用户名: 密码: 验证码:
蛋白质指导的贵金属纳米粒子的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米材料(如金,银和铂等纳米颗粒)是纳米材料的一个重要组成部分。贵金属纳米材料具有较大的比表面积,较高的表面能和表面晶体缺陷等特点。这些特点使它们不但具有更好的催化活性和选择性,而且也带来一些意想不到的新的特性。这些性质都值得我们去深入的研究。但目前为止,在温和的反应条件下,尺寸均一、粒径可控的贵金属纳米微粒的制备仍是一个尚未得到解决的课题。
     为实现贵金属纳米材料在大小、形状、晶体结构上的可控合成,并探索其新的特性,我们主要进行了以下研究工作:
     1)选用去铁蛋白(apoFt)为材料,利用其纳米尺度的中空球型结构为模板,在它的内腔合成了大小、形状均可控的铂纳米颗粒(Pt-apoFt)。尝试采用不同还原剂和不同比例的材料合成Pt-apoFt纳米颗粒;经TEM、HRTEM、DLS、ICP-OES和紫外可见光谱等表征实验,最终确定了以NaBH4为还原剂,Pt~(2+)/apoFt比为1000:1为最适合成条件,获得了尺度均一,粒径小于2 nm,分散性和稳定性良好的Pt-apoFt纳米颗粒。
     2)详细研究了Pt-apoFt模拟过氧化氢酶的酶学性质。Pt-apoFt对pH值和温度表现出与天然酶截然不同的依赖关系。在pH3~12或4~85℃范围内,Pt-apoFt的酶反应活性随着pH值或温度的增加逐渐增强;高温和高pH值还具有对酶活的协同增强作用。Pt-apoFt在各温度条件下都保持了较高的酶活稳定性,远远优于天然酶。此外,在生理条件下测定了Pt-apoFt对底物过氧化氢的酶促反应动力学常数Km,结果显示其与底物之间的亲和力弱于天然酶,但是强于或接近于其它纳米模拟酶。
     3)首次发现Pt-apoFt还具有模拟辣根过氧化物酶(HRP)的活性,可以氧化多种HRP的底物(例如TMB和DAB);研究Pt-apoFt模拟HRP酶学活性时,发现其与天然HRP对温度和pH的关系相似,最适pH均为4,最适温度也相近。酶学稳定性实验进一步证明模拟酶Pt-apoFt对各温度和pH条件的耐受性。酶促反应动力学测定结果显示Pt-apoFt对底物TMB的亲和力要高于天然HRP。
     4)此外本论文还研究了另一种重要的纳米颗粒—CdTe量子点,其良好的荧光特性使其在检测领域有着广阔的应用空间,本研究将心肌肌钙(cTnI)的抗体与CdTe量子点共价偶联,合成了具有抗体活性的CdTe量子点,采用斑点免疫膜渗滤法定量检测心肌细胞损伤的标识物cTnI。此方法直观,操作简单,为量子点在检测医学中的应用奠定了基础。
Manufactured nanostructures that mimic enzymes are of great interest as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Several nanostructures that possess catalytic activities have been discovered. Examples include peroxidase-like activity of ferromagnetic nanoparticles, superoxide dismutase mimetic properties of ceria nanoparticles and hydrogenation catalyzing activities of ferritin encapsulated palladium nanoparticles. Such synthetic enzymes have potential applications in various fields, including biomedicine, energy storage and bioremediation.
     Ferritins are a well-studied family of proteins that play an important role in iron storage. They comprise 24 subunits that assemble into a hollow nanocage with an external diameter of 12 nm in diameter and an 8 nm diameter cavity. Physiologically, iron is stored within the protein shell in a compact mineral form and one protein shell can accommodate up to 4500 atoms of iron. The channels formed at the subunit junctions are required for the transport of iron and other metal ions into and out of the protein shell. Ferritins have successfully been used as a scaffold to synthesize various protein-inorganic hybrids.
     Platinum (Pt) is a most widely used catalyst in chemical industries. Colloidal Pt has been showed to catalyze the decomposition of hydrogen peroxide (H_2O_2), and Pt nanoparticles recently have been demonstrated to catalyze the scavenging of both H_2O_2 and superoxide anion (O2·-). Thus these characteristics resemble the enzymatic activities of catalase and superoxide dismutase (SOD). These two enzymes play important roles in maintaining redox balance in living organisms by scavenging excess reactive oxygen species (ROS). The overproduction of ROS can lead to oxidative stress, damage to virtually all biomolecules and ultimately may induce cell death.
     Compared to the numbers of studies in biomimetic syntheses of gold and silver, protein-guided formation of platinum, one of the most important nobel metals, is relatively underexplored. In this study we investigated the possibility of using the apoferritin (apoFt) protein shell as a nanoreactor to control the synthesis of size-tunable Pt nanostructures. ApoFt was used as a scaffold to synthesize of 1 to 2 nm Pt nanoparticles (Pt-Ft) inside its protein shell. Pt-Ft showed catalase-like activities as reported, as well as horseradish peroxidase (HRP)-like activities. Interestingly, Pt-Ft possessed these enzymatic activities with distinctive enzymatic properties, namely different responses to pH and temperature for different enzymatic substrates. Using 3,3’,5,5’-tetramethylbenzidine (TMB) and 3,3'-diaminobenzidine (DAB) as substrates, we found that the optimal pH and temperature for the oxidation catalyzed by Pt-Ft were similar to that of native HRP (pH optimum 4; temperature optimum 37°C). However, this was not the case for the catalase-like activity of Pt-Ft, where the optimal pH and temperature were quite different from that of native catalase, being significantly higher in each case. Compared to other engineered nanoparticles, such as iron oxide and cerium oxide, Pt-Ft had a significantly smaller nanostructural core and unique peroxidase activities for different substrates. Metal oxide nanoparticles utilize different valence states (Fe~(2+)/Fe~(3+) or Ce~(3+)/Ce~(4+)) for their catalytic activity, but Pt-Ft consists of mainly, if not entirely, zero-valent Pt nanoclusters, and the changes of valence states are between zero valence and oxidized Pt. Additionally, the ferritin shells make these nanostructures biocompatible and potentially more bioactive, for example, through their possible interactions with ferritin receptors.
