用户名: 密码: 验证码:
喷射沉积内氧化颗粒增强铜基复合材料的制备及其组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强弥散强化铜材料Cu-Al2O3(Y2O3、SiO2、TiC、SiC、TiN、Si3N4等),是以金属为基体,采用各种金属氧化物、金属间化合物或非金属纤维等作为弥散强化相制备的复合材料,是制做电极、触头、引线、微波管构件及整流转子等的关键材料,广泛应用于电力、电工、电子、机电等行业。目前,国内外Cu-Al2O3材料的制备方法主要有:(1)机械合金化法;(2)粉末内氧化法。前者制备的材料由于A1203颗粒粗大、界面与铜基体的润湿性差,难于成形加工,力学和电学性能不高;而后者制备工艺复杂,A1203颗粒大小和形状不易控制,材料密度低,导致物理、力学性能不稳定。因此,上述方法均不能很好解决A1203在铜基体中界面润湿性差、颗粒粗大、分布不均匀等问题,从而影响到弥散强化铜的综合性能和成品率,限制了Cu-Al2O3复合材料的应用范围。
     为了改善A1203增强相与铜基体的浸润性及其在铜基体中的大小和分布,最终提高材料的物理、力学和电学性能。本论文提出:(1)采用喷射沉积、内氧化、轧制、拉拔等技术集成,以及在铜铝合金中添加微量稀土元素制备CuAl2O3、 CuAl2O3La2O3y2O3复合材料的创新思路。(2)通过工艺条件、沉积时合金锭坯的显微组织、物理性能、力学和电学性能等之间的关联性研究,获得制备组织晶粒为细小等轴晶粒、无偏析、致密度高、氧化物颗粒细小呈弥散分布的圆柱形合金锭坯的最佳工艺参数(即熔炼温度1300℃、雾化气体压力1.5MPa、开始沉积距离350mm、沉积器转速180deg/s),获得近终成形效果良好,相对密度为94%、沉积效率为87%的锭坯;通过对喷射沉积、雾化液滴的形核、锭坯的显微组织形成过程等的理论研究,建立喷射沉积合金锭坯的显微组织晶粒分布模型。(3)内氧化机理是喷射沉积内氧化制备高性能CuAl2O3、CuAl2O3La2O3Y2O3复合材料的关键技术之一,本论文对其内氧化热力学和动力学条件进行了研究;利用DSC差热分析确定了内氧化过程的温度、时间,考察了不同反应温度、时间对材料显微组织、性能的影响;利用XRD、SEM、HRTEM等测试手段,对合金内氧化前、后的晶格常数和复合材料的组织结构变化及第二相析出颗粒进行了分析,结果表明内氧化生成的A12O3、La2O3、Y2O3颗粒细小、均匀、无偏析,弥散分布于铜基体的晶粒内部和晶界上,与基体的润湿性好、界面干净;内氧化生成的A1203为六方晶系结构,与Cu的错配度(f-74%)>25%,二者为非共格关系;La203为立方晶系结构,与Cu的错配度(f=22%)5%     本论文研究了不同变形量10%、30%、50%、70%、90%,对CuAl2O3、 CuAl2O3La2O3Y2O3材料的电导率、硬度、抗拉强度等性能和显微组织的影响;研究了不同退火温度700℃、900℃、980℃对CuAl2O3La2O3y2O3材料的电导率、硬度等性能和显微组织的影响;对材料的强化机理、电阻构成、断口形貌与断裂机理进行了理论分析。获得CuAl2O3材料的密度大于8.7g/cm3,抗拉强度大于450MPa,电导率大于47S/m(导电率>80%IACS);CuAl2O3La2O3Y2O3材料的密度大于8.7g/cm3,抗拉强度大于500MPa,电导率大于48S/m(导电率>80%IACS);材料的力学性能和电导率等优于其它机械合金化法、粉末内氧化法制备的Cu-1.2A12O3材料,具有高强高导电合金的特征。这说明,通过添加Al、La、Y等第二相活性元素,结合内氧化生成氧化物颗粒,在改善铜氧化物材料中界面润湿性及界面结合性能的同时,还具有多相协同强化的作用,与传统单一强化相比,材料的综合性能明显提高。
     电接触材料在实际运行状态下存在电弧侵蚀、金属转移等问题,本论文根据触头材料的电弧侵蚀理论,研究了CuAl2O3、CuAl2O3La2O3Y2O3材料在直流阻性负载条件下(20V、20A、接触压力60N、开闭接触工作10000次),材料转移等瞬间电弧特性,分析了铆钉触头材料受电弧侵蚀后的表面形貌特征、金属转移和电弧侵蚀机理,建立了电弧侵蚀过程能量分布的物理模型及能量传导转化公式。获得CuAl2O3、CuAl2O3La2O3Y2O3材料在电弧作用下的金属转移为由阳极向阴极转移,电弧侵蚀形貌由浆糊状、骨架状、空洞状等组成,以及多相氧化物颗粒增强铜基复合材料的耐电弧侵蚀能力优于单一氧化物颗粒增强材料等规律。
Particle reinforced dispersion strengthened copper material is a kind of composites material using metal as the matrix and strengthened by metal oxide, intermetallic compounds or nonmetallic fibers. The main strengthening phases include Al2O3, Y2O3, S;O2, TiC, SiC, TiN, Si3N4etc. Dispersion strengthened copper is the key materials used to make electrodes, contacts, leads, microwave tubes and rectified rotor etc, and has been widely applied in electricity, electrical, electronic and electromechanical industry. The main preparation methods at home and abroad for Cu-Al2O3material include mechanical alloying method and power internal oxidation method. The former method is hard to process and has bad mechanical and electrical properties due to the large Al2O3particles and their poor wet ability with copper matrix. The latter method has unstable physical, mechanical and electrical properties due to their complex preparation process, uncontrollable shape and size of the Al2O3particles and low density. Therefore, using above methods cannot solve the problems that Al2O3has poor wet ability with copper matrix, large particles and with nonuniform distribution. Consequently, it influences the yield and comprehensive properties of dispersion strengthening copper and limits its application range.
