用户名: 密码: 验证码:
基于地貌特征的流域水—沙—污染物耦合模型及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境恶化是全球共同面临的问题,非点源污染是水体污染的重要来源,也是当前研究的热点和难点。采用水、沙、污染物耦合的流域水文模型进行非点源污染模拟,对深化流域水文循环、泥沙和污染物产生及输移转化过程的认识,提高流域水资源与水环境的综合管理水平有重要意义。
     流域水沙运动及其承载的污染物运移与地形地貌和生态之间是相互作用、相互影响的,论文基于地貌特征划分水文响应单元,在GBHM水文过程模型基础上,耦合泥沙和污染物的运动过程,建立了流域水-沙-污染物耦合机理模型GBHM-CWSP,对流域水文过程、土壤侵蚀和泥沙输移以及污染物迁移转化过程采用物理性的方程进行描述,可体现地貌特征对流域水文、泥沙和污染物运移过程的控制性作用,在保持机理性和模拟精度的前提下减少计算量。
     分析了张家坟水文站多年径流泥沙资料,认为土石山区土壤侵蚀产沙受“侵蚀能力”和“可侵蚀量”双重控制,在土壤侵蚀和河道冲淤动力学模型中增加“可侵蚀量”作为实际土壤侵蚀量和河道冲刷量的阈值,改进了流域泥沙运动的模拟。根据土壤溶质向坡面径流中的输出及其在土壤中运移的不同机制,构造了降雨径流与土壤水的交换函数,建立径流层、混合层和土壤层的水分溶质耦合运移方程,将土壤中污染物垂向运动与流域地表径流中沿坡向运移结合,建立了机理性流域坡面单元污染物运移模型。
     论文以潮白河流域为研究对象,建立了水-沙-污染物耦合模型,并利用下会、张家坟两个水文站的径流和水质实测数据进行模型的率定和验证。应用GBHM-CWSP模型,采用情景模拟方法分析了潮白河流域1980-2005年的径流、泥沙和污染负荷变化趋势及其与土地利用、气象要素变化之间的关系。研究表明,气象要素变化是引起径流、泥沙和氮磷污染负荷变化的主要原因,其贡献率分别为92%、95%、51%和70%。论文还应用GBHM-CWSP模型,对IPCC提供的两种未来气候情景模式下潮白河流域径流、泥沙和氮磷负荷量进行了预测。
One of the most challenge issues in the current work is the scarce of water resources, and the serious pollution of water bodies enhance such situation, of which the non-point source pollution (NPSP) contributes the most significant portion. The NPSP topic received a lot of research interesting during the past several decades, and mathematical simulation approach of coupled water, sediment and pollutant serves as not only a way to understand the mechanism and processes of pollution, but an effective tool in basin management and environmental protection.
     The coupled processes of water, sediment and pollutant in watershed are dominated by geomorphological features. In this paper, a distributed hydrological model coupling water, sediment and pollutant at the catchment scale based on geomorphological features is developed, which named as GBHM-CWSP, after current GBHM model by Yang et al. (1997). The GBHM is used to simulate hydrological process, and the other processes including erosion over hillslope, sediment routing in stream, pollutant discharge between soil and runoff inter-face, pollutant transport and transformation in soil profile and in stream, are all coupled in this integrated model. In GBHM-CWSP model, the physically based equations are used to describe most aspects of water, sediment and pollutant. Moreover, geomorphological similar elements are used as discretization and simulation units based on DEM, which make the computation more rapidly and effective than regular division as grid cells.
     The characteristics of sediment yield in rocky mountain area is greatly different from that in loess area, because the sediment quantity is limited, which may cause a phenomenon of“sediment exhaust”after a heavy storm event, and not accumulated enough for erosion in the next storm. Therefore the“potential of erosion quantity”is used to control the actual erosion in hillslope unit and in stream. By this way the simulation result will be more precise. In the simulation module of pollutant movement in hillslope unit, an exchange function between water soil and runoff is constructed to depict the solute discharge from soil to runoff at the soil-water interface during rainfall-runoff. The convection- dispersion equation (CDE) is adopted to describe the solute transportation on the soil profile. The combining of mechanic equations in large-scale basin model enhance the physical basis.
