Langmuir 1996, 12, (14), 3413-24.
    [95] Suslick, K. S., ed. Ultrasound: Its Chemical, Physical and Biological Effects. VCH: Weinheim, 1988.
    [96] Fair, G. E.; Lange, F. F., Effect of Interparticle Potential on Forming Solid, Spherical Agglomerations during Drying. J. Am. Ceram. Soc. 2004, 87, (1), 4-9.
    [97] Wei, W.-C. J.; Wang, S.-C.; Ho, F.-Y., Electrokinetic Properties of ColloidalZirconia Powders in Aqueous Suspension. J. Am. Ceram. Soc. 1999, 82, (12), 3385-92.
    [98] Widegren, J.; Bergstrom, L., Electrostatic Stabilization of Ultrafine Titania in Ethanol. J. Am. Ceram. Soc. 2002, 85, (3), 523-28.
    [99] Besra L. and Liu M.,“A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD)”, Prog. Mater. Sci. 52, 1-61, 2007.
    [100] Corni I., Ryan M. P., and Boccaccini A. R.,“Electrophoretic Deposition: From Traditional Ceramics to Nanotechnology”, J. Euro. Ceram. Soc., 28[7], 1353-67, 2008.
    [101] Van der Biest O. O. and Vandeperre L. J.,“Electrophoretic Deposition of Materials”, Annu. Rev. Mater. Sci., 29, 327-52, 1999.
    [102] Sarkar P. and Nicholson P. S.,“Electrophoretic Deposition (EPD): Mechanisms, Kinetics and Application to Ceramics”, J. Am. Ceram. Soc., 79, 1987-2002, 1996.
    [103] Boccaccini A. R. and Zhitomirsky I.,“Application of Electrophoretic and Electrolytic Deposition Techniques in Ceramics Processing”, Current Opinion in Solid State & Materials Science, 6(3), 251-60, 2002.
    [104] De Bozes, Baker and Ellis,“Abstract of a Letter from Monsieur De Bozes, Professor of Experimental Philosophy, at the Academy of Wirtemberg, to Monsieur DeMaizau Communicated by Mr. Baker from Mr. Ellis, and Tanslated out of the Latin by Mr. Baker”Philosophical Transactions, 43, 419-21, 1745.
    [105] Harsanyi E.,“Method of Coating Radiant Bodies”, U. S. Patent No. 1897902, 1933.
    [106] Pickard W. F.,“Remarks on the Theory of Electrophoretic Deposition”, Journal of the Electrochemical Society, 115m, 105c-108c, 1968.
    [107] Heavens S. N.,“Electrophoretic Deposition as A Processing Route for Ceramics”, Advanced Ceramic Processing and Technology, Noyes Publications, New Jersey, 255-83, 1990.
    [108] Gani M. S. J.,“Electrophoretic Deposition. A Review”, Ind. Ceram., 14,163-174, 1994.
    [109] Sagel-Ransijn, C. D.; Winubst, A. J. A.; Burggraaf, A. J.; H.Verweij, The Influence of Crystallization and Washing Medium on the Characteristics of Nanocrystalline Y-TZP. J. Eur. Ceram. Soc. 1996, 16, 159-66.
    [110] Boccaccini A. R., Roether J. A., Thomas B. J. C., Shaffer M. S. P., et al.,“The Electrophoretic Depositon of Inorganic Nanoscaled Materials”, J. Ceram. Soc. Jpn., 114, 1-14, 2006.
    [111] Boccaccini A. R. Cho J., Roether J. A., Thomas B. J. C., et al.,“Electrophoretic Deposition of Carbon Nanotubes”, Carbon, 44, 3149-60, 2006.
    [112] Avgustinik A. I., Vigdergauz V. S., and Zhuravlev G. I.,“Electrophoretic Deposition of Ceramic Masses from Suspensions and Calculation of Deposit Yields”, J. Appl. Chem. USSR (Engl. Transl.), 35, 2090-93, 1962.
    [113] Krishna Rao D. U. and Subbarao E. C.,“Electrophoretic Deposition of Magnesia”, Am. Ceram. Soc. Bull., 58(4), 467-69, 1979.
    [114] Krishna Rao D. U., Malage A. B., Baral D., and Subbarao E. C.,“Kinetics of Electrophoretic Deposition ofβ-Alumina”, Bull. Mater. Sci., 8[1], 1-11, 1986
    [115] Ciou S. J., Fung K. Z., and Chiang K. W.,“The Mathematical Expression for Kinetics of Electrophoretic Deposition and the Effects of Applied Voltage”, Journal of Power Sources, 172(1), 358-62, 2007.
    [116] Hamaker H. C.,“Formation of Deposition by Electrophoresis”, Trans. Farad. Soc., 36, 279-83, 1940.
    [117] Biesheuvel P. M. and Verweij H.,“Theory of Cast Formation in Electrophoretic Deposition”, J. Am. Ceram. Soc., 82(6), 1451-55, 1999
    [118] Probstein R. F., Physicochemical Hydrodynamics, An Introduction pp. 214-33, Butterworths, Boston, MA, 1989.
    [119] Russel W. B., Saville D. A., and Schowalter W. R., Colloidal Dispersions; pp. 411-14. Cambridge University Press, Cambridge, U.K., 1989.