     To improve the wet ability of Al2O3with copper matrix, the particle size and distribution of Al2O3in copper matrix and improve the physical, mechanical and electrical properties of materials, in this paper, we present:(1) Using innovation technology roadmap include spray deposition, internal oxidation, rolling, drawing and so on, as well as adding trace rare earth elements in Cu-Al alloy to prepare CuAl2O3、 CuAl2O3La2O3Y2O3composites materials.(2) Through studying the relevance law of process conditions, physical-chemical deposition environment, and microstructure, physical, mechanical and electrical properties of alloy ingots obtained the optimum process parameter to prepare small axis crystalline grain, no segregation, high density, and small dispersion distribution oxide particles cylindrical shape alloy ingots (melting temperature is1300℃, atomization gas pressure is1.5MPa, beginning deposition distance is350mm and deposition device speed is180deg/s). It results that ingot relative density is94%, deposition efficiency is87%and well near net shape. Through the theoretical research of spray deposition, nucleation of atomized droplets and microstructure formation process of ingot, we established microstructure grains distribution model for the spray deposition alloys ingot.(3) Internal oxidation mechanism and its control is one of the core and key technologies to prepare high performance CuAl2O3CuAl2O3La2O3Y2O3composites materials. In this paper, we studied the thermodynamics and kinetics conditions of internal oxidation. Using the DSC analysis ensure the demanding temperature and time within oxidation process, studying the impact of different reaction temperature and time on microstructure and performance of material; using XRD, SEM and HRTEM to analysis lattice constants, composites microstructure changes and the second phase precipitation particles before and after of internal oxidation, the results show that Al2O3、La2O3、Y2O3particles are small, uniform and no segregation internal oxidation, dispersive distribution in the grain and grain boundary of copper substrate. The wet ability is well and the interface is clean. Crystal structure of Al2O3internal oxidation belongs to the hexagonal system, and the misfit ratio for Cu (f=74%)>25%, non-coherent lattice relationship. La2O3belongs to the cubic crystal structure, and the misfit ratio for Cu (f=22%)5%nd the misfit ratio for Cu (f=3%)<5%, coherent lattice relationship.(4) Through theory research of experiment analysis and precipitation amount of aluminum, diffusion coefficient of aluminum in copper and the oxides generated nucleation and grain growth, we obtained formation of the second phase oxides particles by diffusion control of parabola growth mechanism, in early of internal oxidation (or low temperature conditions), the formation of Al2O3particles was controlled by diffusion rate of Al atom in grain boundary of copper substrate, in late of the internal oxidation (or high temperature conditions), the formation of Al2O3particles was controlled by diffusion rate of Al atom in grain of copper substrate. Through calculation, we obtained the change law of equilibrium solubility of Al in Cu in Cu-Al alloy, precipitates quantity of Al in supersaturated solid solution under different temperature conditions, as well as particles size of Al2O3is between0.45-24.51μm at different reaction stage, which was basically identical with the experiment results of0.5-20μm the oxides particles that CuA10.55alloys at980℃and after2.5h of internal oxidation.
     In this paper, the influence of different deformation10%,30%,50%,70%,90%on electrical conductivity, hardness, tensile strength and microstructure of CuAl2O3CuAl2O3La2O3Y2O3material have been studied. Meanwhile, we studied the influence of electrical conductivity, hardness and microstructure of material different annealing temperature at700℃,900℃and980℃. Theoretical analysis of strengthening mechanism, the resistance composition, fracture morphology and fracture mechanism were all discussed. The results show that the density of prepared CuAl2O3materials is higher than8.7g/cm3, the tensile strength is more than450MPa, electrical conductivity is greater than47S/m (conductivity>80%IACS). The density of prepared CuAl2O3La2O3Y2O3materials is higher than8.7g/cm3, the tensile strength is more than500MPa, electrical conductivity is greater than48S/m (conductivity>80%IACS). The mechanical properties and electrical conductivity are better than Cu-1.2Al2O3material prepared by mechanical alloying method and powder internal oxidation method. It has the characteristics of high-strength and high-conductivity alloys. The results shows that, through adding a second-phase reactive elements such as Al, La, Y, combined with internal oxidation generates oxide particles, it not only improve wetting and binding properties of the interface, but also has a effect of synergistic enhancement. The materials performance has been improved significantly compared with conventional single enhancement phase.
     Electric contact material has the arc erosion and metal transfer in actual conditions. In this paper, we researched material transfer of CuAl2O3and CuAl2O3La2O3Y2O3material in DC resistance load conditions (20V,20A, contact pressure is60N, opening and closing contact work is10,000times) according to the arc erosion theory of contact material. The surface morphology features of rivet contact material by arc erosion, metal transfer and arc erosion mechanism have also been studied. We obtained the physical model of arc erosion processes and the energy transfer formulas. Meanwhile, we obtained the law of CUAI2O3、 CuAl2O3La2O3Y2O3material transferred from the anode to the cathode under arc erosion effect, arc erosion morphology composed by starchiness, skeleton and void appearance, arc erosion resistance properties of multiphase oxide particle-reinforced copper matrix composites, which is better than single oxide particle reinforced materials.
