用户名: 密码: 验证码:
人类灵长类特异锌指蛋白ZNF480在肌生成中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵长类特异的KRAB锌指基因约占人类基因组KRAB锌指基因的30%。目前国际上有关灵长类特异锌指基因的功能知之甚少。我们选择锌指基因ZNF480为模型研究灵长类特异锌指蛋白的功能。
     ZNF480基因在肌肉和心脏组织中高表达,提示该基因可能与肌肉和心脏组织的发育有关。半定量RT-PCR和western blot实验证明,在诱导的C2C12稳定转染细胞的肌分化过程中,ZNF480的mRNA和蛋白质水平持续上调,说明ZNF480与肌分化过程密切相关。
     为了从形态上检测ZNF480是否调控肌生成的过程,我们通过形态学和肌肉分化特异性抗体MHC对诱导分化的稳定系细胞进行免疫荧光检测。与载体过表达对照组比较,过表达ZNF480促进C2C12细胞形成更多的肌管和多核细胞,并且ZNF480稳转细胞的肌管和多核细胞随着分化过程的进行而逐步增多。
     Myf-5,myogenin,MyoD是bHLH生肌调节因子,而E47,E12则是普遍表达的bHLH蛋白。在肌分化过程中,MyoD和Myf5表达是决定多能性体节细胞定型为成肌细胞的关键步骤,myogenin在成肌细胞的终极分化中有重要作用。我们检测了ZNF480是否对这些基因进行调控。半定量RT-PCR和western blot实验证明,ZNF480能上调肌肉特异性bHLH转录因子和肌肉特异性基因MCK(肌肉激酶)的mRNA水平,以及MHC和myogenin的蛋白水平,说明ZNF480是通过调控bHLH和MCK促进肌分化。同时,ZNF480过表达的C2C12稳定系分化过程中,p21的蛋白水平明显上调,说明ZNF480通过激活p21使细胞退出细胞周期而进入细胞分化。
     利用荧光素酶活性实验,我们检测到ZNF480在NIH3T3细胞中并不能促进E12或MyoD对MCK启动子(MCK4800和4RTK)活性的调节,但ZNF480能与E12/MyoD共转时增强MCK启动子的活性,说明ZNF480是通过与E12/MyoD协同调节MCK启动子的活性。
     为了进一步检测ZNF480是否结合到MCK和myogenin的启动子上对其进行转录调控,我们利用EMSA实验,证明了ZNF480不能直接结合到MCK启动子上,但是能够与E12/MyoD形成蛋白复合体结合到MCK的启动子区域。同时,EMSA实验证明ZNF480能够直接结合到myogenin的启动子区域。这些结果表明ZNF480通过形成蛋白复合体或直接结合的方式来调节MCK和myogenin的启动子活性,从而参与肌肉分化的调控过程。
     综上所述,灵长类特异人类锌指蛋白ZNF480能够促进肌管发生过程,通过调节肌生成调节因子Myf-5,MyoD和myogenin以及肌肉特异性基因MCK来调控肌生成。
Primate-specific KRAB zinc finger proteins account for at least 30% of KRAB zinc finger proteins in the whole human genome. While little related report regards to functional role of primate-specific zinc finger proteins has been published. Therefore, we choose a primate-specific gene ZNF480 as a model to investigate the potential role of primate-specific zinc finger proteins.
     ZNF480 is highly expressed in muscle and heart tissues, indicating that it may be involved in development of muscle and heart tissues. Half-quantitative RT-PCR and western blot suggest that mRNA and protein levels of ZNF480 are significantly upregulated during stable transfected C2C12 myogenesis, which suggests that ZNF480 may be involved in myogenesis.
     To investigate whether ZNF480 can regulate myogenesis in morphologic, we examined the information of myotube via morphologic observation and immunofluorescence analysis by muscle-specific antibody MHC. Compared with control group, overexpression of ZNF480 can promote the formation of myotubes and multi-nucleus cells, and the numbers of myotubes and multi-nucleus have been increased following the process of myogenesis.
     Myf-5, myogenin and MyoD are bHLH transcriptional factors involved in myogenesis. E47 and E12 are bHLH transcriptional factors without tissue-specific. During myogenesis, Myf-5 and MyoD are key genes whose expression will determine whether mesodermal progenitor turn to myoblast, while myogenin plays pivotal role in terminal differentiation of myoblast. Therefore, we examined the possibility whether ZNF480 can regulate these genes. Half-quantitative RT-PCR and western blot show that ZNF480 can upregulate mRNA level of muscle-specific bHLH transcriptional factor and muscle-specific gene MCK, and the protein levels of MHC and myogenin, which in turn documents that ZNF480 promotes myogenesis through regulating bHLH and MCK. Moreover, Western blot suggests that the protein level of p21 is upregulated obviously during cell myogenesis of overexpression of ZNF480. It indicates that ZNF480 cause cell cycle exiting and cell differentiation by upregulating the level of p21 protein.
     We performed luciferase activity assays which show that over-expression of ZNF480 in NIH3T3 cell can not enhance the activities of E12 or MyoD on MCK promoter, but ZNF480 enhances the activites of MCK promoters (MCK4800 and 4RTK) when cotransfected with E12/MyoD. It suggests that ZNF480 promotes the ability of E12/MyoD to transactivate MCK promoter activity.
     To probe whether ZNF480 can bind to the promoters of MCK and myogenin and regulate their transcription, we performed EMSA assay. The results show that ZNF480 can not bind to MCK promote region alone but it does through forming protein complex with E12/MyoD. At the same time, EMSA assay showed that ZNF480 can directly bind to the promoter region of myogenin. These results document that ZNF480 regulate transcriptional activity of MCK and myogenin by forming protein complex or binding directly to regulate myogenesis.
     To sum up, primate-specific human zinc finger protein ZNF480 may enhance myogenesis and play an important role in myogenesis through regulation of myogenic regulation factors Myf-5, MyoD and myogenin and muscle specific gene MCK
引文
[1] Benjamin, L. Gene VIII. 北京:科学出版社, 2005.707-730.
    