     The Chaobai river basin, located in the upstream of Miyun reservoir, is chosen as case study area in this paper. Based on the DEM, landuse, soil data, etc., the GBHM-CWSP model is build up. After the calibration and validation by observed data of runoff, sediment, nitrogen and phosphorus loadings from 2000 to 2005 at two stations: Xiahui and Zhangjiafen, this integrated model is applied to analyze and identify the effects of changes of landuse-cover and climate factors on runoff, sediment, nitrogen and phosphorus loadings. By scenario analysis, the contributions of landuse change and climate factors change are evaluated. The results show that the change of climate factors has predominant contribution to runoff and sediment changes, both more than 90%. While for nitrogen and phosphorus, the effect of climate factors changes is decreased as 51% and 70% respectively. Especially for nitrogen, the farmland is the major source of nutrient loss, thus landuse changes have significant effects on nitrogen loadings. Using GBHM-CWSP model and IPCC data, an attempt of prediction of runoff, sediment and pollutant loadings in the future in Chaobai river basin is performed.
引文
[1]白占国. 1993.从地貌空间结构特征预测土壤侵蚀的研究—以神府、东胜煤田区为例.中国水土保持. 12: 23-25
    [2]鲍全盛,曹利军,王华东. 1997.密云水库非点源污染负荷评价研究.水资源保护. (1):8-11
    [3]曹银真. 1983.黄土地区梁峁坡的坡地特征与土壤侵蚀.地理研究. 2(3): 19-29
    [4]陈军锋,李秀彬,张明. 2004.模型模拟梭磨河流域气候波动和土地覆被变化对流域水文的影响.中国科学D辑:地球科学. 34(7): 668-674
    [5]陈卫. 2007.中国未来人口发展趋势:2005~2050年.人口研究. 30(4): 93-95
    [6]陈一兵, K.O.Trouwbors, 1997.土壤侵蚀建模中ANSWERS及地理信息系统ARC/INFOR的应用研究,土壤侵蚀与水土保持学报, 3(2):1-13
    [7]程炯,林锡奎,吴志峰等. 2006.非点源污染模型研究进展.生态环境. 15(3): 641-644
    [8]崔灵周,李占斌,郭彦彪,等. 2007.基于分形信息维数的流域地貌形态与侵蚀产沙关系.土壤学报. 44(2): 197-203
    [9]邓雄. 2007.农业非点源污染的研究进展、存在的问题及发展.中山大学学报:自然科学版. 46(Sup.2): 244-247
    [10]董文福,李秀彬.2006.潮白河密云水库流域水资源问题分析.环境科学与技术. 29(2):58-61