     Quantum dots have physical and optical properties that make them useful tools for high-resolution labeling immunoassay. In this work, a rapid and simple method of quantitative immunoassay for Cardiac troponin I(cTnI)was developed by using quantum dots-labeled antibodies. The monoclonal antibodies of cTnI(2F11) could be labeled with CdTe quantum dots and the coupled product(CdTe-2F11)were characterized by SDS-PAGE. The result of immunofiltration assay indicated that the CdTe-2F11maintained the antibody activity. The cTnI at the different concentrations in NC membrane could react with CdTe-2F11 and be detected by using ImageMaster to analyze the fluorescence intensity of the immunodotting. The result showed that the detection limit of cTnI was 120ng, and there was a good linear relation between concentration of cTnI and the fluorescence intensity (R~2=0.9966), in this study.
引文
[1] Banerjee, H. N., Verma, M. Application of nanotechnology in cancer. [J].Technol Cancer Res T, 2008, 7(2): 149-154.
    [2] Mystakidou, K., Tsilika, E., Tsiatas, M., Vlahos, L. Oral transmucosal fentanyl citrate in cancer pain management: a practical application of nanotechnology. [J].Int J Nanomed, 2007, 2(1): 49-54.
    [3] Gilardi, G., Fantuzzi, A. Manipulating redox systems: application to nanotechnology. [J].Trends in Biotechnology, 2001, 19(11): 468-476.
    [4] Jain, K. K. Nanodiagnostics: application of nanotechnology in molecular diagnostics. [J].Expert Review of Molecular Diagnostics, 2003, 3(2): 153-161.
    [5] Navalakhe, R. M., Nandedkar, T. D. Application of nanotechnology in biomedicine. [J].Indian J Exp Biol, 2007, 45(2): 160-165.
    [6] Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H. J. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. [J].Nature Materials, 2002, 1(4): 241-246.
    [7] Seeman, N. C. DNA engineering and its application to nanotechnology. [J].Trends in Biotechnology, 1999, 17(11): 437-443.
    [8] Duncan, R. Nanomedicine-Application of nanotechnology for tissue engineering and repair. [J].Wound Repair Regen, 2007, 15(6): A126-A126.
    [9] The Royal Society & the Royal Academy of Engineering Rport. Nanoscience and nanotechnologies: opportunities and uncertainties. [J].London, 2004, July: 1-95.
    [10] Taniguchi, N. On the basic concept of nanotechnology. [M].Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society, 1974.
    [11] Birringer, R., Gleiter, H., Klein, H. P., Marquardt, P. Nanocrystalline Materials an Approach to a Novel Solid Structure with Gas-Like Disorder. [J].Phys Lett A, 1984, 102(8): 365-369.
    [12] Dowling, A. P. Development of nanotechnologies. [J].Materials Today, 2004,7(Supplement 1): 30-35.
    [13]巩雄,张桂兰,汤国庆.纳米晶体材料研究进展. [J].化学进展, 1997, 9(4) 349-360.
    [14]李嘉,尹衍升,张金升,赵天平.纳米材料的分类及基本结构效应. [J].现代陶瓷技术, 2003, 24(2): 26-30.
    [15] Nalwa, H. S. Nanostructured materials and nanotechnology. [M].2002.
    [16] Nalwa, H. S. Handbook of nanostructured materials and nanotechnology. [M].2000.
    [17]朱永法.纳米材料的表征与测试技术. [M].化学工业出版社, 2006.
    [18]王中林.纳米材料表征. [M].化学工业出版社, 2005.
    [19] Riaz, U., Ashraf, S. M. Nanostructured conducting polymers and their nanocomposites : classification, properties, fabrication, and applications. [M]. 2009.
    [20] Poole, C. P., Owens, F. J. Introduction to nanotechnology. [M].2003.
    [21] Gazit, E. Plenty of room for biology at the bottom: an introduction to bionanotechnology. [M].2007.
    [22] Saxena, A., Kumar, A., Mozumdar, S. Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. [J].J Mol Catal a-Chem, 2007, 269(1-2): 35-40.
    [23]牟志刚,杨平,杜玉扣.高分子保护的Pt金属簇催化加氢制备高纯间苯氧基苯甲醇. [J].石油化工, 2002, 31(10): 795-798.
    [24]李磊,程满环,杜玉扣. Pt/三苯胺酸卟啉酯纳米复合物的制备及光催化加氢反应. [J].无机化学学报, 2008, 24(2): 229-234.
    [25]潘高峰,李越湘,彭绍琴等.铍,氮共掺杂TiO2的制备及其可见光下光解水制氢性能研究. [J].功能材料, 2008, 4(39): 632-635.
    [26]李泽全,李静,张云怀.基于碳纳米管的生物传感器研究进展. [J].材料导报, 2008, (22) 92-95.
    [27]娄骁,翁文剑,程逵等.湿化学法制备生物标识用纳米CdSe材料. [J].稀有金属材料与工程, 2008, 37:347-350.
    [28]高倩,洪广言,陈凤华.铁基纳米粒子的制备及其在生物医学中的应用.[J].功能材料, 2008, 2(39): 181-185.
    [29] Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. [J].Nature, 1996, 382(6592): 607-609.
    [30] Taton, T. A., Mucic, R. C., Mirkin, C. A., Letsinger, R. L. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. [J].Journal of The American Chemical Society, 2000, 122(26): 6305-6306.
    [31] Alivisatos, A. P., Johnsson, K. P., Peng, X. G., Wilson, T. E., Loweth, C. J., Bruchez, M. P., Schultz, P. G. Organization of 'nanocrystal molecules' using DNA. [J].Nature, 1996, 382(6592): 609-611.
    [32] Jia, J. B., Wang, B. Q., Wu, A. G., Cheng, G. J., Li, Z., Dong, S. J. A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. [J].Analytical Chemistry, 2002, 74(9): 2217-2223.