    [120] Hiemenz P. C. and Rajagopalan R., Principles of Colloid and Surface Chemistry, 3rd ed.; pp. 537-48. Marcel Dekker, New York, 1997
    [121] Hirata Y., Nishimoto A., and Ishihara Y.,“Forming of Alumina Powder by Electrophoretic Deposition”, J. Ceram. Soc. Jpn., Int. Ed., 99, 105-109, 1991
    [122] Ishihara T., Sato K., and Takita Y.,“Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells”, J. Am. Ceram. Soc., 79(4), 913-19, 1996
    [123] Lindner F. and Feltz A.,“Thin Layer NTC Semiconductor Ceramics Based on NiMn2O4 and ZnzNiMn2-zO4 (z=1/3,2/3)”, J. Euro. Ceram. Soc., 11, 269-74, 1993.
    [124] Lindner F. and Feltz A.,“Electrophoretic Deposition-A Method for Preparation of Semiconducting Oxide Ceramic Layers”, Solid State Ionics, 63-65, 13-17, 1993.
    [125] Powers R. W.,“Ceramic Aspects of Forming Beta-Alumina by Electrophoretic Deposition”, American Ceramic Society Bulletin, 65(9), 1270-77, 1986.
    [126] Negishi H., Sakai N., Yamaji K., Horita T., and Yokokawa H.,“Application of Electrophoretic Deposition Technique to Solid Oxide Fuel Cells”, J. Electrochem. Soc. 147, 1682-87, 2000.
    [127] Gutierrez C. P., Wallace T. C., and Mosley J .R.,“Electrophoretic Deposition: A Versatile Coating Method”, J. Electrochem. Soc., 109(10), 923-27, 1962.
    [128] Kawai C. and Wakamatsu S.,“Fabrication of C/SiC Composites by An Electrodeposition/Sintering Method and the Control of the Properties”, J. Mater. Sci., 31, 2165–70, 1996.
    [129] Zhang Z., Huang Y. and Jiang Z.,“Electrophoretic Deposition Forming of SiC-TZP Composites in A Nonaqueous Sol Media”, J. Am. Ceram. Soc., 77, 1946, 1994.
    [130] Sarkar P. and Nicholson P. S.,“Comments on‘Electrophoretic Deposition Forming of SiC-TZP Composites in A Nonaqueous Sol Media’”, J. Am. Ceram. Soc., 78(11), 3165-66, 1995.
    [131] Zhang. Z.,“Reply to‘Comments on Electrophoretic Deposition Forming of SiC-TZP Composites in A Nonaqueous Sol Media’”, J. Am. Ceram. Soc., 78(11), 3167-68, 1995.
    [132] Anne G., Neirinck B., Vanmeensel K., Van der Biest O.O., and Vleugels J.,“Origin of the Potential Drop over the Deposit during Electrophoretic Deposition”, J. Am. Ceram. Soc., 89(3), 823-28, 2006
    [133] Van der Biest O. O. and Vandeperre L. J.,“Electrophoretic Deposition of Materials”, Annu. Rev. Mater. Sci., 29, 327-52, 1999
    [134] Kaya C., Kaya F., Su B., Thomas B., and Boccaccini A. R.,“Structural and Functional Thick Ceramic Coatings by Electrophoretic Deposition”, Surface & Coating Technology, 191(2-3), 303-10, 2005.
    [135] Sarkar P., Datta S., and Nicholson P. S.,“A Functionally Graded Ceramic/Ceramic and Metal/Ceramic Composites by Electrophoretic Deposition,”Composites, Part B, 28B, 49, 1997.
    [136] Sarkar P., Huang X., and Nicholson P. S.,“Electrophoretic Deposition and Its Use to Synthesize YSZ/Al2O3 Microlaminates Ceramic/Ceramic Composites”, Ceram. Eng. Sci. Proc., 14, 707-17, 1993.
    [137] Sarkar P., Prakash O., Wang G., and Nicholson P. S.,“Microlaminate Ceramic/Ceramic Composites (YSZ/Al2O3) by Electrophoretic Deposition”, Ceram. Eng. Sci. Proc., 15, 1019, 1994.
    [138] Sarkar P., Huang X., and Nicholson P. S.,“Structural Ceramic Microlaminates by Electrophoretic Deposition”, J. Am. Ceram. Soc., 75, 2907, 1992.
    [139] Sussman A. and Ward T. J.,“Electrophoretic Deposition of Coatings from Glass-Isopropanol Slurries”, RCA Review, 42(2), 178-97, 1981.
    [140] Koelmans H. and J. Overbeek Th. G.,“Stability and Electrophoretic Deposition of Suspensions in Non-Aqueous Media”, Discuss. Faraday Soc., 18, 52-63, 1954.
    [141] Hamaker H. C. and Verwey E. J. W.,“The Role of the Forces between the Particles in Electrodeposition and Other Phenomena”, Trans. Farad. Soc., 36, 180-85, 1940.
    [142] Grillon F. Fayeulle D. and Jeandin M.,“Quantitative Image-Analysis of Electrophoretic Coatings”, J. Mater. Sci. Lett., 11, 272-75, 1992.
    [143] Brown D. R. and Salt F. W.,“The Mechanism of Electrophoretic Depositionunder Steady Fields”, Langmuir, 16, 9208-16, 2000.
    [144] Fukada Y., Nagarajan N., Mekky W., and Bao Y.,“Electrophoretic deposition Mechanisms, Myths and Materials”, J. Mater. Sci., 39, 787-801, 2004.
    [145] Solomentsev, Y., Guelcher, S. A., Bevan, M. and Anderson, J. L.,“Aggregation Dynamics for Two Particles during Electrophoretic Deposition under Steady Fields”, Langmuir, 16, 9208-16, 2000.
    [146] Hoggard J. D., Sides P. J., and Prieve D. C.,“Electrolyte-dependent Multiparticle Motion near Electrodes in Oscillating Electric Fields”, Langmuir, 24(7), 2977-82, 2008.