    [11]窦培谦,王晓燕,王丽华, 2006.非点源污染中氮磷迁移转化机理研究进展.首都师范大学学报:自然科学版. 27(2): 93-98
    [12]方海燕,蔡强国,陈浩,等. 2007.黄土丘陵沟壑区岔巴沟下游泥沙传输时间尺度动态研究.地理科学进展. 26(5): 77-87
    [13]冯绍元. 1993.排水条件下饱和非饱和土壤中氮素运移与转化规律的研究[博士学位论文].武汉:武汉水利水电大学
    [14]郭鸿鹏,朱静雅,杨印生. 2008.农业非点源污染防治技术的研究现状及进展.农业工程学报. 24(4): 290-295
    [15]郝芳华, 2007.非点源污染模型——理论方法与应用.北京:中国环境出版社
    [16]郝芳华,孙峰,张建永. 2002.官厅水库流域非点源污染研究进展.地学前缘. 9(2): 385-386
    [17]贺宝根,周乃晟,胡雪峰,等. 2001农田降雨径流污染模型探讨——以上海郊区农田氮素污染模型为例.长江流域资源与环境. 10(2):159-166
    [18]侯爱中. 2006.北京市奥林匹克公园降雨径流模拟分析[硕士学位论文].北京:清华大学
    [19]侯建才,李占斌,李勉,等. 2007.小流域地貌部位和土地利用类型对侵蚀产沙影响的137Cs法研究.水土保持学报. 21(2): 36-39
    [20]户作亮. 2007.首都水资源可持续利用规划实施效果与问题研究.海河水利. 3: 1-3
    [21]黄国勤,王兴祥,钱海燕等. 2004.施用化肥对农业生态环境的负面影响及对策.生态环境. 13(4): 656-661
    [22]黄虹,邹长伟,陈新庚. 2004.中国非点源污染研究评述.生态环境. 13(2): 255-257
    [23]黄满湘,章申,张国梁,等. 2003.北京地区农田氮素养分随地表径流流失机理.地理学报. 58: 147~154
    [24]黄云凤,张珞平,洪华生,等. 2006.小流域氮流失特征及其影响因素.水利学报. 37(7): 801-812
    [25]贾仰文,王浩,倪广恒等. 2005.分布式流域水文模型原理与实践.北京:中国水利水电出版社
    [26]姜桂华. 2004.铵态氮在土壤中吸附性能探讨.长安大学学报:建筑与环境科学版. 21(2): 32-35.
    [27]蒋晓辉. 2000.滇池面源污染及其综合治理.云南环境科学. 19(4): 33-34
    [28]金卫斌,李百炼. 2008.流域尺度的景观-水质模型研究进展.科技导报. 26(7): 72-77
    [29]康玲玲,朱小勇,王云璋,等. 1999.不同雨强条件下黄土性土壤养分流失规律研究.土壤学报. 36: 536~543
    [30] M.J.柯克比, R.P.C.摩根编著,王占礼等译. 1987.土壤侵蚀.北京:水利电力出版社
    [31]雷志栋,杨诗秀,谢森传. 1988.土壤水动力学.北京:清华大学出版社
    [32]李怀恩,沈晋, 1996.非点源污染数学模型.西北工业大学出版社
    [33]李怀恩,沈晋,刘玉生. 1997.流域非点源污染模型的建立与应用实例.环境科学学报. 17(2):141-147
    [34]李利生. 2003.密云水库流域下游营养元素流失入库规律研究[硕士学位论文].北京:北京工业大学
    [35]李勉,李占斌,刘普灵. 2002.中国土壤侵蚀定量研究进展.水土保持研究. 9(3): 243-248
    [36]李炜主编. 1999.环境水力学进展.湖北:武汉水利电力大学出版社. 238~249
    [37]李子君,李秀彬. 2008a.水利水保措施对潮河流域年径流量的影响——基于经验统计模型的评估.地理学报. 63(9): 958-968
    [38]李子君,李秀彬,朱会义,等. 2008b.降水变化与人类活动对密云水库入库泥沙量的影响.北京林业大学学报. 30(1): 101-107
    [39]刘昌明,李道峰,田英,等. 2003.基于DEM的分布式水文模型在大尺度流域应用研究.地理科学进展. 22(5):437-447
    [40]柳丽英,范荣生. 1997.侵蚀产沙系统模型概述.水土保持通报. 17(2):53-58.