    [33] Corma, A., Garcia, H., Montes-Navajas, P., Primo, A., Calvino, J. J., Trasobares, S. Gold nanoparticles in organic capsules: a supramolecular assembly of gold nanoparticles and cucurbituril. [J].Chemistry, 2007, 13(22): 6359-6364.
    [34] Set, B. L. Precious Metals Science and Technology. [J].International Precious Metals Institute 1991, 35(2): 93.
    [35]李明利,徐颖,柏文超,马光,党红云.贵金属纳米材料及其应用. [J].稀有金属快报, 2004, 23(3): 10-13.
    [36] Daniel, M. C., Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. [J].Chem Rev, 2004, 104(1): 293-346.
    [37] Cushing, B. L., Kolesnichenko, V. L., O'Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. [J].Chemical Reviews, 2004, 104(9): 3893-3946.
    [38] Okuda, M., Kobayashi, Y., Suzuki, K., Sonoda, K., Kondoh, T., Wagawa, A., Kondo, A., Yoshimura, H. Self-organized inorganic nanoparticle arrays onprotein lattices. [J].Nano letters, 2005, 5(5): 991-993.
    [39] Lowenstam, H. A., Weiner, S. On Biomineralization. [M].Oxford University Press, New York, 1989.
    [40] Baeuerlein, E. B. Progress in Biology, Molecular Biology, and Application. [M].Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,Germany, 2004.
    [41] Baeuerlein, E. Handbook of Biomineralization, Biological Aspects and Structure Formation. [M].Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007.
    [42] Bazylinski, D. A., Frankel, R. B. Magnetosome formation in prokaryotes. [J].Nat Rev Microbiol, 2004, 2(3): 217-230.
    [43] Komelli, A. Molecular mechanisms of magnetosome formation. [J].Annu Rev Biochem, 2007, 76: 351-366.
    [44] Addadi, L., Joester, D., Nudelman, F., Weiner, S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. [J].Chem-Eur J, 2006, 12(4): 981-987.
    [45] Addadi, L., Raz, S., Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. [J].Adv Mater, 2003, 15(12): 959-970.
    [46] Aizenberg, J., Sundar, V. C., Yablon, A. D., Weaver, J. C., Chen, G. Biological glass fibers: Correlation between optical and structural properties. [J].Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(10): 3358-3363.
    [47] Sundar, V. C., Yablon, A. D., Grazul, J. L., Ilan, M., Aizenberg, J. Fibre-optical features of a glass sponge - Some superior technological secrets have come to light from a deep-sea organism. [J].Nature, 2003, 424(6951): 899-900.
    [48] Muller, W. E. G., Wang, X. H., Cui, F. Z., Jochum, K. P., Tremel, W., Bill, J., Schroder, H. C., Natalio, F., Schlossmacher, U., Wiens, M. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. [J].Appl Microbiol Biot, 2009, 83(3): 397-413.
    [49] CattaneoVietti, R., Bavestrello, G., Cerrano, C., Sara, M., Benatti, U., Giovine, M., Gaino, E. Optical fibres in an Antarctic sponge. [J].Nature, 1996, 383(6599): 397-398.
    [50] Round, F. E., Crawford, R. M., Mann, D. G. The Diatoms: Biology and Morphology of the Genera. [M].Cambridge University Press: New York, 1990.
    [51] Muller, W. E. G., Eckert, C., Kropf, K., Wang, X. H., Schlossmacher, U., Seckert, C., Wolf, S. E., Tremel, W., Schroder, H. C. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. [J].Cell Tissue Res, 2007, 329(2): 363-378.
    [52] Slocik, J. M., Naik, R. R. Biologically programmed synthesis of bimetallic nanostructures. [J].Adv Mater, 2006, 18(15): 1988.
    [53] Sumper, M., Kroger, N. Silica formation in diatoms: the function of long-chain polyamines and silaffins. [J].J Mater Chem, 2004, 14(14): 2059-2065.
    [54] Muller, W. E. G., Belikov, S. I., Tremel, W., Perry, C. C., Gieskes, W. W. C., Boreiko, A., Schroder, H. C. Siliceous spicules in marine demosponges (example Suberites domuncula). [J].Micron, 2006, 37(2): 107-120.
    [55] Muller, W. E. G., Krasko, A., Le Pennec, G., Schroder, H. C. Biochemistry and cell biology of silica formation in sponges. [J].Microsc Res Techniq, 2003, 62(4): 368-377.
    [56] Weaver, J. C., Morse, D. E. Molecular biology of demosponge axial filaments and their roles in biosilicification. [J].Microsc Res Techniq, 2003, 62(4): 356-367.
    [57] Sumerel, J. L., Yang, W. J., Kisailus, D., Weaver, J. C., Choi, J. H., Morse, D. E. Biocatalytically templated synthesis of titanium dioxide. [J].Chemistry of Materials, 2003, 15(25): 4804-4809.
    [58] Kisailus, D., Choi, J. H., Weaver, J. C., Yang, W. J., Morse, D. E. Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. [J].Adv Mater, 2005, 17(3): 314-317.
    [59] Zhou, Y., Shimizu, K., Cha, J. N., Stucky, G. D., Morse, D. E. Efficient catalysis of polysiloxane synthesis by silicatein alpha requires specific hydroxy and imidazole functionalities. [J].Angew Chem Int Edit, 1999, 38(6): 780-782.
    [60] Kroger, N., Dickerson, M. B., Ahmad, G., Cai, Y., Haluska, M. S., Sandhage, K. H., Poulsen, N., Sheppard, V. C. Bioenabled synthesis of rutile (TiO2) at ambient temperature and neutral pH. [J].Angew Chem Int Edit, 2006, 45(43): 7239-7243.
    [61] Tahir, M. N., Theato, P., Muller, W. E. G., Schroder, H. C., Janshoff, A., Zhang, J., Huth, J., Tremel, W. Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. [J].Chemical Communications, 2004, (24): 2848-2849.
    [62] Tahir, M. N., Theato, P., Muller, W. E. G., Schroder, H. C., Borejko, A., Faiss, S., Janshoff, A., Huth, J., Tremel, W. Formation of layered titania and zirconia catalysed by surface-bound silicatein. [J].Chemical Communications, 2005, (44): 5533-5535.