    [147] Yeh S. R., Seul M., and Shaiman B.I.,“Assembly of Ordered Colloidal Aggregates by Electric-Field-Induced Flow”, Nature, 386, 57-59, 1997.
    [148] Trau M., Saville D. A. and Aksay I. A.,“Field-Induced Layering of Colloidal Crystals”, Science, 272, 706-709, 1996.
    [149] Sides, P. J.,“Electrodynamically Particle Aggregation on An Electrode Driven by An Alternating Electric Field Normal to It”, Langmuir, 17, 5791-800, 2001.
    [150] Perez, A. T., Saville, D. and Soria, C.,“Modeling the Electrophoretic Deposition of Colloidal Particles”, Europhys. Lett., 55, 425-431, 2001.
    [151] Greil, P., Cordelair, J., and Bezold, A.,“Discrete Element Simulation of Ceramic Powder Pprocessing”, Z. Metallk., 92, 682-689, 2001.
    [152] Hoggard J. D., Sides P. J., and Prieve D. C.,“Electrolyte-Dependent Pairwise Particle Motion near Electrodes at Frequencies below 1kHz”, Langmuir, 23, 6983-90, 2007.
    [153] Ristenpart W. D., Aksay I. A. and Saville D. A.,“Electrohydrodynamic Flow around a Colloidal Particle near an Electrode with an Oscillating Potential”, Journal of Fluid Mechanics, 575, 83-109, 2007.
    [154] Ristenpart, W. D., Aksay, I. A. and Saville, D. A., Electrically Driven Flow near a Colloidal Particle Close to an Electrode with a Faradaic Current”, Langmuir, 23, 4071-80, 2007.
    [155] Giersig M. and Mulvaney P.,“Formation of Ordered Two-Dimensional Gold Colloid Lattices by Electrophoretic Deposition”, J. Phys. Chem., 97, 6334-6,1993.
    [156] Giersig M. and Mulvaney P.,“Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition”, Langmuir, 9, 3408-13, 1993.
    [157] Trau M., Saville D. A., and Aksay I. A.,“Assembly of Colloidal Crystals at Electrode Interfaces”, Langmuir, 13, 6375-81, 1997.
    [158] Bohmer M.,“In Situ Observation of Two-Dimensional Clustering during Electrophoretic Deposition”, Langmuir, 12, 5747-50, 1996.
    [159] Solomentsev Y., Bohmer M., and Anderson J. L.,“Particle Clustering and Pattern Formation during Electrophoretic Deposition: a Hydrodnamic Model”, Langmuir, 13, 6058-68, 1997.
    [160] Bailey R. C., Stevenson K. J, and Hupp J. T.,“Assembly of Micropatterned Colloidal Gold Thin Film via Microtransfer Molding and Electrophoretic Deposition”, Adv. Mater., 12(24), 1930-4, 2002.
    [161] Nicholson P. S., Sarkar P., Prakash O., and Wang G.,“Mimicking Nature’s Ceramic/Ceramic Laminar Composites by Electrophoretic Deposition”, Ceram. Trans., 46, 533-41, 1994.
    [162] You Ch., Jiang D. L., and Tan S. H.,“SiC/TiC Laminated Structure Shaped by Electrophoretic Deposition”, Ceram. Int., 30, 813-5, 2004.
    [163] Sarkar P., Datta S., and Nicholson P. S.,“Functionally Graded Ceramic/Ceramic and Metal/Ceramic Composites by Electrophoretic Deposition”, Composites Part B: Engineering, 28B(1–2), 49-56, 1998.
    [164] Sarkar P., Datta S., and Nicholson P. S.,“Electrophoretic Forming of Functionally-Graded Materials”, Ceram. Trans., 76, 15-30, 1997.
    [165] Zhao C., Vleugels J., Vandeperre L., Basu B., and Van der Biest O. O.,“Y-TZP/Ce-TZP Functionally Graded Composite”, J. Mater. Sci. Lett., 17(17), 1453-5, 1998.
    [166] Yamada N., Shoji H., Kubo Y., and Katayama S.,“Preparation of Inorganic–Organic Hybrid Films Containing Particles Using Electrophoretic Deposition Method”, J. Mater. Sci., 37, 2071-6, 2002.
    [167] Yamada N., Yoshinaga I., and Katayama S.,“Synthesis and DynamicMechanical Behaviour of Inorganic-Organic Hybrids Containing Various Inorganic Components”, J. Mater. Chem., 7, 1491-6, 1997.
    [168] Boccaccini A. R., Kaya C., and Chawla K. K.,“Use of Electrophoretic Deposition in the Processing of Fiber Reinforced Ceramic and Glass Matrix Composites: A Review”, Composites Part A: Appl. Sci. Eng., 32, 997-1006, 2001.
    [169] Kaya C., Kaya F., Boccaccini A. R., and Chawla K. K.,“Fabrication and Characterisation of Ni-Coated Carbon Fiber Reinforced Alumina Ceramic Matrix Composites Using Electrophoretic Deposition”, Acta Mater., 49, 1189-97, 2001.
    [170] Mahajan S. V., Hasan S. A., Cho J., Shaffer M. S. P., Boccaccini A. R., and Dicherson J. H.,“Carbon Nanotube-Nanocrystal Heterostructures Fabricated by Electrophoretic Deposition”, Nanotechnology, 19(19), 2008.
    [171]Boccaccini A. R., MacLaren I., Lewis M. H., and Ponton C. B.,“Electrophoretic Deposition Infiltration of 2-D Woven SiC Fibre Mats with Mixed Sols of Mullite Composition”, J. Euro. Ceram. Soc., 17(13), 1545-50, 1997.