    [2] A. Shilatifard, R.C. Conaway, and J.W. Conaway, The RNA polymerase II elongation complex. Annu. Rev. Biochem, 2003, 72:693-715.
    [3] J.D. Helmann, and M. Chamberlin, Structure and function of bacterial sigma factors. Annu. Rev. Biochem, 1988,57:839-872.
    [4] B. Lemon and R. Tjian, Orchestrated response: a symphony of transcription factors forgene control. Genes Dev, 2000,14:2551-2569.
    [5] J.L. Workman and R.G. Roeder, Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell, 1987, 51:613-622.
    [6] T. Jenuwein and C.D. Allis, Translating the histone code. Science, 2001, 293: 1074-1080.
    [7] G.Ranganayakulu, D.A. Elliott, R.P Harvey, E.N.Olson, Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development, 1998,125:3037-3048.
    [8] M. Ptashne, How eukaryotic transcriptional activators work. Nature, 1988, 335:683-689.
    [9] S.C. Harrison, A structural taxonomy of DNA-binding proteins. Nature, 1991,353:715-719.
    [10] C.T. Pabo and R.T. Sauer, Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem, 1992, 61:1053-1095.
    
    [11] M.J. Tsai and B.W. O'Malley, Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem, 1994, 63: 451-486.
    
    [12] N.P. Pavletich and C.O. Pabo, Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 21 A. Science, 1991, 252:809-817.
    [13] R. M. Evans, The steroid and thyroid hormone receptor superfamily. Science, 1988, 240:889-895.
    [14] C.R. Vinson, P.B. Sigler, and S. L. McKnight, Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 1989, 246: 911-916.
    