引文
[1]Singer A R E. The Principles of Spray Rolling of Metals[J]. Metels & Materials,1970,4(6): 246-250
    [2]Froes F H. Developments In Titanium P/M[C]. Fourth International Conference on Spray Forming,2000,58:72-75
    [3]张济山,熊柏青,崔华.喷射成形快速凝固技术-原理与应用[M].北京:科学出版社,2008:2-7
    [4]Lavernia E J, Gutierrez E M, Szekely J, Grant N J. A Mathematical Model of the Liquid Dynamic Compaction Process Part 1:Heat Flow in Gas Atomization[J]. Int. J. Rapid Solidification,1988,4(1/2):89-124
    [5]Albert T, Grant N J. Modeling of the Liquid Dynamic Compaction Spray Process[J]. Int. J. Powder Metallurgy,1994,30(3):323-333
    [6]Rickinson B A, Kirk F A, Davies D R. CSD:A Novel Process for Particle Metallurgy Products [J]. Powder Metallurgy,1981(1):1-6
    [7]Yule A J, Dunkley J J. Atomization of Melts for Powder Production and Spray Deposition[M]. Oxford:Clarendon Press,1994:11-18
    [8]张璟,周哲玮.喷射成形中的喷射雾化机理研究[J].粉末冶金技术,1999,17(3):163-169
    [9]霍光.喷射成形组织形成与棒坯形状的模拟研究[D].昆明:昆明理工大学,2006:9-20
    [10]吉泽升,朱荣凯,李丹.传输原理[M].哈尔滨:哈尔滨工业大学出版社,2002:75-81
    [11]Rai G, Lavernia E J, Grant N J. Powder Size and Distribution in Ultrasonic Gas Atomization[J]. Journal of Metals,1985,37(8):22-26
    [12]霍光,匡星,况春江,邓德国.喷射成形工艺的理论研究进展[J].粉末冶金技术,2008,24(5):27-30
    [13]李周,米国发,张国庆,张智慧,刘仲武,田世藩.喷射成形过程雾化熔滴质量流率空间分布的研究[J].航空材料学报,1998,18(2):31-35
    [14]Unal A. Effect of Processing on Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminum Powders[J]. Materials Science and Technology,1987(3):1029-1039
    [15]Unal A. Flow Separation and Liquid Rundown in A Gas-Atomization Process[J]. Metallurgical Transactions B,1989,20(10):613-622
    [16]Unal A. Influence of Nozzle Geometry in Gas Atomization of Rapidly Solidified Aluminium Alloys[J]. Materials Science and Technology,1988(4):909-915
    [17]Bergmann D, Fritsching U, Bauckhage K. A Mathematical Model for Cooling and Rapid Solidification of Molten Metal Droplets[J]. Int. J. Therm. Sci.,2000,39:53-62
    [18]Bergmann D, Fritsching U. Sequential Thermal Modelling of the Spray-Forming Process[J]. International Journal of Thermal Science,2004,43:403-415
    [19]霍光,谢明,邓德国,符世继,陈力,陈江.喷射成型制造工艺[J].成形工艺,2002,12(4):15-19
    [20]Xu Q, Lavernia E J. Influence of Nucleation and Growth Phenomena on Microstructural Evolution during Droplet-Based Deposition[J]. Acta Materialia,2001,49(18):3849-3861
    [21]Xu Q, Guptta V V, Lavernia E J. Thermal Behaviors during Droplet-Based Deposition[J]. Acta Materialia,2000,48(4):835-849
    [22]Mathur P, Annavarapu S, Apelian D, Lawley A. Spray Casting:an Integral Model for Process Understanding and Control[J]. Mat. Sci. and Eng. A,1991,142:261-276
    [23]Cai W, Lavernia E J. Modeling of Porosity during Spray Forming Ⅰ:Effects of Processing Parameters [J]. Metall. Mater. Trans. B,1998,29B(5):1085-1096
    [24]Cai W, Lavernia E J. Modeling of Porosity during Spray Forming Ⅱ:Effects of Atomization Gas Chemistry and Alloy Compositions[J]. Metall. Mater. Trans. B,1998,29B(5):1097-1106
    [25]樊文军.喷射成形沉积坯生长过程数值模拟和组织预测[D].内蒙古:内蒙古科技大学,2007:9-18
    [26]曹福洋.喷射成形过程的数值模拟及工艺基础研究[D].哈尔滨:哈尔滨工业大学,2001:1-9
    [27]刘东明.喷射成形的计算机模拟与高强铝合金制备[D].北京:中国科学院金属研究所,2004:3-7
    [28]徐寒冰.喷射成形过程模拟及其材料研究[D].上海:上海交通大学,2001:11-15
    [29]Williams B. Osprey Breaks New Ground in Spray Deposition Technology[J]. Met. Power Rep., 1987,42:712-716
    [30]Williams B. Preforming Process for Superalloys and High Alloy Steels[J]. MPR,1983,38: 15-18