    [172] Greil P., Cordelair J., and Bezold A.,“Discrete Element Simulation of Ceramic Powder Processing”, Z Metallk, 92, 682-9, 2000.
    [173] Li H. X., Lin M. Z., and Hou J.G.,“Electrophoretic Deposition of Ligand-Stabilized Silver Nanoparticles Synthesized by the Process of Photochemical Reduction”, J. Cryst. Growth, 212, 222-6, 2000.
    [174] Sarkar P., De D., Yamashita K., Nicholson P. S., and Umegaki T.,“Mimicking Nanometer Atomic Processes on A Micrometer Scale via Electrophoretic Deposition”, J. Am. Ceram. Soc., 83, 1399-401, 2000.
    [175] Perez A. T., Saville D., and Soria C.,“Modeling the Electrophoretic Deposition of Colloidal Particles”, Europhys. Lett., 55, 425-31, 2001.
    [176] Hayashi K. and Furuya N.,“Preparation of Gas Diffusion Electrodes by Electrophoretic Deposition”, J. Electrochem. Soc., 151(3), A354-7, 2004.
    [177] Dougami N. and Takada T.,“Modification of Metal Oxide Semiconductor GasSensor by Electrophoretic Deposition”, Sens. Actuators B, 93, 316-20, 2003.
    [178] Stambouli A. B. and Traversa E.,“Solid oxide fuel cells (SOFCs): A Review of An Environmentally Clean and Efficient Source of Energy”, Renew Sustainable Energy Rev., 6, 433-55, 2002.
    [179] Ishihara T., Sato K., Mizuhara Y., and Takita Y.,“Preparation of Yttria Stabilized Zirconia Films for Solid Oxide Fuel Cells by Electrophoretic Deposition Method”, Chem. Lett., 943-6, 1992.
    [180] Ishihara T., Shimose K., Shiomitsu T., and Takita Y.,“Electrophoretic Deposition of Y2O3-Stabilized ZrO2 on the Porous La0.8Sr0.2MnO3 Cathode Substrate for SOFC”, In: Dokiya M., Yamamoto O., Tagawa H., Singhal S. C., editor. Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV) p.334-43, 1995.
    [181] Zhitomirsky I., and Petric A.,“Electrophoretic Deposition of Ceramic Materials for Fuel Cell Applications”, J. Euro. Ceram. Soc., 20, 2055-61, 2002.
    [182] Zhitomirsky I., and Petric A.,“Electrophoretic Deposition of Electrolyte Materials for Solid Oxide Fuel Cell”, J. Mater. Sci., 39, 825-31, 2004.
    [183] Van der Biest O. O., Joos E., Vleugels J., and Baufeld B.,‘‘Electrophoretic Deposition of Zirconia Layers for Thermal Barrier Coatings,’’J. Mater. Sci., 41, 8086-92, 2006.
    [184] Wang Z. C., Schemilt J., and Xiao P.,‘‘Fabrication of Ceramic Composite Coatings Using Electrophoretic Deposition, Reaction Bonding and Low Temperature Sintering,’’J. Euro. Ceram. Soc., 22[2], 183-9, 2002.
    [185] Lee J. H., Hyun K. H., Paik U., Jung Y. G., Lee J. H., Lee K. S., and Lee H. S.,“Effect of Hydroxyl Groups in PVB on the Microstructure of Electrophoretically Deposited Green Bodies for Thermal Barrier Coatings”, Colloids Surf. A: Physicochem. Eng. Aspects, 13-14, 23-6, 2008.
    [1] Steele, B. C. H.; Heinzel, A. Nature, 2001, 414, 345.
    [2] Hansch, R.; Lavergnat, D.; Menzler, N. H.; St?ver, D. Adv. Funct. Mater. 2005, 7, 142.
    [3] Sangjin Han, Taekyung Yu, Jongnam Park, Bonil Koo, Jin Joo, and Taeghwan HyeonSeunghun Hong and Jiwoon Im Diameter-Controlled Synthesis of Discrete and Uniform-Sized Single-Walled Carbon Nanotubes Using Monodisperse Iron Oxide Nanoparticles Embedded in Zirconia Nanoparticle Arrays as Catalysts, J. Phys. Chem. B. 2004, 108, 8091-8095.
    [4] Bo Qing Xu, Jun Mei Wei, Ying Tao Yu, Yan Li, Jin Lu Li, and Qi Ming Zhu, Size Limit of Support Particles in an Oxide-Supported Metal Catalyst: Nanocomposite Ni/ZrO2 for Utilization of Natural Gas, J. Phys. Chem. B. 2003, 107, 5203-5207.
    [5] Jianjun Zhu, Sander Albertsma, Jan G. van Ommen, and Leon Lefferts, Role of Surface Defects in Activation of O2 and N2O on ZrO2 and Yttrium-Stabilized ZrO2, J. Phys. Chem. B, 2005, 109 (19), 9550–9555.
    [6] James F. Haw, Jinhua Zhang, Kiyoyuki Shimizu, T. N. Venkatraman, Donat-Pierre Luigi, Weiguo Song, Dewey H. Barich, and John B. Nicholas, B., NMR and Theoretical Study of Acidity Probes on Sulfated Zirconia Catalysts, J. Am. Chem. Soc. 2000, 122, 12561–12570.
    [7] León, C.; Lucía, M. L.; Santamaría, Non-Arrhenius Correlated ion hopping in single-crystal yttria-stabilized zirconia, J. Phys. ReV. B 1997, 55, 882-887.