    [41]吕唤春, 2002.千岛湖流域农业非点源污染及其生态效应的研究[博士学位论文].浙江:浙江大学
    [42]吕耀. 1998.农业生态系统中氮素造成的非点源污染.农业环境保护. 17(1): 35-39
    [43]梅立永,赵智杰,黄钱,等. 2007.小流域非点源污染模拟与仿真研究——以HSPF模型在西丽水库流域应用为例.农业环境科学学报. 26(1):64- 70
    [44]门可佩,曾卫. 2004.中国未来50年人口发展预测研究.数量经济技术经济研究. 3:12-17
    [45]庞靖鹏. 2007.非点源污染分布式模拟——以密云水库水源地保护为例[博士学位论文].北京:北京师范大学
    [46]钱易. 2001.对北京水资源保护战略的思考.北京水利. 6 : 1-3
    [47]清华大学水力学教研组.1980.水力学(下册).北京:人民教育出版社
    [48]阮晓红, 2002.非点源污染负荷的水环境影响及其定量化方法研究[博士学位论文].江苏:河海大学
    [49]邵明安,张兴昌. 2001.坡面土壤养分与降雨、径流的相互作用机理及模型.世界科技研究与发展. 23(2):7-12
    [50]沈冰,王全九,李怀恩,等. 1995.土壤中农用化合物随地表径流迁移研究述评.水土保持通报. 15(3): 1-8
    [51]苏保林,王建平,贾海峰,等. 2006.密云水库流域非点源模型系统.清华大学学报(自然科学版). 46(3): 355-360
    [52]孙福宝. 2007.基于Budyko水热耦合平衡假设的流域蒸散发研究[博士学位论文].北京:清华大学
    [53]孙宁,李秀彬,冉圣洪,等. 2007.潮河上游降水-径流关系演变及人类活动的影响分析.地理科学进展. 26(5): 41-47
    [54]唐莉华. 2002.分布式小流域产汇流及产输沙模型研究[硕士学位论文].北京:清华大学
    [55]汤立群,陈国祥,蔡名扬. 1990.黄土丘陵区小流域产沙数学模型.河海大学学报(自然科学版). 18(6): 6-10
    [56]汤立群,陈国祥. 1997.小流域产流产沙动力学模型.水动力学研究进展. 12(2): 164-174
    [57]田霄鸿,李生秀,王朝辉. 2000.冬小麦等4种作物对铵、硝态氮的吸收能力.西北植物学报. 20(1):29-37
    [58]万超. 2003.潘家口水库上游流域面源污染负荷的模拟研究[硕士学位论文].北京:清华大学
    [59]王飞儿,吕唤春,陈英旭. 2003.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测.农业工程学报. 19(6): 281-284
    [60]王纲胜,夏军,万东晖,等. 2006.气候变化及人类活动影响下的潮白河月水量平衡模拟.自然资源学报. 21(1): 86-91
    [61]王光谦,胡春红主编. 2006.泥沙研究进展.北京:中国水利水电出版社
    [62]王鹏, 2006.基于数字流域系统的平原河网区非点源污染模型研究与应[博士学位论文].江苏:河海大学
    [63]王全九,沈晋,王文焰,等. 1993.降雨条件下黄土坡面溶质随地表径流迁移实验研究.水土保持学报. 7(1):11~17, 52
    [64]王全九,王文焰,沈晋. 1994.黄土坡面溶质随径流迁移相应函数模型.水利学报, 11: 18-21
    [65]王全九. 2005.土壤溶质迁移理论研究进展,灌溉排水学报. 24(3):77-80
    [66]王少丽,王兴奎,许迪. 2007.农业非点源污染预测模型研究进展.农业工程学报. 23(5): 265-271
    [67]王晓燕,高焕文,李洪文,等. 2000.保护性耕作对农田地表径流与土壤水蚀影响的试验研究.农业工程学报. 16(3):66~69
    [68]王晓燕,王晓峰,汪清平,等. 2004.北京密云水库小流域非点源污染负荷估算.地理科学. 24(2):228-231
    [69]王亚娟,赵志新,吴海山. 2004.白河堡水库向密云水库调水分析.北京水利. 3: 44-46
    [70]王燕生主编. 1992.工程水文学.北京:中国水利水电出版社
    [71]王永胜, 2000.关中抽渭灌区农田非点源污染及水源保护研究[博士学位论文].陕西:西安建筑科技大学
    [72]王中根,刘昌明,黄友波. 2003. SWAT模型的原理、结构及应用研究.地理科学进展. 22(1):79-86
    [73]王宗明,张柏,宋开山等. 2007.农业非点源污染国内外研究进展.中国农学通报. 123(9): 468-472
    [74]邬伦,李佩武. 1996.降雨—产流过程与氮、磷流失特征研究.环境科学学报. 16(1): 111-116
    [75]谢红梅,朱波, 2004.农业生态系统中N素在土水界面的迁移转化研究进展.中国农业生态学报, 12(4):122-125
    [76]邢可霞,郭怀成,孙延枫,等. 2004.基于HSPF模型的滇池流域非点源污染模拟.中国环境科学. 24(2): 229-232
    [77]徐明岗,姚其华,吕加珑. 2000.土壤养分运移.北京:中国农业科技出版社
    [78]许其功,刘鸿亮,沈珍瑶. 2007.三峡库区典型小流域氮磷流失特征.环境科学学报. 27(2): 326-331
    [79]许继军. 2007.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学
    [80]许炯心,孙季. 2003.近50年来降水变化和人类活动对黄河入海径流通量的影响.水科学进展. 14(6): 690-695
    [81]薛金凤,夏军,马彦涛, 2002.非点源污染预测模型研究进展,水科学进展. 13(5): 649-656.