    [15] W.J. Gehring et al. Homeodomain-DNA recognition. Cell, 1994, 78:211-223.
    [16] H. Weintraub, The MyoD gene family: nodal point during specification of the muscle cell lineage. Science, 1991, 251:761-766.
    [17] C. Murre, P.S. McCaw, and D. Baltimore, A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD,and myc proteins. Cell, 1989,56:777-783.
    [18] J.M. Matthews, M.Sunde, Zinc fingers—folds for many occasions. IUBMB Life. Dec2002, 54(6):351-5.
    [19] A.S. McCarty, G. Kleiger, D. Eisenberg, S.T. Smale, Selective dimerization of a C2H2 zinc finger subfamily. Mol Cell. Feb2003, 11(2):459-70.
    [20] J. Kaczynski, T. Cook, R. Urrutia, Sp1- and Kruppel-like tran-scription factors. Genome Biol. 2003, 4(2):206. Review.
     [21] E.J. Bellefroid, D.A. Poncelet, P.J. Lecocq, O. Relevant, and J.A. Martial, The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Natl. Acad. Sci. USA, 1991, 88:3608-3612.
    [22] J.C. Venter, et al.. The sequence of the human genome. Science, 2001. 291:1304-1351.
    [23] O. Albagli, P. Dhordain, C. Deweindt, G.Lecocq, and D. Leprince, The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. 1995, 6:1193-1198.
    [24] E.J. Bellefroid, D.A. Poncelet, P.J. Lecocq, O. Revelant, and J.A. Artial, The evolutionary conserved kruppel-associated box domain defines a subfamil y of eukaryotic multifingerd proteins. Proc. Natl. Acad. Sci., 1991, 88:3608-3612.
    [25] S.R. Dawson, D.L. Turner, H. Weintraub, and S.M. Parkhurst, Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Mol Cell. Biol. 1995,15:6923-6931.
    [26] H.L. Grimes, C.B. Gilks, T.O. Chan, S. Porter, and P.N. Tsichlis, The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Proc. Natl. Acad. Sci. U.S.A. 1996, 93: 14569-14573.
    [27] A.J. Williams, L.M. Khachigian, T. Shows, and T. Collins, Isolation and characterization of a novel zinc-finger protein with transcriptional repressor activity. J. Biol Chem. 1995, 270:22143-22152.
    [28] J.R. Friedman, W.J. Fredericks, D.E. Jensen, D.W. Speicher, X.P. Huang, E.G Neilson, and F.J.III Rauscher, KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996, 10:2067-2078.
    [29] R.R. Beerli and C.F. Barbas, Engineering polydactyl zinc-finger transcription factors. Nature Biotechnology. 2002,135-141.
    [30] T. Barz, A. Hoffmann, et al., Peroxisome proliferator-activated receptor gamma is a Zac target gene mediating Zac antiproliferation. Cancer Res. 2006, 66(24):11975-82.
    [31] C.Y. Tian, L.Q. Zhang, F.C. He, Progress in the study of KRAB zinc finger protein. Yi Chuan. 2006,28(11):1451-6.
    [32] I.P. Nezis, D.J. Stravopodis, et al. Morphological irregularities and features of resistance to apoptosis in the dcp-1/pita double mutated egg chambers during Drosophila oogenesis. Cell Motil Cytoskeleton. 2005, 60(1): 14-23.
    [33] C. Huang, Y. Wang, D. Li, Y. Li, J. Luo, W. Yuan, Y. Ou, C. Zhu, Y. Zhang, Z. Wang, M. Liu, X. Wu. Inhibition of transcriptional activities of AP-1 and c-Jun by a new zinc finger protein ZNF394. Biochem Biophys Res Commun. 2004, 320(4):1298-305.
    [34] R Urrutia, KRAB-containing zinc-finger repressor proteins. Genome Biol. 2003, 4(10):231. Review.
    [35] Wu LC. ZAS: C2H2 zinc finger proteins involved in growth and development. Gene Expr. 2002.10(4): 137-52.
    [36] P.S. Freemont, I.M. Hanson, and J. Trowsdale, A novel cysteine-rich sequence motif. Cell 1991. 64:483-484.
    [37] A.J. Saurin, K.L. Borden, M.N. Boddy, and P.S. Freemont, Does this have a familiar RING? TrendsBiochem. Sci. 1996, 21:208-214.
    [38] K.L. Borden, RING domains: master builders of molecular scaffolds? J. Mol. Biol. 2000, 295:1103-111.
    [39] O. Albagli, P. Dhordain, C. Deweindt, G.Lococq, and D. Leprince, The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. 1995, 6:1193-1198 Dev. Biol. 1992,153:356-367.
    [40] E.J. Bellefroid, D.A. Poncelet, P.J. Lecoq, O. Revelant, and J.A. Martial, The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Natl. Acad. Sci. U. S. A. 1991, 88:3608-3612.
    [41] C. Kannemeier, R. Liao, P. Sun, The RING Finger Domain of MDM2 Is Essential for MDM2-mediated TGF-{beta} Resistance. Mol Biol Cell. 2007 Apr 11; [Epub ahead of print]
    [42] D.E. Wilcox, A.D. Schenk, B.M. Feldman, et al. Oxidation of zinc binding cysteine residues in transcription factor proteins [J]. Antioxidants & Redox Signaling, 2001,3(4):549-563.
    [43] J.F. Morris, R. Hromas, and F.J. Rauscher, Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol. Cell. Biol. 1994,14:1786-1795.
    [44] J.F. Morris, F.J. Rauscher, B. Davis, M. Klemsz, D. Xu, D. Tenen, and R. Hromas, The mye -loid zinc finger gene MZF-1 regulates the CD34 promoter in vitro. Blood 1995,186:3640-3647.
    [45] T.A. Sander, A.L. Haas, M.J. Peterson, and J.F. Morris. Identification of a novel SCAN box-related protein that interacts with MZF1B. J. Biol. Chem. 2000, 275:12857-12867.
    