    [8] F.P.F. van Berkel, F.H. van Heuveln and J.P.P., Huijsmans., Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics, Solid State Ionics, 1994, 72, 240-247.
    [9] Garvie, R. C.; Hannink, R. H.; Pascoe, R. T. Nature 1975, 258, 703.
    [10] Somiya, N. Y. S.; Yanagida (eds.), N., Science and Technology of Zirconia III. American Ceramic Society, Columbus, OH, 1988.
    [11] Nanostructured Oxide-Based Powders: Investigation of the Growth Mode ofthe CeO2 Clusters on the YSZ Surface, Marta M. Natile and Antonella Glisenti A. J. Phys. Chem. B. 2006, 110, 2515-2521.
    [12] Qing Wan, Eric N. Dattoli, Wayne Y. Fung, Wei Guo, Yanbin Chen, Xiaoqing Pan, and Wei Lu, High-Performance Transparent Conducting Oxide Nanowires, Nano Lett. 2006, 6, 2909-2915.
    [13] Hua-Zhong Yu, Aaron W. Rowe, Templated Electrochemical Deposition of Zirconia Thin Films on Recordable CDs Anal. Chem. 2002, 74, 5742.
    [14] Dmitry G. Shchukin, S. V. Lamaka, K. A. Yasakau, M. L. Zheludkevich, M. G. S. Ferreira, and H. M?hwald, Active Anticorrosion Coatings with Halloysite Nanocontainers, J. Phys. Chem. C. 2008, 112, 958-964.
    [15] Isa, M.; Valmalett, J. Ch.; Muller, Ch.; Leroux, Ch. Evolution in Time of a Gold?Zirconia Nanopowder at Room Temperature: Nucleation Growth of Gold Nanoparticles, Chem. Mater. 2005, 17, 5920-5927.
    [16] Rezaei, M.; Alavi, S. M.; Sahebdelfar, S.; Xinmei, L.; Qian, L.; Yan, Z.-F. CO2?CH4 Reforming over Nickel Catalysts Supported on Mesoporous Nanocrystalline Zirconia with High Surface Area, Energy & Fuels, 2007, 21,581-589.
    [17] Xin Zhang, Hai Wang, and Bo-Qing Xu, Remarkable Nanosize Effect of Zirconia in Au/ZrO2 Catalyst for CO Oxidation, J. Phys. Chem. B.; 2005, 109, 9678-9683.
    [18] Brus, L. E. , Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 1984, 80, 4403-4409.
    [19] Ramamoorthy, R.; Sundararaman, D.; Ramasamy, S. Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs, Solid State Ionics 1999, 123, 271-278.
    [20] Cheikh, A.; Madani, A.; Touati, A.; Boussetta, H.; Monty, C, Ionic conductivity of zirconia based ceramics from single crystals to nanostructured polycrystals . J. Eur. Ceram. Soc. 2001, 21, 1837-1841.
    [21] Mondal, P.; Klein, A.; Jaegermann, W.; Hahn, H., Enhanced specific grainboundary conductivity in nanocrystalline Y2O3-stabilized zirconia, Solid State Ionics 1999, 118, 331.
    [22] Weppner, W. , Tetragonal zirconia polycrystals—a high performance solid oxygen ion conductor ,Solid State Ionics, 1992, 52, 15.
    [23] He, Y. J.; Winnubst, A.; Burggraaf, A. J.; Verweij, H.; van der Varst, P. G.; de With, B. G. J. Am. Ceram. Soc, 1996, 79, 3090.
    [24] Muccillo, E. N. S.; Muccillo, R. British Ceramic Transactions 2002, 101, 259.
    [25] Upconversion in Er3+:ZrO2 Nanocrystals, Amitava Patra, Christopher S. Friend, Rakesh Kapoor, and Paras N. Prasad, J. Phys. Chem. B. 2002, 106, 1909-1912.
    [26] Guangsheng Pang, Siguang Chen, Yingchun Zhu, Oleg Palchik, Yuri Koltypin, Afie Zaban, and Aharon Gedanken, Preparation and Characterization of Monodispersed YSZ Nanocrystals, J. Phys. Chem. B. 2001, 105, 4647-4652.
    [27] Nana Zhao, Daocheng Pan, Wei Nie, and Xiangling Ji, Two-Phase Synthesis of Shape-Controlled Colloidal Zirconia Nanocrystals and Their Characterization, J. Am. Chem. Soc. 2006, 128, 10118.
    [28] Tyagi, B.; Sidhpuria, K.; Shaik, B.; Jasra, R. V. Ind. Eng. Chem. Res. 2006, 45, 8643.
    [29] Navio, J. A.; Hidalgo, M. C.; Colon, G.; Botta, S. G.; Litter, M. I., Preparation and Physicochemical Properties of ZrO2 and Fe/ZrO2 Prepared by a Sol?Gel Technique, Langmuir, 2001, 17, 202-210.
    [30] Dell’Agli, G.; Mascolo, G.; Mascolo, M.C.; Pagliuca, C., Crystallization–stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttria, J. Crys. Grow. 2005, 280, 255-265.
    [31] Moon, Y. T.; Park, H. K.; Kim, D. K.; Kim, C. H. J. Am. Ceram. Soc. 1995, 78, 2690.
    [32] Joo, J.; Yu, T.; Kim, Y. W.; Park, H. M. , Wu, F. X.; Zhang, J. Z.; Hyeon, T., Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals, Jin Joo, Taekyung Yu, Young Woon Kim, Hyun Min Park, Fanxin Wu, Jin Z. Zhang, and Taeghwan Hyeon, J. Am. Chem. Soc. 2003,125, 6553-6557.