    [31]Yang Y F, Simo-Pekka H. Development of Precision Spray Forming for Rapid Tooling[J]. Materials Science and Engineering,2008,477:63-68
    [32]Grant P S. Spray Forming[J]. Progress in Materials Science,1995,39:497-545
    [33]Lavernia E J, Grant N J. Spray Deposition of Metals:A Review[J]. Materials Science and Engineering,1988,98:381-394
    [34]Knight R, Smith R W, Lawley A. Spray Forming Research at Drexel University [J]. The International Journal of Powder Metallurgy,1995,31(3):205-213
    [35]Perepletchikov E F, Ryabtsev I A,Vasilev V G, Heinze H.Structure and Properties of High 2carbon High 2vanadium Iron2 base Alloys for Surfacing[J].Metal Science and Heat Treatment, 2003,45(5-6):36-40
    [36]Carter W T, Benz M G, Basu A K. The CMSF Process:The Spray Forming of Clean Metal[J]. JOM,1999,51(4):1-7
    [37]Downson A L, Jacobs M H, Young J M. Advances in Powder Metallurgy and Particulate Materials[A]. Proc. of 3rd Inter. Conf. on Spray Forming[C]. UK:Metal Powder Industries Federation,1996:193-196
    [38]王金花.航空航天用合金的喷射铸造-X成形工艺[J].材料工程,2000(1):12-15
    [39]陈国良,田世藩.高技术新材料要览(金属雾化喷射沉积)[M].北京:中国科学技术出版社,1993:77-88
    [40]纪振双,姚留杭.接近最终产品形状浇铸技术及其在国内外的发展概况Ⅱ-喷射成型技术[J].连铸,1995(2):14-18
    [41]崔成松,李庆春,沈军,蒋祖龄,范洪波.喷射沉积快速凝固材料的研究及应用概况[J1.材料导报,1996(1):21-26
    [42]陈振华,黄培云,蒋向阳,杨伏良,周多三.多层喷射沉积规律[J].中国有色金属学报,1995,5(4):70-72
    [43]傅定发,陈振华.多层喷射沉积工艺的研究现状[J].材料开发与应用,2001,16(2):26-29
    [44]杨东超,王飞,谢明,等.喷射沉积Cu-7.5Ni-2.5Sn合金组织性能的研究[J].粉末冶金技术,2009,27(4):264-267
    [45]SHU Baipo, XIE Ming, YANG Youcai, et al. Al2O3 and Y2O3 particles dispersion-strengthened copper-based composites produced by rapidly solidified-centrifugal spray deposition technique[J]. Journal of Materials Science and Engineering,2008,4 (2):61-65
    [46]谢明,王松,杨有才,等.Cu-Cr-Y合金电滑动磨损性能[J].金属热处理,2013,38(9):82-85
    [47]符世继,谢明,陈力,杨有才,张健康,黎玉盛.喷射成形过共晶Al-Si合金材料的研究现状[J].材料导报,2006,20(5):437-439
    [48]Leatham A. Spray Forming:Alloys, Products, and Markets [J]. JOM-e,1999,51(4):1-6
    [49]沈军,李振宇,曹福洋.喷射沉积CuCrZrMg合金的显微组织及性能[J].中国有色金属学报,1999,9(S1):136-137
    [50]曾汉民,李成功,姚喜.高技术新材料要览[M].北京:中国科学技术出版社,1993:58-80
    [51]曹建春,胡大禄.高强耐磨铜合金的优化设计[J].铸造设备研究,1998(6):42-45
    [52]王文明,潘复生,Lu Yun,曾苏民.喷射成形技术的发展概况及展望[J].重庆大学学报,2004,27(1):101-111
    [53]彭超群,黄伯云.喷射沉积技术[J].有色金属,2002,54(1):12-15
    [54]彭超群.喷射成形技术[M].长沙:中南大学出版社,2004:11-13
    [55]张永昌.金属喷射成形的进展[J].粉末冶金工业,2001,11(6):17-22
    [56]熊柏青.喷射成形技术的产业化现状及应用发展方向[J].稀有金属,1999,23(6):425-430
    [57]佐野秀男.急冷凝固铝合金的实用化[J]有色金属加工,1996(1):41-51
    [58]Lavernia E J,Yue Wu. Spray Atomization and Deposition[M]. Manhattan:John Wiley & Sons, 1998:79-87
    [59]王军,严彪,徐政.喷射成形技术的发展应用[J].上海有色金属,2002,23(3):135-137
    [60]符世继.喷射成形等制备技术对Cu-Gd合金组织结构和性能的影响[D].昆明:昆明贵金属研究所,2004:35-39
    [61]Zhang J G, Shi H S, Sun D S. Research in Spray Formintechnology and Its Applications in Metallurgy [J]. Journal Material Processing and Technology,2003,138:357-360
    [62]张雁,费群星.喷射成形技术的研究概况[J].现代制造工程,2006(7):134-137
    [63]Xie M, Liu J L, Lu X Y, Shi A, Den Z G, Jang H, Zheng F Q.Study of Rapidly Solidified Cu-Cr-RE Alloys[J]. Science and Technology of Advanced Materials,2001,2(1):279-282
    [64]王孝武,袁森,宋文峰.Cu/Al2O3复合材料的研究进展[J].特种铸造及有色合金,1998(5):50-52
    [65]周国洪.高强高导电Al2O3/Cu复合材料的研究[D].西安:西北工业大学,2001:5-15
    [66]唐建成,卓海鸥,叶楠.一种弥散强化铜基复合材料及其制备方法[P].中国:201210147029.3,2012-05-14
    [67]陆艳杰,康志君,崔舜.氧化物弥散强化铜合金的研究与应用[J].电工材料,2005(2):21-24
    [68]刘绍军.新型纳米相弥散强化铜及其制备方法和产品生产工艺[P].中国:200810066186.5,2008-03-27
    [69]刘同华.Al2O3/Cu复合材料的制备及其组织性能研究[D].西安:西安理工大学,2005:7-9
    [70]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996:98-105