    [46] C.C. Wang, C. Biben, L. Robb, F. Nassir, L. Barnett, N.O. Davidson, F. Koentgen, D. Tarlinton, R.P. Harvey, Homeodomain factor Nkx2-3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev Biol. 2000, 224: 152-167.
    
    [47] P.H. RICHARD, B. CHRISTINE, A.E. DAVID, Transcriptional control and pattern formation in the developing vertebrate heart: studies on nk-2 class homeodomain factors [J]. 1999.
    
    [48] W. Knochel,, A. Poting,, M. Koster, T. Baradi, W. Nietfeld, T. Bouwmeester, and T. Pieler, Evolutionary conserved modules associated with zinc fingers in Xenopus laevis. Proc. Natl. Acad. Sci. U. S. A. 1989,18:6097-6100.
    
    [49] A. Redkar, M. Montgomery, J. Litvin, Fate map of early avian cardiac progenitor cells. Development. 2001,128:2269-2279.
    
    [50] X.W. Yang, C. Wynder, M.L. Doughty, and N. Heintz, BAC-mediated gene-dosage analysis reveals a role for Ziprol (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat. Genet. 1999,22:327-335.
    
    [51] H.L. Pi, Xiushan Wu et al. A novel SCAN/(Cys)2(His)2 zinc finger transcription factor ZNF323 in early human embryonic development. Biochemical and Biophysical Research Communications, 2002, 296:206-213.
    
    [52] C. Schumacher, H. Wang, C. Honer, W. Ding, J. Koehn, Q. Lawrence, C.M. Coulis, L.L. Wang, D. Ballinger, B.R. Bowen, and S. Wagner, The SCAN domain mediates selective oligomerization. J. Biol. Chem. 2000, 275:17173-17179.
    