    [33] Proton-Transfer Polymerization: A New Approach to Hyperbranched Polymers, Han-Ting Chang and Jean M. J. Fréchet, J. Am. Ceram. Soc. 1999, 82, 2313-2314.
    [34] Brune, A.; Lajavardi, M.; Fisler, D.; Wagner, J. B., The electrical conductivity of yttria-stabilized zirconia prepared by precipitation from inorganic aqueous solutions, J. Solid State Ionics. 1998, 160, 89.
    [35] Stichert, W.; Schüth, F. , Influence of Crystallite Size on the Properties of Zirconia, Chem. Mater. 1998, 10, 2020.
    [36] Xia, B.; Lenggoro, I. W.; Okuyama, K., Novel Route to Nanoparticle Synthesis by Salt-Assisted Aerosol Decomposition, Adv. Mater. 2001, 13, 1579-1582.
    [37] J. Grabis, A. Kuzjukevics, D. Rasmane, M. Mogensen, S. Linderoth, J. Mater. Sci. 1998, 33, 723
    [38] Rao, C. N. R.; Satishkumar, B. C.; Govindaraj, A. Chem. Commun. 1997, 16, 1581.
    [39] Liu, X. M.; Lu, G. Q.; Yan, Z. F., Synthesis and Stabilization of Nanocrystalline Zirconia with MSU Mesostructure, J. Phys. Chem. B, 2004, 108, 15523-15528.
    [40] Tsukada, T.; Venigalla, S.; Morrone, A. A.; Adair, J. H. J. Am. Ceram. Soc. 1999, 82, 1169.
    [41] Dell’Agli, G.; Mascolo, G. J. Mater. Sci. 2000, 35, 661.
    [42] Burkin, A. R.; Saricimen, H.; Steele, B. C. H. Trans. J. Br. Cream. Soc. 1980, 105, 79.
    [43] Stambaugh, E. P.; Adair, J. H.; Sekercioglu, I.; Wills, R. R. Hydrothermal Method for Producing Stabilized Zirconia, U. S. Pat. No. 4619817, 1986.
    [44] Hishinuma, K.; Kumaki, T.; Nakai, Z.; Yoshimura, M.; S?miya, S. Science and Technology of Zirconia III; American Ceramic Society, Westerville, OH, 1986.
    [45] Kriechbaum, G. W.; Kleinschmit, P.; Peuckert, D.; Ceramic Powder Science II A. American Ceramic Scociety, Westerville, OH, 1988.
    [46] Wang, M. X., Lorimer, G.; Xiao, P. J. Am. Ceram. Soc. 2005, 88, 809.
    [47] Reduced Activation Energy for Grain Growth in NanocrystallineYttria-Stabilized Zirconia, Satyajit Shukla, Sudipta Seal, Rashmi Vij, and Sri Bandyopadhyay Nano Lett. 2003, 3, 397-401.
    [48] Yueh-Hsun Lee, Chih-Wei Kuo, I-Ming Hung, Kuan-Zong Fung, Moo-Chin Wang, The thermal behavior of 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol–gel process, J. Non-Cryst. Solids 2005, 351, 3709-3715.
    [49] H. P. Klug, L. E. Alexandar, X-ray Diffraction Procedures; Wiley: NewYork, 1962.
    [50] Sánchez-Bajo, F.; Cumbrera, F. L.; Guiberteau, F.; Domíngues-Rodríguez, A.; Tsodikov, M. V., X-ray microstructural characterization of Y-PSZ (5 mol%) nanocrystalline powder samples, Mater. Lett. 1998, 33, 283-289.
    [51] C. D. Sagel-Ransijn, A. J. A.Winubst, A. J. Burggraaf, and H. Verweij, J. Eur. Ceram .Soc. 1996, 16, 159.
    [52] Srinivasan, R.; Harris, M. B.; Simpson, S. F.; DeAngelis, R. J.; Davis, B.H.; J. Mater. Res. 1988, 3, 787.
    [53] Grigoriev, V. A.; Cheng, D.; Hill, C. L.; Weinstock, I. A. J. Am. Chem. Soc,2001, 123,5292.
    [54] T. Czeppa, P. Zieba,W. Baliga, E. Dobrev, A. Pawlowski; Materials Chemistry and Physics, 81, 2003, 312-314.
    [55] T. Mitsuhashi, M. Ichihara, and U. Tatsuke,“Characterization and Stabilization of Metastable Tetragonal ZrO,,”J. Am. Cerum. Soc., 57 (2) 97-101, 1974.
    [56] H. Nishizawa, N. Yamasaki, and K. Matsuoka, H. Mitsushio., crystallization and transformation of zircoinia under herothermal condistions, Journal of the American Ceramic Society-Carr and Subramanian Vol. 65, No. 7 (343-346)
    [1] PaiVerneker, V. R.; Petelin, A. N.; Crowne, F. J.; Nagle, D. C. [J]. Phys. Rev. 1989, B40, 8555.
    [2] Orera, V. M.; Merino, R. I.; Chen, Y.; Cases, R.; Alonso, P.J. [J]. Phys. Rev.1990. B42, 9782.
    [3] Kosacki, I.; Petrovsky, V.; Erson, H.U. Band gap energy in nanocrystalline ZrO2:16%Y thin films, [J].Appl. Phys. Lett. 1999, 74, 341-343.
    [4] Brus, L.E. Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state, [J]. J. Chem. Phys. 1984, 80, 4403-4409.
    [5] Hu, M. Z. -C.; Hunt, R. D.; Payzant, E. A.; Hubbard, C. R. [J]. J. Am. Ceram. Soc. 1999, 82 (9), 2313.