    [63] Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., Morse, D. E. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. [J].Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2): 361-365.
    [64] Matsunaga, S., Sakai, R., Jimbo, M., Kamiya, H. Long-chain polyamines (LCPAs) from marine sponge: Possible implication in spicule formation. [J].Chembiochem, 2007, 8(14): 1729-1735.
    [65] Weiss, I. M., Schonitzer, V., Eichner, N., Sumper, M. The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain. [J].Febs Letters, 2006, 580(7): 1846-1852.
    [66] Sumper, M., Lehmann, G. Silica pattern formation in diatoms: Species-specific polyamine biosynthesis. [J].Chembiochem, 2006, 7(9): 1419-1427.
    [67] Patwardhan, S. V., Clarson, S. J. Bioinspired mineralisation: macromoleculemediated synthesis of amorphous germania structures. [J].Polymer, 2005, 46(12): 4474-4479.
    [68] Cole, K. E., Ortiz, A. N., Schoonen, M. A., Valentine, A. M. Peptide- and long-chain polyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. [J].Chemistry of Materials, 2006, 18(19): 4592-4599.
    [69] Xu, A. W., Ma, Y. R., Colfen, H. Biomimetic mineralization. [J].J Mater Chem, 2007, 17(5): 415-449.
    [70] Yang, L., Xing, R. M., Shen, Q. M., Jiang, K., Ye, F., Wang, J. Y., Ren, Q. S. Fabrication of protein-conjugated silver sulfide nanorods in the Bovine Serum Albumin solution. [J].Journal of Physical Chemistry B, 2006, 110(21): 10534-10539.
    [71] Coradin, T., Coupe, A., Livage, J. Interactions of bovine serum albumin and lysozyme with sodium silicate solutions. [J].Colloid Surface B, 2003, 29(2-3): 189-196.
    [72] Shiomi, T., Tsunoda, T., Kawai, A., Mizukami, F., Sakaguchi, K. Biomimetic synthesis of lysozyme-silica hybrid hollow particles using sonochemical treatment: Influence of pH and lysozyme concentration on morphology. [J].Chemistry of Materials, 2007, 19(18): 4486-4493.
    [73] Rangnekar, A., Sarma, T. K., Singh, A. K., Deka, J., Ramesh, A., Chattopadhyay, A. Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles. [J].Langmuir, 2007, 23(10): 5700-5706.
    [74] Brelle, M. C., Torres-Martinez, C. L., McNulty, J. C., Mehra, R. K., Zhang, J. Z. Synthesis and characterization of CuxS nanoparticles. Nature of the infrared band and charge-carrier dynamics. [J].Pure Appl Chem, 2000, 72(1-2): 101-117.
    [75] Xie, J. P., Lee, J. Y., Wang, D. I. C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. [J].J Phys Chem C, 2007, 111(28): 10226-10232.
    [76] Chiu, T. C., Chiou, S. H., Hsieh, M. M., Chen, Y. T., Chang, H. T. Photosynthesis of gold nanoparticles in presence of proteins. [J].J Nanosci Nanotechno, 2005, 5(12): 2128-2132.
    [77] Xie, J., Zheng, Y., Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. [J].J Am Chem Soc, 2009, 131(3): 888-889.
    [78] arbaras, C. F., Burton, D. R., Scott, J. K., Silverman, G. J. Phage Display: A Laboratory Manuel. [B].Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2001.
    [79] Kriplani, U., Kay, B. K. Selecting peptides for use in nanoscale materials using phagedisplayed combinatorial peptide libraries. [J].Curr Opin Biotech, 2005, 16(4): 470-475.
    [80] Baneyx, F., Schwartz, D. T. Selection and analysis of solid-binding peptides. [J].Curr Opin Biotech, 2007, 18(4): 312-317.
    [81] Dickerson, M. B., Sandhage, K. H., Naik, R. R. Protein- and Peptide-Directed Syntheses of Inorganic Materials. [J].Chemical Reviews, 2008, 108(11): 4935-4978.
    [82] Brown, S. Engineered Iron Oxide-Adhesion Mutants of the Escherichia-Coli Phage-Lambda Receptor. [J].Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(18): 8651-8655.
    [83] Brown, S. Metal-recognition by repeating polypeptides. [J].Nature Biotechnology, 1997, 15(3): 269-272.
    [84] Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. [J].Nature, 2000, 405(6787): 665-668.
    [85] Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes. [J].SCIENCE, 1988, 240(4853): 760-767.
    [86] Huc I, L. J. Virtral combinatorial libraries: dynamic generation of molecular and supermolecular diversity by self-assembly. [J].Proc. Natl. Acad. Sci. USA, 1997, 94: 2106-2110.
    [87] JM., L. supermolecular chemistry and self-assembly specia lfeature: towardcomplex matter. Supermolecular chemistry and self-organization [J].Proc Natl Acad Sci USA, 2002, 99: 4763-4768.
    [88]宋宏涛,魏洪源,楚士晋,罗顺忠.酶模型. [J].生物学杂志, 2007, 24(1): 9-12.
    [89] Lee, J. B., Hunt, J. A., Groves, J. T. Mechanisms of iron porphyrin reactions with peroxynitrite. [J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120(30): 7493-7501.
    [90] Groves, J. T. The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. [J].Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7): 3569-3574.
    [91] Groves, J. T., Watanabe, Y. On the Mechanism of Olefin Epoxidation by Oxo-Iron Porphyrins - Direct Observation of an Intermediate. [J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108(3): 507-508.
    [92] Diederich, F., Mattei, P. Catalytic Cyclophanes. . [J]. Helv. Chim. Acta. , 1997, 80: 1555-1588.
    [93] Diederich, F., Habicher, T. Catalytic Dendrophanes as Enzyme Mimics: Synthesis, Binding Properties, Micropolarity Effect, and Catalytic Activity of Dendritic Thiazolio-Cyclophanes. [J].Helv. Chim. Acta., 1999, 82: 1066-1095.