    [71]贾燕民.制备弥散强化铜的新工艺[J].稀有金属材料与工程,2000,20(2):141-143
    [72]胡强,谌昀,金莹,付青峰,康林萍.点焊电极用Cu-Al2O3复合材料的研究进展[J].江西科学,2010,28(5):656-660
    [73]王孟君.弥散强化铜电阻焊料电极材料的研制[J].矿冶工程,2003,20(2):54-56
    [74]燕鹏,林晨光,崔舜,周增林,李明,陆艳杰,李增德,雷虎.弥散强化铜合金的研究与应用现状[J].材料导报,2011,25(6):101-106
    [75]刘勇,孙永伟,田保红,冯江,张毅.载电条件下30%Mo/Cu-Al2O3复合材料的摩擦学行为[J].材料热处理学报,2013,34(5):1-5
    [76]梁淑华,徐磊,方亮,范志康.真空原位氧化工艺参数对析出Al2O3显微形貌的影响[J].粉末冶金技术,2005,21(3):151-154
    [77]梁波,靳喜海,陈玉如.反应合成法制备先进陶瓷[J].材料科学与工艺,2000,8(1):84-89
    [78]严学华,孙少纯,蒋宗宇.原位反应复合材料研究进展[J].铸造设备研究,2001(1):27-30
    [79]Koczak M J. Emerging Technology for the In-Situ Production of MMCs[J]. JOM,1993(1): 44-48
    [80]王绍球,张辉.弥散强化铜合金材料生产工艺方法[P].中国:200610031607.1,2006-04-30
    [81]刘绍军.新型纳米相弥散强化铜及其制备方法和产品生产工艺[P].中国:200810066186.5,2008-03-27
    [82]张树才,郭志俊,高云,李爱民.氧化铝增强铜基复合材料机械合金化粉末的制备[J].中国钼业,2010,34(2):40-41
    [83]Sun H B, Wheat H G. Corrosion Study of Al2O3 Dispersion Strengthened Cu Metal Matrix Composites in NaCl Solutions[J]. J Mater Sci,1993(28):5435-5440
    [84]何顺钦,谢明,陈力.Al2O3弥散强化铜的研究现状与发展设想[A].钮因健.中国有色金属学会第六届学术年会论文集.北京:冶金工业出版社,2005:10-13
    [85]王新建,阮文魁,王杨,于磊.微电机换向器用内氧化法AgCuONiO电接触材料的结构及性能研究[J].电工材料,2013(1):16-19
    [86]谢明,刘建良,邬明金,李靖华,吕贤勇,施安.弥散强化铜基电极合金[P].中国:98104885.4,2002-02-20
    [87]王刚,曹慧钦.一种采用超声分散制备弥散强化铜的方法[P].中国:201210008824,2013-07-31.
    [88]李美霞,郭志猛,赵奇特.氧化铝弥散强化铜的研究进展及其应用[J].粉末冶金工业,2008,18(1):36-40
    [89]宋厚启,刘立业,何伯恂,曹先杰,孟惠娟.弥散强化铜合金及其制备方法[P].中国:200410029836.0,2004-03-30
    [90]唐建成,卓海鸥,叶楠,覃德清,李婷.一种稀土氧化物弥散强化铜的制备方法[P].中国:201210358786.5,2012-09-25
    [91]肖平安,肖广志,曹杰义.一种氧化铝弥散强化铜的制备方法[P].中国:201210508556.2,2012-12-04
    [92]李红霞,田保红,宋克兴.内氧化法制备Al2O3/Cu复合材料[J].兵器材料科学与工程,2004,27(5):64-68
    [93]Broyles S E, Anderson K R, Groza J R, Gibeling J C. Creep Deformation of Dispersion-Strengthened Copper [J]. Metal Mater Trans,1996,27(5):1217-1220
    [94]Shen K, Wang M P, Li S M. Study on the Properties and Microstructure of Dispersion Strengthened Copper Alloy Deformed at High Temperatures [J]. Journal of Alloys and Compounds, 2009(6):401-408
    [95]徐磊.新型真空内氧化工艺制备Al2O3/Cu复合材料及其组织与性能的研究[D].西安:西安理工大学,2002:2-5
    [96]田宝红,宋克兴,刘平.高性能弥散强化铜基复合材料及其制备技术[M].北京:科学出版社,2011:373-375
    [97]袁晓东,钱翰城.金属基复合材料喷射沉积技术[J].材料导报,1993(2):72-75
    [98]Lavernia E J, Yue Wu. Spray Atomization and Deposization[M]. New York:John Wiley,1996: 79-88
    [99]陈国良,田世藩.高技术新材料要览(金属雾化喷射沉积)[M].北京:中国科学技术出版社,1993:8-29
    [100]谢明,杨有才,张健康,黎玉盛,符世继,史庆南,李汝明,段云喜,曾荣川,李方中,尹长青,张春荣,舒佰坡.多相氧化物颗粒增强铜基复合材料及其制备方法[P].中国:200710066391.7,2009-06-10
    [101]闵光辉,宋立,于化顺.高强度导电铜基复合材料[J].功能材料,1997,28(4):342-345
    [102]于朝清.引线框架用高强高导铜合金材料[J].电工材料,2005(2):33-37
    [103]肖勇.金属元素掺杂对氧化铝弥散强化铜力学性能的影响研究[D].哈尔滨:哈尔滨工业大学,2010:12-17
    [104]李美霞,郭志猛,赵奇特.氧化铝弥散强化铜的研究进展及其应用[J].粉末冶金工业,2008(1):21-24
    [105]张旦闻,赵冬梅,任凤章,孙鹃,赵秀婷,张晓楠.一种高强高导弥散强化铜合金及其制备方法[P].中国:200710189601,2007-09-19
    [106]刘绍军,肖勇.一种高强高导弥散强化铜合金及其制备方法[P].中国:201010508439.7,2010-10-15
    [107]毛向阳,方峰,谈荣生,蒋建清.稀土对铜和铜合金组织与性能影响的研究进展[J].稀土,2008,29(3):75-80
    [108]肖勇,刘绍军,武建,曲选辉.微量合金元素添加对Al2O3弥散强化Cu微观组织和硬度的影响研究[J].粉末冶金技术,2012,30(4):260-265
    [109]田保红,周洪雷,张毅,刘勇.Al2O3弥散强化铜/铬复合材料的强化机理[J].材料热处理学报,2011,32(S1):13-17
    [110]Li G B, Sun J B. Fabrication of the Nanometer Al2O3/Cu Composite by Internal Oxidation[J]. Journal of Materials Processing Technology,2005,170:336-340
    [111]李美霞,罗骥,郭志猛.内氧化法制备纳米Al2O3弥散铜复合材料的研究[J].粉末冶金技术,2011,29(3):214-231
    [112]王东里.Al2O3强化铜基复合材料的制备和性能研究[D].合肥:合肥工业大学,2009:9-11
    [113]胡强,金莹,谌呁,付青峰,康林萍.点焊电极用Cu-Al2O3复合材料的研究进展[J].江西科学,2010,28(5):15-20.