    [82]薛金凤. 2003.流域分布式非点源污染水动力学模型研究[博士学位论文].武汉:武汉大学
    [83]晏维金,亢宇,章申,等. 2000.磷在土壤中的解吸动力学.中国环境科学. 20(2): 97-101
    [84]杨大文,李翀,倪广恒,等. 2004.分布式水文模型在黄河流域的应用.地理学报. 59(1):143-154.
    [85]杨大文,南田哲也. 2005.水资源综合评价模型及其在黄河流域的应用.北京:中国水利水电出版社
    [86]杨苏树,倪喜云, 1999.大理州洱海流域农业非点源污染现状,农业环境与发展, (2):43-44
    [87]余炜敏, 2005.三峡库区农业非点源污染及其模型模拟研究[博士学位论文].重庆:西南农业大学
    [88]于涛,孟伟, Edwin Ongley. 2008.我国非点源污染负荷研究中的问题探讨.环境科学学报. 28(3): 401-407
    [89]曾思育,杜鹏飞,陈吉宁. 2006.流域污染负荷模型的比较研究.水科学进展. 17(1): 108-111
    [90]张超. 2008.非点源污染模型研究及其在香溪河流域的应用[博士学位论文].北京:清华大学
    [91]张荣保,姚琪,计勇,等. 2005.太湖地区典型小流域非点源污染物流失规律——以宜兴梅林小流域为例.长江流域资源与环境. 14(1):94-98
    [92]张水龙,庄季屏. 1998.农业非点源污染研究现状与发展趋势.生态学杂志. 17(6) : 51~55
    [93]张维理,武淑霞,冀宏杰,等. 2004.中国农业面源污染形势估计及控制对策I . 21世纪初期中国农业面源污染的形势估计中国农业科学. 37(7):1008-1017
    [94]张兴昌,邵明安, 2000.坡地土壤氮素与降雨、径流的相互作用机理及模型.地理科学进展. 19(2):128-135
    [95]张亚丽,李怀恩,张兴昌,等. 2007.降雨-径流-土壤混合层深度研究进展.农业工程学报. 23(9): 283-290
    [96]张玉斌,郑粉莉. 2004. ANSWERS模型及其应用.水土保持研究. 11(4):165-169
    [97]张瑜芳,等. 1997.排水农田中氮素转化运移和流失.武汉:中国地质大学出版社
    [98]朱萱,鲁纪行,边金钟,等, 1985.农田径流非点源污染特征及负荷定量化方法探讨.环境科学. 6(5):6-11
    [99] Agrawal G.D., Lunkad S K. Malkhed T. 1999. Diffuse agricultural nitrate pollution of groundwater in India. Water Sci Technol. 29(3):67-75
    [100] A. Porporato, P. D’Odorico, F. Laio, I. Rodriguez-Iturbe. 2003. Hydrologic controls on soil carbon and nitrogen cycles, I. Modeling scheme, Advances in Water Resources. 26: 45-58
    [101] Arnold J.G., Williams J.R., Srinivasan R, et al. 1998. Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association. 34(1):73-89
    [102] Bicknell B.R., Imhoff J.C., Kittle J.L Jr. et al. 1993. Hydrologic simulation program- Fortran: User's manual for release 10. Athens: Environmental Research Laboratory, USEPA
    [103] Beasley D B, HugginsLF, Monke E J. 1980. ANSWERS: a model for watershed planning. Trans of the ASAE. 23(4):938-944
    [104] Beven K J, Kirkby M J. 1979. A physically based, variable contributing area model of basin hydrology. Hydorl. Sci., Bull. 24(1):43-69.