    [6] Hu, M. Z. -C.; Harris, M. T.; Byers, C. H. J. Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis [J]. Colloid Interface Sci. 1998,198, 87-99.
    [7] Clearfield, A.; Serrette, G. P. D.; Khazi-Syed, A. H. Nature of hydrous zirconia and sulfated hydrous zirconia , [J]. Catalysis Today 1994, 20, 295-312.
    [8] Clearfield, A. Crystalline Hydrous Zirconia, [J]. Norg. Chem. 1964,3, 146-148.
    [9] Clearfield, A. The mechanism of hydrolytic polymerization of zirconyl solutions, [J]. J. Mater. Res. 1990, 5, 161-162.
    [10] Stichert, W. ;Schuth, F. Influence of Crystallite Size on the Properties of Zirconia, Chem. Mater. 1998, 10, 2020-2026.
    [11] Wu, N. -L. ; Wang, S. -Y. ;Rusakova, I. A. Science 1999, 285, 1375-1377.
    [12] Mercera, P. D. L.; Vanommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R. H. Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia, J. Mater. Sci. 1992, 27, 4890.
    [13] Sagel-Ransijn, C. D.; Winnubst, A. J. A.; Burggraaf, A. J.; Verweij, H. The influence of crystallization and washing medium on the characteristics of nanocrystalline Y-TZP J. Eur. Ceram. Soc. 1999, 16, 759-776.
    [14] Jiang, S.; Stangle, G. C.; Amarakoon, V. R. W.; Schulze, W. A. Synthesis of Yttria-stabilized zirconia nanoparticles by decomposition of metal nitrates coated on carbon powder, J Mater. Res. 1996, 11(9), 2318-2324.
    [15] Ramesh, S.; Minti, H.; Reisfeld, R.; Gedanken, A. Synthesis and optical properties of europium oxide nanoparticles immobilized on amorphous silica microspheres Optical Materials, 1999, 13, 67-70.
    [16] Ramesh. S.; Cohen, Y.; Aurbach, D.; Gedanken, A. Atomic force microscopy investigation of the surface topography and adhesion of nickelnanoparticles to submicrosphericalsilica, Chem. Phys. Lett. 1998, 287, 461-467.
    [17] Patra, A.; Sominska, E.; Ramesh, S.; Koltypin, Yu.; Zhong, Z.; Minti, H.; Reisfeld, R.; Gedanken, A. Sonochemical Preparation and Characterization of Eu2O3 and Tb2O3Doped in and Coated on Silica and Alumina Nanoparticles, J. Phys. Chem. B, 1999, 103, 3361-3365.
    [18] Zhong, Z.; Mastai, Y.; Koltypin, Yu.; Zhao, Y.; Gedanken, A. Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate, Chem. Mater. 1999, 11(9), 2350-2359.
    [19] Arul Dhas, N.; Zaban, A.; Gedanken, A. Surface Synthesis of Zinc Sulfide Nanoparticles on Silica Microspheres: Sonochemical Preparation, Characterization, and Optical Properties, Chem. Mater. 1999, 11(3), 806-813.
    [20] Preparation and Characterization of Monodispersed YSZ Nanocrystals, Guangsheng Pang, Siguang Chen, Yingchun Zhu, Oleg Palchik, Yuri Koltypin, Afie Zaban, and Aharon Gedanken, J. Phys. Chem. B, 2001, 105 (20), pp 4647–4652.
    [21] Pais, A. (2005). Subtle is the Lord: The Science and the Life of Albert Einstein. Oxford University Press. IBSN 0192806726.
    [22] Horn R.G., Surface forces and their action in ceramic materials. J. Am. Ceram. Soc., 73[5], 1117-1135, 1990.
    [23] Lewis J.A., Colloidal processing of ceramics. J. Am. Ceram. Soc.,83[10], 2341-2359, 2000.
    [24] Sigmund W.A., Bell N.S. and Bergstrom L., Novel powder-processing methods for advanced ceramics. J. Am. Ceram. Soc., 83(7), 1557-1574, 2000.
    [25] Lange F.F., Shape forming of ceramic powders by manipulating the interparticle pair potential. Chem. Eng. Sci., 56, 3011-3020, 2001.
    [26] Hunter R.J., Foundations of Colloid Science, V. 1-2, pp. 168-224. Oxford University Press, Oxford, UK, 1987 and 1989.
    [27] Fuerstenau D.W. and Pradip, Zeta potentials in the flotation of oxide and silicate minerals. Adv. Colloid Interfaces Sci., 114-115, 9-26, 2005.
    [28] Hidalgo-Alvarez R., On the conversion of experimental electrokinetic data into double layer characteristics in solid-liquid interfaces. Adv. Colloid Interfaces Sci. 34, 217-341, 1991.
    [29] Greenwood R. and Kendall K., Acoustophoretic studies of aqueous suspensions of alumina and 8mol% yttria stabilized zirconia powders. J. Eu. Cerm. Soc., 20, 77-84, 2000.
    [30] Kimura T., Kaneko Y. and Yamaguchi T., Consolidation of alumina-zirconia mixtures by a colloid process. J. Am. Ceram. Soc., 74 (3), 625-632, 1991.
    [31] Wei W.C.J., Wang S.C. and Ho F.Y., Electrokinetic properties of colloidal zirconia powders in aqueous suspension. J. Am. Ceram. Soc., 82(12), 3385-3392, 1999.
    [32] Moreno R., Requena J. and Moya J.S., Slip casting of yttria-stabilized tetragonal zirconia polycrystals. J. Am. Ceram. Soc., 71(12), 1036–1040, 1988.