    [14]郝士明.材料热力学[M].北京:化学工业出版社,2004:98-120
    [15]虞觉奇,易文质,陈邦迪.二元合金状态图集[M].上海:上海科学技术出版社,1987:137-162
    [116]程建奕.CuAl2O3纳米弥散强化铜合金的制备技术及若干基础问题研究[D].长沙:中南大学,2004:44-47
    [117]国秀花,宋克兴,郜建新,林阳明,李红霞.Al2O3弥散强化铜基复合材料的研究现状与进展
    [J].材料开发与应用,2006,21(4):15-20
    [118]Li G B, Sun J B. Fabrication of the Nanometer Al2O3/Cu Composite by Internal Oxidation[J]. Journal of Materials Processing Technology,2005,170:336-340
    [119]李月珠.快速凝固技术和材料[M].北京:国防工业出版社,1993:33-37
    [120]Mingard K P, Cantor B, Palmer I G, Hughes I R, Alexander P W, Willis T C, White J. Macro-segregation in Aluminium Alloy Spray Formed Billets[J]. Acta Materialia,2000,48(10): 2435-2449
    [121]陈存中.有色金属熔炼与铸锭[M].冶金工业出版社,1987:118-122
    [122]米国发,李周,梁志凯,赵先国,田世藩.喷射沉积过程中显微组织的形成机制[J].航空材料学报,1997,17(1):1-8
    [123]刘东明.喷射成形的计算机模拟与高强铝合金制备[D].北京:科学院研究生院,2004:17-22
    [124]曹琦.喷射沉积技术沉积区域控制研究[D].昆明:昆明理工大学,2010:3-9
    [125]李红霞,田保红,宋克兴.内氧化法制备Al2O3/Cu复合材料[J].兵器材料科学与工程,2004,27(5):25-30
    [126]Kannury A M. A Kinetic Medel for Metal+Normal Reactions[J]. Metall Trans,1992,23A: 2394-2398
    [127]申玉田,崔春翔,孟凡斌,吴人洁.Cu-Al合金内氧化及Cu氧化行为的热力学分析[J].粉末冶金技术,2001,19(1):28-32
    [128]蒋向阳,陈振华,黄培云.原位反应生成Al-Fe/Al2O3, Al-Cu/Al2O3复合材料的过程原理[J].中南工业大学学报(自然科学学版),1997(1):47-50
    [129]康永彪Al2O3/Cu复合材料的内氧化法制备及性能研究[J].南昌:南昌大学,2007:27-29
    [130]苏凡凡,张旦闻,赵冬梅,任凤章,田保红,贾淑果.内氧化法制备Al2O3/Cu复合材料的研究进展[J].铸造技术,2008,29(8):15-19
    [131]徐光宪.稀土(下册)[M].北京:冶金工业出版社,1995:18-21
    [132]叶大伦.实用无机热力学数据手册[M].北京:冶金工业出版社,2002:4-10
    [133]Wang S, Xie M. Microstructures and Properties of Y2O3/La2O3/Cu Composite by Internal Oxidation[J]. Applied Mechanics and Materials,2012,109:236-237
    [134]张运,武建军,李国彬,申玉田,雷迁权.铜铝合金的内氧化[J].材料科学与工艺,1999(2):30-35
    [135]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:29-32
    [136]马颖,郝远,寇生中,鲁学年CuO/Al反应自生复合材料的热力学研究[J].材料科学与工学报,2003,21(1):31-32.