    [53] S. Wagner,, M.A. Hess, P. Ormonde-Hanson, J. Malandro, H. Hu, M. Chen, R. Kehrer, M. Frodsham, C. Schumacher, M. Beluch, C. Honer, M. Skolnick, D. Ballinger, and B.R. Bowen, A broad role for the zinc finger protein ZNF202 in human lipid metabolism. J. Biol. Chem. 2000, 275:15685-15690.
    
    [54] E. Casademunt, B.D. Carter, I. Benzel, J.M. Frade, G. Dechant, and Y.A. Barde, The zinc finger protein NRIF interacts with the neutrophin receptor p75NTR and participates in programmed cell death. EMBO J.1999, 18:6050-6061.
    [55] D.D. Brown, The role of stable complexes that repress and activate eukaryotic genes. Cell, 1984, 37:359-365.
    [56] S. Dong, J. Zhu, A. Reid, P. Strutt, et al. Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of thepromyelocytic leukemia zinc finger-retinoic acid receptor-alpha fusion protein. Proc. Natl. Acad. Sci. USA. 1996, 93:3624-3629.
    [57] M.E. Hoatlin, Y. Zhi, H. Ball, K. Silvey, A. Melnick, S. Stone, and et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood. 1999,94:3737-3747.
    [58] A, Melnick, K.F. Ahmad, S. Arai, A. Polinger, and et al. In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/POZ domain reveals motifs and residues required for biological and transcriptional functions. Mol. Cell. Biol 2000, 20:6550-6567.
    [59] K.F. Ahmad, C.K. Engel, and GG Prive, Crystal structure of the BTB domain from PLZF. Proc. Natl. Acad. Sci. USA. 1998, 95:12123-12128.
    [60] K.L. Borden, P.S. Freemont, The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol, 1996, 6(3):395-401
     [61] M. Yokouchi, T. Kondo, A. Houghton, M. Bartkiewicz, W.C. Home, H. Zhang, A. Yoshimura, R. Baron, Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem, 1999,274(44):31707
    [62] F. Grignani, S. DeMatteis, C. Nervi, and et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promylocytic leukemia. Nature. 1998,391:815-818.
    [63] S.H. Hong, G.David, C.W. Wong, A. Dejean, and M.L. Privalsky, SMAT corepressor protein interacts with PLZF and with the PML-retinoic acid receptor alpha (PARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA. 1997, 95:9028-9033.
    [64] R.J. Lin, L. Nagy, S. Inoue, W. Shao, W.H. Miler, and R.M. Evans, Role of the histone deacetylase comp;ex in acute promyelocytic leukemia. Nature. 1998, 391:811-814.
    
    [65] C. Mark, M. Abrink, L. Hellman, Comparative analysis of KRAB zinc finger proteins in rodents and man: evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes. DNA Cell Biol, 1999,18:381-396.
    
    [66] Zhengfang Yi, Yongqing Li, Wenbin Ma, Dali Li, Chuanbing Zhu, Jian Luo, Yuequn Wang, Xinqiong Huang, Wuzhou Yuan, Mingyao Liu and Xiushan Wu, A novel KRAB zinc-finger protein, ZNF480, expresses in human heart and activates transcriptional activities of AP-1 and SRE, Biochemical and Biophysical Research Communication, 2004, 320, 409-415.
    
    [67] S.F. Konieczny, A.S. Baldwin and C.P. Emerson, Myogenic determination and differentiation in 10T1/2 cell lineages: evidence for a simple genetic regulatory system, Mol Cell Biol, 1988, 29:21-31.
    
    [68] J. Choi, M.L. Costa, C. Mermelstein, S. Chagas, S. Holtzer and H. Holtzer, MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigment epithelial cells into striated, mononucleated myoblasts and multinucleated myotubes, Proc Natl Acad Sci USA , 1990, 87:7988-7992.
    
    [69] R.L. Davis, H. Weintraub and A.B. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, 1987,51:987-1000.
    
    [70] H. Weintraub, S.J. Tapscott, R.L. Davis, M. J. Thayer, M.A. Adam and A.B. Lassar et al., Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD, Proc Natl Acad Sci USA, 1989, 86:5434-5438.
    