    [33] De Faria L.A., Boodts J.F.C. and Trasatti S., Effect of composition on the point of zero charge of RuO2+TiO2+CeO2 mixed oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 132(1), 53-59, 1998.
    [34] Leong Y.K., Scales P.J., Healy T.W. and Boger D.V., Effect of particle size on colloidal zirconia rheology at the isoelectric point. J. Am. Ceram. Soc., 78[8], 2209–2212, 1995.
    [35] Kagawa M., Omori M. and Syono Y., Surface characterization of zirconia after reaction with water. J. Am. Ceram. Soc., 70(9), 212-213, 1987.
    [36] Wernet J. and Feke D.L., Effects of solids loading and dispersion schedule onthe state of aqueous alumina/zirconia dispersions. J. Am. Ceram. Soc., 77(10), 2693–2698, 1994.
    [37] Paik U. and Hackley V.A., Influence of solids concentration on the isoelectric point of aqueous barium titanate. J. Am. Ceram. Soc., 83(10), 2381-2384, 2000.
    [1] Inoue, M., Kominami, H., Inui, T.: Novel synthetic method for the catalytic use of thermally stable zirconia: Thermal decomposition of zirconium alkoxides in organic media. Appl. Catal., A 97, L25–L30 (1993).
    [2] Jansen, M., Guenther, E.: Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process. Chem. Mater. 7, 2110–2114 (1995).
    [3] Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., Colvin, V.L.: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613–1614 (1999).
    [4] Kominami, H., Kato, J., Murakami, S., Kera, Y., Inoue, M., Inui, T., Ohtani, B.:Synthesis of titanium IV oxide of ultra-high photocatalytic activity: High-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols. J. Mol. Catal. A: Chem. 144, 165–171 (1999).
    [5] Ivanda, M., Music, S., Popovic, S., Gotic, M.: XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by the sol-gel method based on an esteri?cation reaction. J. Mol. Struct. 481, 645–649 (1999).
    [6] Niederberger, M.: Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793–800 (2007).
    [7] Niederberger, M., Garnweitner, G.: Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem. Eur. J. 12, 7282–7302 (2006).
    [8] Hamaker HC. Formation of deposition by electrophoresis. Trans Farad Soc 1940; 36: 279-83.
    [9] Laxmidhar Besra, Meilin Liu. A review on fundamental s and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52 (2007) 1-61.
    [10] Heavens N. Electrophoretic deposition as a processing route for ceramics. In: Binner GP, editor. Advanced ceramic processing and technology, vol. 1. Park Ridge (NJ), USA: Noyes Publications; 1990. p. 255-83 (chapter 7).
    [11] Giersig M, Mulvaney P. Formation of ordered two-dimentional gold colloid lattices by electrophoretic deposition. JPhys Chem 1993; 97:6334-6
    [12] Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir.1993; 9:3408-13.
    [13] George Y. Onoda, Jr., and Larry L. Hench (1979). Ceramic Processing Before Firing. New York: Wiley & Sons.
    [14] Aksay, I. A., Lange, F. F., Davis, B.I. (1983). Uniformity of Al2O3-ZrO2 Composites by Colloidal Filtration. J. Am. Ceram. Soc. 66: C-190. .
    [15] Franks, G. V. and Lange, F.F. (1996). Plastic-to-Brittle Transition of Saturated, Alumina Powder Compacts. J. Am. Ceram. Soc. 79: 3161.
    [16] Evans, A. G. and Davidge, R.W. (1969). The strength and fracture of fully densepolycrystalline magnesium oxide., Phil. Mag. 20 (164): 373. [17]Evans, A.G. and Davidge, R.W. (1970). "Strength and fracture of fully dense polycrystalline magnesium oxide". Journal of Materials Science 5: 314.
    [17] J Mat. Sci. 5: 314. 1970.
    [18] Lange, F. F. and Metcalf, M. (1983). "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering". J. Am. Ceram. Soc. 66: 398.
    [19] Evans, A. G. (1987). "Considerations of Inhomogeneity Effects in Sintering"., Journal of the American Ceramics Society 65: 497.
    [20] Aksay, I. A., (1984). "Microstructural Control Through Colloidal Consolidation (Mangels, J.A. and Messing, G.L., Eds.)". Advances in Ceramics: Forming of Ceramics 9: 94.
    [21] Atsunori Matsud, Yugo Higashi, Kiyoharu Tadanaga and Masahiro Tatsumisago, Hot-water treatment of sol-gel derived SiO2-TiO2 microparticles and application to electrophoretic deposition for thick films, J. Mater. Sci (2006) 41, 8101-8108.
    [22] Y. Castro, B. Ferrari, R. Moreno and A. Duran, Silica-zirconia coatings produced by dipping and EPD from colloidal sol-gel suspensions. Journal of Sol-Gel Science and Technology 35, 51-55, 2005.
    [23] Y. Castrok B. Ferrari, R. Moreno and A. Duran, Coatings produced by electroporetic deposition from nano- particulate silica sol-gel suspension. Surf ace and Coating Technology 182 (2004) 199-203.
    [24] Y. Castro, A. Duran, J.J. Damborenea, A. Conde. Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD, Electrochimica Acta 53 (2008) 6008–6017.
    [25] Sa-Kyun Rha, Tammy P. Chou, Guozhong Cao, Youn-Seoung Lee, Won-Jun Lee, Characteristics of silicon oxide thin films prepared by sol electrophoretic deposition method using tetraethylorthosilicate as the precursor, Current Applied Physics, 9 (2009) 551–555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700