    [137]刘义发.原位Al2O3颗粒增强铜基复合材料的制备及其耐磨性能的研究[D].苏州:江苏大学,2009:45-48
    [138]Scholz H, Greil P. Nitridation Reactions of Molten Al-(Mg,Si) Alloys[J]. Journal of Materials Science,1991,26(3):669-677
    [139]Lifshitz L M, Slyozov V V. The Kinetics of Precipitation from Supersaturated Solid Solutions[J]. Journal of Physics and Chemistry of Solids,1961,19(1-2):35-50
    [140]国秀花.Al2O3弥散强化铜合金特种性能研究[D].郑州:河南科技大学,2008:10-15
    [141]申玉田,崔春翔,吴人洁Cu-Al合金内氧化工艺及动力学研究[J].稀有金属材料与工程,
    2001,30(1):44-48
    [142]国秀花,宋克兴,郜建新,王旭,刘瑞华.内氧化法制备Al2O3/Cu复合材料的研究现状[J].特
    种铸造及有色合金,2006,26(10):678-680
    [143]周美玲,谢建新,朱宝泉.材料工程基础[M].北京:北京工业大学出版社,2001:17-25
    [144]潘金生,仝健民,田民波,等.材料科学基础[M].北京:清华大学出版社,1997:411-432
    [145]胥锴,刘徽平,王浦,袁帮谊,张新建.原位自生金属基复合材料的制备方法[J].有色金属加工,2008,34(6):14-18
    [146]Joanna G. Heat Resistant Dispersion Strengthened Copper Alloys[J]. Journal of Materials Engineering and Performance,1992,1(1):113-121
    [147]孙永平.流型控制器对喷射沉积区域和质量控制研究[D].昆明:昆明理工大学,2011:5-7
    [148]谢明,王松,张吉明,杨有才,刘满门,陈永泰,史庆南.Y2O3/La2O3/Al2O3/Cu复合材料的制备与性能[J].电工材料,2012(2):20-25
    [149]彭茂公,抗若谷,计汉容.弥散强化铜材料中氧化铝相原位生长工业生产技术[P].中国:200610048645,2007-02-21
    [150]Afshar A, Simchi A. Abnormal Grain Growth in Alumina Dispersion-strengthened Copper Produced by An Internal Oxidation Process[J]. Scripta Materialia,2008,58(11):966-969
    [151]田素贵,邵会孟,周龙江,李铁藩.粉末烧结Cu-Al合金内氧化动力学研究[J].腐蚀科学与保护技术,1996,8(4):291-295
    [152]Song K X, Xing J D, Dong Q M, Liu P, Tian B H, Cao X J. Internal Oxidation of Dilute Cu-Al Alloy Powders with Oxidant of Cu2O[J]. Materials Science and Engineering A,2004,380: 117-122
    [153]Groza J R, Gibeling J C. Principles of Particle Selection for Dispersion Strengthened Copper[J]. Materials Science and Engineering A,1993,171(1/2):115-125
    [154]Rajkovic V, Bozic D, Jovanovic M T. Properties of Copper Matrix Reinforced with Nano-and Micro-sized A12O3 Particles[J]. Journal of Alloys and Compounds,2008,459(1/2):177-184
    [155]周晓龙.反应合成AgCuO复合材料的组织均匀化及界面结构研究[D].昆明:昆明理工大学,2008:28-30
    [156]李红霞,田保红,宋克兴,刘平.低铝含量Cu-Al合金的表面弥散强化及其性能[J].材料热处理学报,2005,26(2):30-35
    [157]周晓龙,曹建春,陈敬超,黎敬涛,于杰,张昆华,杜焰,吴大平.反应合成AgCuO复合材料中CuO的长大动力学分析[J].北京科技大学学报,2010,32(10):1311-1315
    [158]Li G B, Sun J B. Fabrication of the Nanometer Al2O3/Cu Composite by Internal Oxidation[J]. Journal of Materials Processing Technology,2005,170:336-340
    [159]Hong S I, Kwon H J. Superplasticity of Cu-16at.%Ag Micro-composites[J]. Journal of Materials Research,2001,16(6):1822-1828
    [160]夏宗宁,邹定国.材料科学与材料工程基础[M].北京:机械工业出版社,1984:50-55
    [161]谢明,杨有才,陈永泰,崔浩,刘满门,张吉明,史庆南.高强高导CuMeO材料的制备新技术及组织性能[A].钮因健.第八届有色金属会议文集[C].长沙:中南大学出版社,2010:452-456
    [162]Ying D Y, Zhang D L. Processing of Cu-Al2O3 Metal Matrix Nanocomposite Materials by Using High Energy Ball Milling[J]. Materials Science and Engineering A,2000,286(1):152-156.
    [163]Song K X, Liu P, Tian B H, Dong Q M, Xing J D. Stabilization of Nano-Al2O3/Cu Composite After High Temperature Annealing Treatment[J]. Materials Science Forum,2005, 475/479:993-996
    [164]李红霞,田保红,林阳明,李士凯,刘平.内氧化法制备Cu/Al2O3 复合材料的再结晶行为[J].稀有金属材料与工程,2005,34(7):1039-1042
    [165]高翔,罗丰华,谭永菊,付晓虎,陈春辉,崔建民.内氧化-冷轧制备A1203弥散强化铜合金的组织与性能[J].中国有色金属学报,2010,20(10):2019-2024
    [166]林阳明,宋克兴,李红霞Al2O3/Cu复合材料强化机理研究[J].热加工工艺,2005(4):12-14.
    [167]Ratke L, Voorhees P W. Growth and Coarsening Ostwald Ripening in Material Processing[M]. Berlin:Springer,2002:127-166
    [168]曹先杰,李娜娜.内氧化工艺对弥散强化铜粉末强化质点特性和显微硬度的影响[J].矿冶工程,2002,22(3):101-103
    [169]Shen K, Wang M P, Li S M. Study on the Properties and Microstructure of Dispersion Strengthened Copper Alloy Deformed at High Temperatures[J]. Journal of Alloys and Compounds,2009,479 (1-2):401-408
    [170]Fan Z. A New Approach to the Electrical Resistivity of Two-phase Composites[J]. Acta Metall Mater,1995,43(1):43-49
    [171]Zozulya EV, Ilinskii A I, Kolupaev N I. Structure and Electrical Resistance of Dispersion-strengthened Vacuum-deposited CU-Al2O3 Nanocomposites[J]. The Physics of Metals and Metallography,2011,111(2):155-157
    [172]王永朝,刘国元,付自来,陈会东,雷竹芳,李文甫.弥散强化铜弥散相特征与其性能的关系[J].材料开发与应用,2012(4):27-32
    [173]Tian B H, Liu P, Song K X, Li Y, Liu Y, Ren F H, Su J H. Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion-strengthened Copper Base Composite[J]. Materials Science and Engineering A,2006,435-436(5):705-710
    [174]周延春,吴进怡.一种原位生成碳化钛弥散强化铜基复合材料及其制备方法[P].中国:200510045649.6,2006-06-19
    [175]Nachum S, Fleck A, Ashby M F, Colella, Matteazzic P. The microstructural basis for the mechanical properties and electrical resistivity of nanocrystalline Cu-Al2O3[J]. Materials Science and Engineering A,2010,527(20):5065-5071
    [176]赵祖德,姚良均,郭鸿运,彭如清,武恭.铜及铜合金材料手册[M].北京:科学出版社,1993:105-120
    [177]洪礼卫.几种金属材料破坏机理与断裂形式的研究[D].无锡:江南大学,2008:5-9
    [178]胡强,金莹,谌昀,付青峰,康林萍.点焊电极用Cu-Al2O3复合材料的研究进展[J].江西科学,2010,28(5):656-660.