    [71] H. Weintraub, R.J. Davis, S.J. Tapscott, M.J. Thayer and M. Krause et al., The MyoD gene family: nodal point during specification of the muscle cell lineage, Science, 1991, 251:761-766.
    
    [72] T.K. Blackwell and H. Weintraub, Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection, Science, 1990, 250:1104-1110.
    [73] A.B. Lassar, J.N. Buskin, D. Lockshon, R.L. Davis, S. Apone and S.D. Hauschka et al., MyoD is a sequence-specific DNA-binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer, Cell, 1989,58 (5):823-831.
    [74] T. Braun, G. Buschhausen-Denker, E. Bober, E. Tannich and H.H. Arnold, A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts, EMBO J, 1989, 8:701-709.
    [75] D.G. Edmondson and E.N. Olson, A gene with homology to the myc similarity region of MyoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program, Genes Dev, 1989, 3: 628-640.
    [76] J.H. Miner and B. Wold, Herculin, a fourth member of the MyoD family of myogenic regulatory genes, Proc Natl Acad Sci USA, 1990, 87:1089-1093.
    [77] M. Buckingham, Skeletal muscle formation in vertebrates, Curr Opin Genet Dev, 2001, 11: 440-448.
    [78] M.A. Rudnicki, P.N. Schnegelsberg, R.H. Stead, T. Braun, H.H. Arnold and R. Jaenisch, MyoD or Myf5 is required for the formation of skeletal muscle, Cell, 1993,75:1351-1359.
    [79] B. Kablar, A. Asakura, K. Krastel, C. Ying, L. L. May and D. J. Goldhamer et al., MyoD and Myf5 define the specification of musculature of distinct embryonic origin, Biochern Cell Biol, 1998,76:1079-1091.
    [80] P. Hasty, A. Bradley, J.H. Morris, D.G. Edmondson, J.M. Venuti and E.N. Olson et al., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene, Nature, 1993, 364:501-506.
    
    [81] Y.K. Nabeshima, M. Hanaoka, M. Hayasaka, E. Esumi, S. Li and I. Nonaka, Myogenin gene disruption results in perinatal lethality because of severe muscle defect, Nature, 1993,364:532-535.
    [82] Y. Wang and R. Jaenisch, Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently, Development, 1997,124(13):2507-2513.
    