    [94] Peterson, B. R., Mordasini-Denti, T., Diederich, F. Cavity depth and width effects on cyclophane-steroid recognition: molecular complexation of cholesterol and progesterone in aqueous solution. [J].Chem Biol, 1995, 2(3): 139-146.
    [95] Tramontano, A., Janda, K. D., Lerner, R. A. Catalytic Antibodies. [J].Science, 1986, 234: 1566-1570.
    [96] Pollack, S. J., Jacobs, J. W., Schultz, P. G. Selective Chemical Catalysis by an Antibody. [J].Science, 1986, 234: 1570-1573.
    [97] Stevenson, J. D., Thomas, N. R. Catalytic Antibodies and Other Biomimetic Catalysts. [J].Nat. Prod. Rep., 2000, 17: 535-577.
    [98] Xu, Y., Yamamoto, N., Janda, K. D. Catalytic Antibodies: Hapten Design Strategies and Screening Methods. [J].Bioorg. Med. Chem., 2004, 12:5247-5268.
    [99] Asati, A., Santra, S., Kaittanis, C., Nath, S., Perez, J. M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. [J].Angew Chem Int Edit, 2009, 48(13): 2308-2312.
    [100] Perez, J. M., Asati, A., Nath, S., Kaittanis, C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. [J].Small, 2008, 4(5): 552-556.
    [101] Hirst, S., Karakoti, A., Tyler, R., Sriranganathan, N., Seal, S., Reilly, C. Anti-inflammatory Properties of Cerium Oxide Nanoparticles. [J].Small (Weinheim an der Bergstrasse, Germany), 2009.
    [102] Gao, L. Z., Zhuang, J., Nie, L., Zhang, J. B., Zhang, Y., Gu, N., Wang, T. H., Feng, J., Yang, D. L., Perrett, S., Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. [J].Nat Nanotechnol, 2007, 2(9): 577-583.
    [103] Dai, Z. H., Liu, S. H., Bao, J. C., Jui, H. X. Nanostructured FeS as a Mimic Peroxidase for Biocatalysis and Biosensing. [J].Chem-Eur J, 2009, 15(17): 4321-4326.
    [104] Orino, K., Watanabe, K. Molecular, physiological and clinical aspects of the iron storage protein ferritin. [J].Vet J, 2008, 178(2): 191-201.
    [105] Briat, J. F., Lobreaux, S., Grignon, N., Vansuyt, G. Regulation of plant ferritin synthesis: how and why. [J].Cell Mol Life Sci, 1999, 56(1-2): 155-166.
    [106] Briat, J. F., Lobreaux, S. Iron storage and ferritin in plants. [J].Met Ions Biol Syst, 1998, 35: 563-584.
    [107] Fish, W. W. Ferritin Structure - Possible Models for Apoferritin Subunit Arrangement. [J].J Theor Biol, 1976, 60(2): 385-392.
    [108] Ponka, P., Beaumont, C., Richardson, D. R. Function and regulation of transferrin and ferritin. [J].Semin Hematol, 1998, 35(1): 35-54.
    [109] Suzuki, M., Abe, M., Ueno, T., Abe, S., Goto, T., Toda, Y., Akita, T., Yamada, Y., Watanabe, Y. Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin. [J].Chem Commun (Camb), 2009, (32): 4871-4873.
    [110] Drysdale, J., Arosio, P., Invernizzi, R., Cazzola, M., Volz, A., Corsi, B., Biasiotto, G., Levi, S. Mitochondrial ferritin: a new player in iron metabolism. [J].Blood Cells Mol Dis, 2002, 29(3): 376-383.
    [111] Mertz, J. R., Theil, E. C. A Relationship between Apoferritin Structure and the Iron Core. [J].Biochemistry, 1983, 22(15): A14-A15.
    [112] Chasteen, N. D. Ferritin. Uptake, storage, and release of iron. [J].Met Ions Biol Syst, 1998, 35: 479-514.
    [113] Theil, E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. [J].Annu Rev Biochem, 1987, 56: 289-315.
    [114] Uchida, M., Kang, S., Reichhardt, C., Harlen, K., Douglas, T. The ferritin superfamily: Supramolecular templates for materials synthesis. [J].Biochim Biophys Acta, 2009.
    [115] Lee, M. H., Means, R. T., Jr. Extremely elevated serum ferritin levels in a university hospital: associated diseases and clinical significance. [J].Am J Med, 1995, 98(6): 566-571.
    [116] Dmochowski, I. J. Ferritin-templated synthesis of gold and silver nanoparticles. [J].Abstracts of Papers of the American Chemical Society, 2006, 231: .
    [117] Suzuki, M., Ueno, T., Goto, T., Matsumoto, T., Nagayama, K., Watanabe, Y. Size-selective olefin hydrogenation by a Pd nanocluster in the apo-ferritin cage. [J].Abstracts of Papers of the American Chemical Society, 2005, 229: 299.
    [118] Hennequin, B., Turyanska, L., Ben, T., Beltran, A. M., Molina, S. I., Li, M., Mann, S., Patane, A., Thomas, N. R. Aqueous Near-Infrared Fluorescent Composites Based on Apoferritin-Encapsulated PbS Quantum Dots. [J].Adv Mater, 2008, 20(19): 3592-3593.
    [119] Tsukamoto, R., Iwahor, K., Muraoka, M., Yamashita, I. Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin. [J].Bulletin of the Chemical Society of Japan, 2005, 78(11): 2075-2081.
    [120] Yang, Z., Wang, X. Y., Diao, H. J., Zhang, J. F., Li, H. Y., Sun, H. Z., Guo, Z. J. Encapsulation of platinum anticancer drugs by apoferritin. [J].Chemical Communications, 2007, (33): 3453-3455.
    [121] Yamashita, I., Hayashi, J., Hara, M. Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. [J].Chem Lett, 2004, 33(9): 1158-1159.
    [122] Galvez, N., Sanchez, P., Dominguez-Vera, J. M. Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using the apoferritin cavity as nanoreactor. [J].Dalton T, 2005, (15): 2492-2494.