    [179]罗云.弥散强化铜的制备、高温变形行为及点焊失效研究[D].长沙:中南大学,2006:15-18.
    [180]孟飞,裴燕斌,果世驹.高强高导弥散强化铜材料增强相的选择[J].电工材料,2005(2):16-20
    [181]Tian S G, Zhang L T, Shao H M, Zou L J, Li T F, Yang H C. Internal Oxidation Kinetics & Diffusion Mechanism of Oxygen in Cu-Al Sintered Alloy[J].Acta Metallurgica Sininca,1996, 9(5):387-390
    [182]罗丰华,高翔.一种高强度高导电性氧化铝弥散强化铜的制备工艺[P].中国:200910303699,2011-07-27
    [183]张为军,堵永国,胡君遂,王乃千.AgREO触头材料耐电弧侵蚀性能研究[J].电工合金,2000(3):11-14
    [184]韩波,史庆南,谢明,陈亮维,王效琪,起华荣,孟庆猛.直流条件下W-15wt%Cu电接触材料燃弧特性研究[J].稀有金属材料与工程,2012,41(6):994-997
    [185]程礼椿.电接触理论及应用[M],北京:机械工业出版社,1988:6-8
    [186]堵永国,杨广,张家春,王光华,龙雁..AgMeO触点材料电弧侵蚀的物理冶金过程分析[J].电工合金,1997(4):1-8
    [187]孙明,王其平.银金属氧化物触头材料电弧侵蚀的新型物理-数学模型[J].西安交通大学学报,1995(3):20-26
    [188]凌国平,薛天,倪孟良,刘远廷.银-金属氧化物触头材料电弧侵蚀产物的研究[J].贵金属,2008,29(3):18-24
    [189]张昆华,管伟明,郭俊梅,宋修庆.大变形Ag/Ni20纤维复合电接触材料电弧侵蚀及形貌特征[J].稀有金属材料与工程,2011,40(5):853-857
    [190]朱艳彩,王景芹,王海涛.Bi掺杂纳米AgSnO2的耐电弧侵蚀性能研究[J].稀有金属材料与工程,2013,42(1):149-152
    [191]Guo F Y, Cheng Z H, Zhang L L, Zhang J H. The Mechanisms of Cracks Formation of Silver-based Contact Material under Arc and Making Pressure[J]. Journal of Coal Science Engineering,2004,10(1):73-74
    [192]郭凤仪,王国强,董讷,Leuschner F W.银基触头材料电弧侵蚀特性及裂纹形成机理分析[J].中国电机工程学报,2004,24(9):209-217
    [193]张昆华.大变形制备Ag/Ni纤维复合电接触材料研究[D].昆明理工大学,2008:15-19
    [194]贺晓燕,周世平,王健,乔勋,王光庆,吕飞.Cu对Ag-0.5Ce触头电弧侵蚀形貌特征的影响[J].贵金属,2009,30(1):17-21
    [195]Guo F Y, Wang G Q, Dong N. The Arc Erosive Charateristics and Crack Formation Mechanisms Analysis of Silver Based Contact Materials[J]. Proceeding of the Csee,2004,24(9): 209-217
    [196]Wang S B, Xie M,Yang Y C, Zhang J M, Chen Y T, Liu M M, Yang Y F, Hu J Q. Study of the Material Transfer Characteristics and Surface Morphology Due to Arc Erosion of PtIr Contact Materials[J]. Precious Metals,2012,33(S1):169-172
    [197]窦富起,郑冀,任志浩,吕建.模拟汽车继电器条件下AgW、AgSnO2触头材料的电弧侵蚀性能研究[J].电工材料,2009(1):6-10
    [198]任俊杰,万江文,孙明,王其平.银基触头分断电弧侵蚀及其表面形貌特征的研究[J].低压电器,1996(6):8-12
    [199]史毅敏.新型钨铜触头材料真空电性能的研究[D].西安:西安建筑科技大学,2007:1-8
    [200]李靖,黄锡文,叶凡,侯月宾,刘元,蒙建州,廖丽丽.低压交流阻性负载条件下AgSnO2触头材 料抗电弧侵蚀性能研究[J].电工材料,2011(4):3-9
    [201]Swingler J, Sumption A. Arc Erosion of AgSnO2 Electrical Contacts at Different Stages of A Break Operation[J].Rare Metals,2010,29(3):248-254
    [202]万江文,荣命哲,王其平.银基触头电弧侵蚀及气孔和裂纹产生机理[J].电工技术学报,1997,12(6):26-31
    [203]薛天.新型AgNiSnO2材料的制备与性能研究[D].杭州:浙江大学,2008:5-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700