    [83] D.A. Bergstrom and S.J. Tapscott, Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family, Mol Cell Biol, 2001, 21(7): 2404-2412.
    [84] Z. Zhu and J.B. Miller, MRF4 can substitute for myogenin during early stages of myogenesis, Dev Dyn, 1997, 209:233-241.
    [85] V.M. Sumariwalla and W. H. Klein, Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells, Genesis, 2001, 30:239-249.
    [86] A. Myer, E.N. Olson and W.H. Klein, MyoD cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells, Dev Biol, 2001, 229:340-350.
    [87] L. Kassar-Duchossoy, B. Gayraud-Morel, D. Gomes, D. Rocancourt, M. Buckingham and V. Shinin et al., Mrf4 determines skeletal muscle identitiy in Myf5:MyoD double-mutant mice, Nature, 2004, 431: 466-471.
    [88] C. Chanoine, B.D. Gaspera and F. Charbonnier, Myogenic regulatory factors: redundant or specific functions? Lessons from Xenopus, Dev Dyn, 2004, 231:662-670.
    [89] A. Fujisawa-Sehara, Y. Nabeshima, T. Komiya, T. Uetsuki, A. Asakura and Y. Nabeshima, Differential trans-activation of muscle-specific regulatory elements including the myosin light chain box by chicken MyoD, myogenin, and MRF4,J Biol Chem, 1992,267(14):10031-10038.
    [90] K. E. Yutzey, S. J. Rhodes and S. F. Konieczny, Differential trans-activation associated with the muscle regulatory factors MyoD1, myogenin, and MRF4, Mol Cell Biol, 1990,10:3934-3944.
    [91] R. Benezra, R.L. Davis, D. Lockshon, D.L. Turner and H. Weintraub, The protein Id: a negative regulator of helix-loop-helix DNA-binding proteins, Cell, 1990, 61:49-59.
    [92] L.A. Neuhold and B. Wold, HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id, Cell, 1993,74:1033-1042.
    [93] D.B. Spicer, J. Rhee, W.L. Cheung and A.B. Lassar, Inhibition of myogenic bHLH and Mef2 transcription factors by the bHLH protein Twist, Science, 1996, 272:1476-1480.
    [94] Y. Hamamori, H.Y. Wu, V. Sartorelli and L. Kedes, The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist Mol Cell Biol, 1997, 17:6563-6573.
    [95] C. Lemercier, R.Q. To, R.A. Carrasco and S.F. Konieczny, The basic helix-loop-helix transcription factor Mist1 functions as a transcriptionalrepressor of MyoD, EMBO J, 1998,17(5): 412-1422.
    [96] J. Lu, R. Webb, J.A. Richardson and E. N. Olson, MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD, Proc NatlAcad Sci USA, 1999, 96(2): 552-557.
    [97] A.C. Chen, N. Kraut, M. Groudine and H. Weintraub, I-mf, a novel myogenic repressor, interacts with members of the MyoD family,Cell, 1996, 86:. 731-741.
    [98] L. Snider, H. Thirlwell, J.R. Miller, R.T. Moon, M. Groudine and S.J. Tapscott, Inhibition of Tcf3 binding by I-mfa domain proteins, Mol Cell Biol, 2001, 21(5): 1866-1873.
    [99] M. Ramalho-Santos, S. Yoon, Y. Matsuzaki, R.C. Mulligan and D.A. Melton, "Stemness": transcriptional profiling of embryonic and adult stem cells,Science, 2002, 298(5593):597-600.
    [100] B.L. Black and E.N. Olson, Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins, Annu Rev Cell Dev Biol, 1998, 81:167-196.
    [101] L.A. Gossett, D.J. Kelvin, E.A. Sternberg and E.N. Olson, A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes, Mol Cell Biol, 1989, 9: 5022-5033.
    [102] J.D. Molkentin, B.L. Black, J.F. Martin and E.N. Olson, Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins, Cell, 1995, 83.1125-1136.
    [103] W.W. Wasserman and J.W. Fickett, Identification of muscle regulatory regions which confer muscle-specific gene expression, J Mol Biol, 1998, 278: 167-181.
    [104] B. Lily, B. Zhao, G. Ranganayakulu, B.M. Paterson, R.A. Schultz and E.N. Olson, Requirement of MADS domain transcription factor D-Mef2 for muscle formation in Drosophila, Science, 1995, 267:688-693.
    [105] Q. Lin, J. Schwarz, C. Bucana and E.N. Olson, Control of mouse cardiac morphogenesis and myogenesis by transcription factor Mef2C, Science, 1997, 276:1404-1407.
    [106] B.H. Penn, D.A. Bergstrom, F.J. Dilworth, E. Bengal and S.J. Tapscott, A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation, Genes Dev, 2004, 18:2348-2353.