    [123] Iwahori, K., Yoshizawa, K., Muraoka, M., Yamashita, I. Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. [J].Inorganic Chemistry, 2005, 44(18): 6393-6400.
    [124] Xing, R. M., Wang, X. Y., Zhang, C. L., Zhang, Y. M., Wang, Q., Yang, Z., Guo, Z. J. Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. [J].J Inorg Biochem, 2009, 103(7): 1039-1044.
    [125] Galvez, N., Sanchez, P., Dominguez-Vera, J. M., Soriano-Portillo, A., Clemente-Leon, M., Coronado, E. Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. [J].J Mater Chem, 2006, 16(26): 2757-2761.
    [126] Abe, S., Hirata, K., Ueno, T., Morino, K., Shimizu, N., Yamamoto, M., Takata, M., Yashima, E., Watanabe, Y. Polymerization of Phenylacetylene by Rhodium Complexes within a Discrete Space of apo-Ferritin. [J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131(20): 6958-6960.
    [127] Abe, S., Niemeyer, J., Abe, M., Takezawa, Y., Ueno, T., Hikage, T., Erker, G., Watanabe, Y. Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage. [J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130(32): 10512-10514.
    [128] Hosein, H. A., Strongin, D. R., Allen, M., Douglas, T. Iron and Cobalt oxide and metallic nanoparticles prepared from ferritin. [J].Langmuir, 2004, 20(23): 10283-10287.
    [129] Iwahori, K., Yamashita, I. Size-controlled one-pot synthesis of fluorescentcadmium sulfide semiconductor nanoparticles in an apoferritin cavity. [J].Nanotechnology, 2008, 19(49): 495601.
    [130] Iwahori, K., Morioka, T., Yamashita, I. The optimization of CdSe nanoparticles synthesis in the apoferritin cavity. [J].Physica Status Solidi a-Applications and Materials Science, 2006, 203(11): 2658-2661.
    [131] Ceolin, M., Galvez, N., Dominguez-Verab, J. M. Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles. [J].Phys Chem Chem Phys, 2008, 10(29): 4327-4332.
    [132] Granier, T., Comberton, G., Gallois, B., d'Estaintot, B. L., Dautant, A., Crichton, R. R., Precigoux, G. Evidence of new cadmium binding sites in recombinant horse L-chain ferritin by anomalous Fourier difference map calculation. [J].Proteins, 1998, 31(4): 477-485.
    [133] Meldrum, F. C., Heywood, B. R., Mann, S. Magnetoferritin: in vitro synthesis of a novel magnetic protein. [J].SCIENCE, 1992, 257(5069): 522-523.
    [134] Liu, G., Wu, H., Wang, J., Lin, Y. Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay. [J].Small, 2006, 2(10): 1139-1143.
    [135] Turyanska, L., Bradshaw, T. D., Sharpe, J., Li, M., Mann, S., Thomas, N. R., Patane, A. The Biocompatibility of Apoferritin-Encapsulated PbS Quantum Dots. [J].Small, 2009, 5(15): 1738-1741.
    [136] Mann, S., Meldrum, F. C. Controlled Synthesis of Inorganic Materials Using Supramolecular Assemblies. [J].Adv Mater, 1991, 3(6): 316-318.
    [137] Mackle, P., Charnock, J. M., Garner, C. D., Meldrum, F. C., Mann, S. Characterization of the Manganese Core of Reconstituted Ferritin by X-Ray-Absorption Spectroscopy. [J].Journal of The American Chemical Society, 1993, 115(18): 8471-8472.
    [138] Meldrum, F. C., Douglas, T., Levi, S., Arosio, P., Mann, S. Reconstitution of Manganese Oxide Cores in Horse Spleen and Recombinant Ferritins. [J].J Inorg Biochem, 1995, 58(1): 59-68.
    [139] Douglas, T., Stark, V. T. Nanophase cobalt oxyhydroxide mineral synthesizedwithin the protein cage of ferritin. [J].Inorganic Chemistry, 2000, 39(8): 1828-1830.
    [140] Okuda, M., Iwahori, K., Yamashita, I., Yoshimura, H. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. [J].Biotechnology and Bioengineering, 2003, 84(2): 187-194.
    [141] Douglas, T., Dickson, D. P. E., Betteridge, S., Charnock, J., Garner, C. D., Mann, S. Synthesis and Structure of an Iron(Iii) Sulfide-Ferritin Bioinorganic Nanocomposite. [J].Science, 1995, 269(5220): 54-57.
    [142] Wong, K. K. W., Mann, S. Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. [J].Adv Mater, 1996, 8(11): 928-930.
    [143] Ueno, T., Suzuki, M., Goto, T., Matsumoto, T., Nagayama, K., Watanabe, Y. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. [J].Angew Chem Int Edit, 2004, 43(19): 2527-2530.
    [144] Kramer, R. M., Li, C., Carter, D. C., Stone, M. O., Naik, R. R. Engineered protein cages for nanomaterial synthesis. [J].Journal of The American Chemical Society, 2004, 126(41): 13282-13286.
    [145] Warne, B., Kasyutich, O. I., Mayes, E. L., Wiggins, J. A. L., Wong, K. K. W. Self assembled nanoparticulate Co : Pt for data storage applications. [J].Ieee T Magn, 2000, 36(5): 3009-3011.
    [146] Aime, S., Frullano, L., Crich, S. G. Compartmentalization of a gadolinium complex in the apoferritin cavity: A route to obtain high relaxivity contrast agents for magnetic resonance imaging. [J].Angew Chem Int Edit, 2002, 41(6): 1017-1019.
    [147] Daniel, M. C., Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. [J].Chemical Reviews, 2004, 104(1): 293-346.
    [148] Murphy, C. J., Gole, A. M., Hunyadi, S. E., Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. [J].Inorganic Chemistry, 2006, 45(19): 7544-7554.
    [149] Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A., ElSayed, M. A.Shape-controlled synthesis of colloidal platinum nanoparticles. [J].SCIENCE, 1996, 272(5270): 1924-1926.