    [105] Bin Gao, M.Todd Walter, Tammo S. Steenhuis, et. al. 2004. Rainfall induced chemical transport from soil to runoff: theory and experiments. Journal of hydrology. 295:291-304
    [106] Bin Gao, M.T. Walter, T.S. Steenhuis, et. al. 2005. Investigating raindrop effects on transport of sediment and non-sorbed chemicals from soil to surface runoff. Journal of Hydrology. 308:313-320
    [107] B.K. Koo, P.E. O’Connell. 2006a. An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 1. Framework and methodology. Science of the Total Environment. 359: 1-6
    [108] B.K. Koo, P.E. O’Connell. 2006b. An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England. Science of the Total Environment 358: 1– 20
    [109] Boers PCM. 1996. Nutrient emissions from agriculture in the Netherlands: causes and remedies. Water Sci. Technol. (G.B.). 33(1):183-190
    [110] Borah D.K., M.Bera. 2003. Watershed-Scale Hydrologic and Nonpoint-Source Pollution Midels: Review of Mathematical Bases. Transactions of the ASAE. 46(6):1553-1566
    [111] Carlos J. Ocampo, Murugesu Sivapalan, Carolyn E. Oldham. 2006. Field exploration of coupled hydrological and biogeochemical catchment responses and a unifying perceptual model. Advances in Water Resources. 29: 161-180
    [112] Eric Gayne, Jean-Pierre Villeneuve, Michel Desbordes. 1998. Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model. Journal of hydrology. 210(1-4):38-50
    [113] E. Zehe, T. Maurer, J. Ihringer, et al. 2001. Model water flow and mass transport in a loess catchment. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26(7-8): 487-507
    [114] Feng Fang. 2002. Phosphorus retention by soil and suspended sediment in the Minnesota River basin (Ph.D Dissertation). US: University of Minnesota
    [115] Foster G R, Meyer L D. 1972. Transport of soil particles by shallow flow, Trans. ASAE, 15:99-102
    [116] Gabriel G. Vazquez-amabile, 2005. Hydrologic and Non-point source pollution risk analysis on agricultural watersheds (Ph.D thesis). USA: Purdue University
    [117] Georg Hormann, Andreas Horn, Nicola Fohrer. 2005. The evaluation of land- use options in mesoscale catchments prospects and limitations of eco-hydrologi- cal models. Ecological Modelling. 187: 3- 14
    [118] Hutson J L,Wagenet R J. 1992. LEACHM:Leaching estimation and chemistry and model. A process-based model of water and solute movement, transformation,plant uptake and chemical reactions in the unsaturated zone. SCAS Research Series. 92-3.New York: Cornell University, Ithaca, NY
    [119] James B. Shanley, Carol Kendall, Thor E. Smith. 2002. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA. Hydrological Processes. 16(3): 589-609
    [120] J. Davenport, M. Silgram, J. S. Robinson, et al. 2003. The use of earth observation techniques to improve catchment-scale pollution predictions. Physics and Chemistry of the Earth. Parts A/B/C. 28(33-36): 1365-1376
    [121] Ji-Hong Jeon, Chun G. Yoon, Anthony S. Donigian Jr. 2007. Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions. Agricultural water management. 90 : 75-86
    [122] P. G. Whitehead, P. J. Johnes, D. Butterfield. 2002. Steady state and dynamic modeling of Nitrogen in the river Kennet: impacts of land use change since the 1930s. The Science of Total Environment. 282-283: 417-434.