    [150] Scott, R. W. J., Datye, A. K., Crooks, R. M. Bimetallic Palladium?Platinum Dendrimer-Encapsulated Catalysts. [J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125(13): 3708-3709.
    [151] Esumi, K., Suzuki, A., Yamahira, A., Torigoe, K. Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. [J].Langmuir, 2000, 16(6): 2604-2608.
    [152] Ren, J., Tilley, R. D. Shape-controtled growth of platinum nanoparticles. [J].Small, 2007, 3(9): 1508-1512.
    [153] Narayanan, R., El-Sayed, M. A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. [J].NANO LETTERS, 2004, 4(7): 1343-1348.
    [154] Dujardin, E., Peet, C., Stubbs, G., Culver, J. N., Mann, S. Organization of metallic nanoparticles using tobacco mosaic virus templates. [J].Nano Letters, 2003, 3(3): 413-417.
    [155] Lee, S. Y., Choi, J. W., Royston, E., Janes, D. B., Culver, J. N., Harris, M. T. Deposition of platinum clusters on surface-modified tobacco mosaic virus. [J].J Nanosci Nanotechno, 2006, 6(4): 974-981.
    [156] Ueno, T., Abe, M., Hirata, K., Abe, S., Suzuki, M., Shimizu, N., Yamamoto, M., Takata, M., Watanabe, Y. Process of Accumulation of Metal Ions on the Interior Surface of apo-Ferritin: Crystal Structures of a Series of apo-Ferritins Containing Variable Quantities of Pd(II) Ions. [J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131(14): 5094-5100.
    [157] Ueno, T., Abe, S., Yokoi, N., Watanabe, Y. Coordination design of artificial metalloproteins utilizing protein vacant space. [J].Coordination Chemistry Reviews, 2007, 251(21-24): 2717-2731.
    [158] Turyanska, L., Bradshaw, T. D., Sharpe, J., Li, M., Mann, S., Thomas, N. R., Patane, A. The Biocompatibility of Apoferritin-Encapsulated PbS Quantum Dots. [J].Small, 2009. 5: 1738-1741.
    [159] Schrader, M., Fahimi, H. D. Peroxisomes and oxidative stress. [J].Bba-Mol Cell Res, 2006, 1763(12): 1755-1766.
    [160] Zamocky, M., Furtmuller, P. G., Obinger, C. Evolution of catalases from bacteria to humans. [J].Antioxid Redox Sign, 2008, 10(9): 1527-1547.
    [161] Switala, J., Loewen, P. C. Diversity of properties among catalases. [J].Arch Biochem Biophys, 2002, 401(2): 145-154.
    [162] Chelikani, P., Fita, I., Loewen, P. C. Diversity of structures and properties among catalases. [J].Cell Mol Life Sci, 2004, 61(2): 192-208.
    [163] Fita, I., Rossmann, M. G. The Active-Center of Catalase. [J].Journal of Molecular Biology, 1985, 185(1): 21-37.
    [164] Fita, I., Silva, A. M., Murthy, M. R. N., Rossmann, M. G. The Refined Structure of Beef-Liver Catalase at 2.5 a Resolution. [J].Acta Crystallogr B, 1986, 42: 497-515.
    [165] Roberts, R. A., Laskin, D. L., Smith, C. V., Robertson, F. M., Allen, E. M. G., Doorn, J. A., Slikkerk, W. Nitrative and Oxidative Stress in Toxicology and Disease. [J].Toxicol Sci, 2009, 112(1): 4-16.
    [166] Mates, J. M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. [J].Toxicology, 2000, 153(1-3): 83-104.
    [167] Zhang, L. B., Laug, L., Munchgesang, W., Pippel, E., Gosele, U., Brandsch, M., Knez, M. Reducing Stress on Cells with Apoferritin-Encapsulated Platinum Nanoparticles. [J].Nano Lett, 2010, 10(1): 219-223.
    [168] Watanabe, A., Kajita, M., Kim, J., Kanayama, A., Takahashi, K., Mashino, T., Miyamoto, Y. In vitro free radical scavenging activity of platinum nanoparticles. [J].Nanotechnology, 2009, 20(45): 455105.
    [169] Kajita, M., Hikosaka, K., Iitsuka, M., Kanayama, A., Toshima, N., Miyamoto, Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. [J].Free Radical Res, 2007, 41(6): 615-626.
    [170] Li, J. Y., Paragas, N., Ned, R. M., Qiu, A. D., Viltard, M., Leete, T., Drexler, I. R., Chen, X., Sanna-Cherchi, S., Mohammed, F., Williams, D., Lin, C. S., Schmidt-Ott, K. M., Andrews, N. C., Barasch, J. Scara5 Is a Ferritin ReceptorMediating Non-Transferrin Iron Delivery. [J].Dev Cell, 2009, 16(1): 35-46.
    [171] Todorich, B., Zhang, X. S., Slagle-Webb, B., Seaman, W. E., Connor, J. R. Tim-2 is the receptor for H-ferritin on oligodendrocytes. [J].J Neurochem, 2008, 107(6): 1495-1505.
    [172] Troadec, M. B., Ward, D. M., Kaplan, J. A Tf-Independent Iron Transport System Required for Organogenesis. [J].Dev Cell, 2009, 16(1): 3-4.
    [173] Bisswanger, H. Practical Enzymology. [B].Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004.
    [174] Harrison, P. M., Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. [J].Biochim Biophys Acta, 1996, 1275(3): 161-203.
    [175] Mckee, D. W. Catalytic Decomposition of Hydrogen Peroxide by Metals and Alloys of Platinum Group. [J].J Catal, 1969, 14(4): 355-356.
    [176] Hu, C.-C., Liu, K.-Y. Voltammetric investigation of platinum oxides. I. Effects of ageing on their formation/reduction behavior as well as catalytic activities for methanol oxidation. [J].Electrochim Acta, 1999, 44(16): 2727-2738.
    [177] Carlsson, G. H., Nicholls, P., Svistunenko, D., Berglund, G. I., Hajdu, a. J. Complexes of Horseradish Peroxidase with Formate, Acetate, and Carbon Monoxide. [J].Biochemistry, 2005, 44((2)): 635-642.
    [178] Thorpe, G. H. G., Kricka, L. J. Enhanced Chemiluminescent Reactions Catalyzed by Horseradish-Peroxidase. [J].Method Enzymol, 1986, 133: 331-353.
    [179] Henry, M. A., Westrum, L. E., Johnson, L. R. Enhanced Ultrastructural Visualization of the Horseradish-Peroxidase Tetramethylbenzidine Reaction-Product. [J].Journal of histochemistry & cytochemistry, 1985, 33(12): 1256-1259.
    [180] Watson, C. R. R., Provis, J. Horseradish-Peroxidase Technique for Tracing Neural Connections. [J].J Anat, 1978, 126(Aug): 642-642.
    [181] Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. [J].Science, 1998,281(5385): 2013-2016.
    [182] Chan, W. C., Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. [J].Science, 1998, 281(5385): 2016-2018.
    [183] Seydel, C. Quantum dots get wet. [J].Science, 2003, 300(5616): 80-81.
    [184] Sun, B. Q., Xie, W. Z., Yi, G. S., Chen, D. P., Zhou, Y. X., Cheng, J. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. [J].Journal of Immunological Methods, 2001, 249(1-2): 85-89.
    [185] Goldman, E. R., Anderson, G. P., Tran, P. T., Mattoussi, H., Charles, P. T., Mauro, J. M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. [J].Anal Chem, 2002, 74(4): 841-847.
    [186] Wang, S. P., Mamedova, N., Kotov, N. A., Chen, W., Studer, J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. [J].Nano Letters, 2002, 2(8): 817-822.
    [187] Lingerfelt, B. M., Mattoussi, H., Goldman, E. R., Mauro, J. M., Anderson, G. P. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. [J].Analytical Chemistry, 2003, 75(16): 4043-4049.
    [188] Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. [J].Nat Biotechnol, 2003, 21(1): 41-46.
    [189] Alivisatos, A. P., Gu, W., Larabell, C. Quantum dots as cellular probes. [J].Annu Rev Biomed Eng, 2005, 7: 55-76.
    [190] Ghazani, A. A., Lee, J. A., Klostranec, J., Xiang, Q., Dacosta, R. S., Wilson, B. C., Tsao, M. S., Chan, W. C. W. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. [J].Nano Letters, 2006, 6(12): 2881-2886.
    [191] Smith, A. M., Duan, H., Mohs, A. M., Nie, S. Bioconjugated quantum dots forin vivo molecular and cellular imaging. [J].Adv Drug Deliv Rev, 2008, 60(11): 1226-1240.
    [192] Smith, A. M., Ruan, G., Rhyner, M. N., Nie, S. Engineering luminescent quantum dots for in vivo molecular and cellular imaging. [J].Ann Biomed Eng, 2006, 34(1): 3-14.
    [193] Sinha, R., Kim, G. J., Nie, S., Shin, D. M. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. [J].Mol Cancer Ther, 2006, 5(8): 1909-1917.
    [194] Gao, X., Yang, L., Petros, J. A., Marshall, F. F., Simons, J. W., Nie, S. In vivo molecular and cellular imaging with quantum dots. [J].Curr Opin Biotechnol, 2005, 16(1): 63-72.
    [195] Chan, W. C., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. [J].Curr Opin Biotechnol, 2002, 13(1): 40-46.
    [196] Herndon, W. E., Kittleson, M. D., Sanderson, K., Drobatz, K. J., Clifford, C. A., Gelzer, A., Summerfield, N. J., Linde, A., Sleeper, M. M. Cardiac troponin I in feline hypertrophic cardiomyopathy. [J].J Vet Intern Med, 2002, 16(5): 558-564.
    [197] Lavoinne, A., Cauliez, B. Cardiac troponin I and T: specific biomarkers of cardiomyocyte. [J].Rev Med Interne, 2004, 25(2): 115-123.
    [198] Barton, P. J., Cullen, M. E., Townsend, P. J., Brand, N. J., Mullen, A. J., Norman, D. A., Bhavsar, P. K., Yacoub, M. H. Close physical linkage of human troponin genes: organization, sequence, and expression of the locus encoding cardiac troponin I and slow skeletal troponin T. [J].Genomics, 1999, 57(1): 102-109.
    [199] Chapelle, J. P. Cardiac troponin I and troponin T: Recent players in the field of myocardial markers. [J].Clin Chem Lab Med, 1999, 37(1): 11-20.
    [200] Zhang, H., Yang, B. X-ray photoelectron spectroscopy studies of the surface composition of highly luminescent CdTe nanoparticles in multilayer films. [J].Thin Solid Films, 2002, 418(2): 169-174.
    [201]林章碧,苏星光,张皓.用水溶液中合成的量子点作为生物荧光标记物的研究. [J].高等学校化学学报, 2003, 24(2): 216-220.
    [202]魏景艳,钱丽娜,芦杰.特异性抗cTnI多克隆抗体的制备. [J].中国生物制品学杂志, 2002, 5(15): 29-31.
    [203]魏景艳,付平平,宋昂.人心肌肌钙蛋白Ⅰ的分离纯化. [J].中国生物制品学杂志, 2000, 13(4): 218-220.
    [204] Wei, J. Y., Song, D. Q., Bu, L. S. Preparation of Anti-ardiac Troponin I Monoclonal Antibodies and Their Characterization with Surface Plasmon Resonance Biosensor. [J].Chemical Research in Chinese Universitis, 2003, 19(002): 183-189.
    [205]魏景艳,卜丽莎,董玉军.心肌肌钙蛋白I单克隆抗体制备及酶免疫法的建立. [J].中华检验医学杂志, 2003, 26(5): 1-3.
    [206] Hua, X. F., Liu, T. C., Cao, Y. C., Liu, B., Wang, H. Q., Wang, J. H., Huang, Z. L., Zhao, Y. D. Characterization of the coupling of quantum dots and immunoglobulin antibodies. [J].Analytical and Bioanalytical Chemistry, 2006, 386(6): 1665-1671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700