    [123] Kirkby M J. 1978. Hillslope hydrology. New York: Wiley-Interscience.
    [124] Knisel W.G. 1980. CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems. USDA Conservation Research Report No.26
    [125] Kronvang B. 1996. Diffuse nutrient losses in denmark. Water Sci Technol. 33(1):81-88.
    [126] L.F. Leon Vizcaino. 1999. Integral System for Nonpoint Source Pollution Modeling in Surface Waters [Ph.D dissertation]. Canada: University of Waterloo
    [127] L.F. León, E.D. SOULIS, N. KOUWEN, et. al. 2001. Non-point Source Pollution: a Distributed water Quality Modeling Approach. Water Resource. 35(4): 997-1007.
    [128] Lu R-K, et al. 1998. Fertilization and Princinples of Soil and Plant Nutrition . Beijing: Chemical Industry Press.
    [129] M.Todd Walter, Bin Gao, J.-Yves Parlange, 2007. Modeling soil solute release into runoff with infiltration. Journal of Hydrology. 347: 430-437
    [130] Min Yan, Rene Kahawita. 2007. Simulating the evolution of non-point source pollutants in a shallow water environment, Chemosphere. 67: 879-885
    [131] Mohammad N. Almasri, Jagath J. Kaluarachchi. 2007. Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology. 343:211-229
    [132] Naden P. 1992. Spatial variability in flood estimation for large catchments: the exploitation of channel network structure. Hydrological Science Journal. 37:53-71.
    [133] Novotny V, Olem H. 1993. Water Quality: Prevention, Identification and Management of Diffuse Pollution. New York: Van Nostrand Reinhold Company
    [134] Paul C.M. Boers. 1996. Nutrient emissions from agriculture in the netherlands, causes and remedies. Water Sci Tech. 33(1):183-190.
    [135] Paul F. Hudson. 2003. Event sequence and sediment exhaustion in the lower Panuco Basin, Mexico. CATENA. 52:57-76
    [136] Prakash Basnyat, L. D. Teeter, B. G. Lockaby, et. al. 2000. The use of remote sensing and GIS in watershed level analysis of Non-point source pollution problem Forest Ecology and Management. 128(1-2):65-73
    [137] P.Srivastava, K.W.Migliaccio, J. Simunek. 2007. Landscape models for simulating water quality at point, field, and watershed scales. Trans ASAB. 50(5): 1683-1693
    [138] R.C. Ferrier, P.G. Whitehead, C. Sefton, et al. 1995. Modelling impacts of land use change and climate change on nitrate-nitrogen in the river DON, NORTH EAST SCOTLAND. Wat. Res. 29(8): 1950-1956
    [139] Refsgaard J.C., Storm B. 1995. MIKE SHE In:Vijay P.Singh.Computer models of watershed hydrology. highlands ranch: Water Resources Publications,1995:809-846
    [140] Rodriguez-Iturbe I, Gonzalez-Sanabria M, Bras R L. 1982. A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resources Research. 18(4):877-886.
    [141] Robinson J, Sivapalan M, Snell J. 1995. On the relative roles of hillslope process, channel routing, and network geomorphology in the hydrologic response of natural catchments. Water Resources Research. 31(12):3089-3101.
    [142] S.L. Neitsch, J.G. Arnold, J.R. Kiniry, et al. 2001. Soil and Water Assessment Tool, User’s Manual: http://www.brc.tamus.edu/swat/soft_model.html
    [143] Snyder, Woolhiser. 1985. Effect of infiltration on chemical transport into overland flow. Trans of ASAE. 28:1457-1470
    [144] Susanna T. Y. Tong, Wenli Chen. 2002. Modeling the relationship between land use and surface water quality. Journal of Environmental Management. 66(4):377-393
    [145] Troutman B, Karlinger M. 1985. Unit hydrograph approximations assuming linear flow through topographically random channel networks. Water Resource Research. 21(5):743-754
    [146] The IPCC Data Distribution Centre, http://www.ipcc-data.org/ar4/model-NIES- MIROC3_2-HI.html
    [147] USEPA. 2007. Better Assessment Science Integration Point and Nonpoint Sources(BASINS). Washington, D.C.: U.S.EPA. Available at: www.epa.gov/watersci -ence/basins/.Accessed
    [148] V. N. Sharda, Sita Ram Singh,et al.. 1994a. A finite element model for simulating runoff and soil erosion from mechanically treated agricultural lands:2. Field validation and applications. Water Resource Research. 30(7): 2299-2309
    [149] V. N. Sharda, Sita Ram Singh. 1994b. A finite element model for simulating runoff and soil erosion from mechanically treated agricultural lands: 1. Governing equations and solutions. Water Resource Research. 30(7): 2287-2298
    [150] Valentina Krysanova, Dirk-Ingmar Müller-Wohlfeil , Alfred Becker. 1998. Development and test of a spatially distributed hydrological/water quality model for mesoscale watershed. Ecological Modelling. 106(2-3): 261-289
    [151] Wallach R. 1990. A physical based model for predicting solute transfer from soil solution to rain-induced runoff water. Water Resources Research, 26(9):2119-2126
    [152] Williams J.R., Jones C.A., Dyke P.A. 1984. A modeling approach to determining the relationship between erosion and soil productivity. Transactions of the American Society of Agricultural Engineers. 27(1):129-144
    [153] Xu Z.X., Ito K., Schultz G.A., et al. 2001. Integrated hydrologic modeling and GIS in water resources management. Journal of Computing in Civil Engineering. 15(3):217-223
    [154] Y. Chu, C. Salles, F. Cernesson, et al. 2008. Nutrient load modelling during floods in intermittent rivers: An operational approach. Environmental Modelling & Software. 23: 768-781
    [155] Yalin, Y.S. 1963. An expression for bed load transportation. J. Hydraul. Div. Am. Soc. Civ. Eng. 89(HY3):221-250
    [156] Yang D, Herath S, Musiake K. 1997. Analysis of geomorphologic properties extracted from DEMs for hydrological modeling. Annual Journal of Hydraulic Engineering, JSCE. 41:105-110.
    [157] Yang D, Herath S, Musiake K. 1998a. Development of a geomorphology-based hydrological model for large catchments. Annual Journal of Hydraulic Engineering, JSCE. 42:169-174.
    [158] Yang D. 1998b. Distributed hydrological model using hillslope discretization based on catchment area function development and applications [Thesis for Degree of Doctor of Engineering]. Japan: University of Tokyo
    [159] Yang D, Musiake K, Kanae S, et al. 2000. Use of the Pfafstetter basin numbering system in hydrological modeling. Proceedings of 2000 Annual Conference. Japan Society of Hydrology and Water Resources
    [160] Yang D, Kanae S, Oki T, Musiake K. 2001. Expanding the distributed hydrological modeling to continental scale. IAHS Publication. 270:125-134
    [161] Yang D, Herath S, Musiake K. 2002. Hillslope-based hydrological model using catchment area and width function. Hydrological Sciences Journal. 47:49-65
    [162] Yang D, Koike T, Tanizawa H. 2004. Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan. Hydrological Processes. 18: 3119-3132
    [163] Young R.A., Onstad C.A., Bosch D.D, et al. 1987. AGNPS: Agricultural non- point source pollution model-a watershed analysis tool. USDA Conservation Research Report. 35:1-80
    [164] Young R.A., Onstad, C.A., Bosch, D.D., 1995. AGNPS: an agricultural nonpoint source model. In: Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. WRP, Highlands Ranch

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700