    [107] S. Arber, G. Haider and P. Caroni, Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation, Cell, 1994, 79:221-231.
    [108] Y. Kong, M.J. Flick, A.J. Kudla and S.F. Konieczny, Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD, Mol Cell Biol, 1997, 17(8):4750-4760.
    [109] E. Biesiada, Y. Hamamori, L. Kedes and V. Sartorelli, Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiproteintranscriptional complex required for activity of the human cardiac a-actin promoter, Mol Cell Biol, 1999,19:2577-2584.
    [110] T.A. Gustafson and L. Kedes, Identification of multiple proteins that interact with functional regions of the human cardiac a-actin promoter, Mol Cell Biol, 1989, 9:3269-3283.
    [111] P. Shore and A.D. Sharrocks, The MADS-box family of transcription factors. Eur. J. Biochem, 1995,229:1-13.
    [112] B.L. Black and E.N. Olson, Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol, 1998, 14:167-196.
    [113] L. Pellegrini, S. Tan, T.J. Richmond, Structure of serum response factor core bound to DNA. Nature, 1995,376: 490-498.
    [114] E. Santelli and T.J. Richmond, Crystal structure of MEF2A core bound to DNA at 1.5 A resolution. J. Mol. Biol, 2000, 297: 437-449.
    [115] Q. Sun, G.Chen, J.W. Streb, X. Long, Y. Yang, C.J.Jr. Stoeckert, J.M. Miano, Defining the mammalian CArGome. Genome Res, 2006,16:197-207
    [116] C. Norman, M. Runswick, R. Pollock, Treisman R.Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 1988,55: 989-1003.
    [117] T. Miwa and L. Kedes, Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human α-cardiac actin gene. Mol. Cell. Biol, 1987, 7: 2803-2813.
    [118] K.L. Chow and R.J. Schwartz, A combination of closely associated positive and negative cis-acting promoter elements regulates transcription of the skeletal α-actin gene. Mol. Cell. Biol, 1990,10: 528-538.
    [119] P.S. Chang, L. Li, J. McAnally, E.N. Olson, Muscle specificity encoded by specific serum response factor-binding sites. J. Biol. Chem, 2001, 276: 17206-17212.
    [120] M.B. Hautmann, C.S. Madsen, C.P. Mack, GK. Owens, Substitution of the degenerate smooth muscle (SM) α-actin CC(A/T-rich)6GG elements with c-fos serum response elements results in increased basal expression but relaxed SM cell specificity and reduced angiotensin II inducibility. J. Biol. Chem, 1998, 273: 8398-8406.
    [121] L. Wei, W. Zhou, J.D. Croissant, F.E. Johansen, R. Prywes, A. Balasubramanyam, R.J. Schwartz, RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J. Biol. Chem, 1998, 273: 30287-30294.
    [122] N. Kaplan-Albuquerque, V. Van Putten, M.C. Weiser-Evans, R.A. Nemenoff, Depletion of serum response factor by RNA interference mimics the mitogeniceffects of platelet derived growth factor-BB in vascular smooth muscle cells. Circ. Res, 2005, 97: 427-433.
    [123] T.E. Landerholm, X.R. Dong, J Lu., N.S. Belaguli, R.J. Schwartz, M.W. Majesky, A role for serum response factor in coronary smooth muscledifferentiation from proepicardial cells. Development, 1999,126: 2053-2062.
    [124] X. Zhang, J. Chai, G. Azhar, P.Sheridan, A.M. Borras, M.C. Furr, K. Khrapko,J. Lawitts, R.P. Misra, J.Y. Wei, Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor. J. Biol. Chem, 2001, 276: 40033-40040.
    [125] S. Arsenian, B. Weinhold, M. Oelgeschlager, U. Ruther, A. Nordheim, Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J, 1998,17: 6289-6299.
    [126] G. Schratt, U. Philippar, J. Berger, H.Schwarz, O. Heidenreich, A Nordheim, Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells.J Cell Biol, 2002,156: 737-750.
    [127] G. Schratt, U. Philippar, D. Hockemeyer, H. Schwarz, S. Alberti, A.Nordheim, SRF regulates Bcl-2 expression and promotes cell survival during murine embryonic development. EMBO J, 2004, 23:1834-1844.
    [128] T. Ito, T. Ikehara, T. Nakagawa, W.L. Kraus and M. Muramatsu, p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone, Genes Dev, 2000,14(15):1899-1907.
    [129] A. Polesskaya, I. Naguibneva, L. Fritsch, A. Duquet, S. Ait-Si-Ali and P. Robin et al., CBP/p300 and muscle differentiation: no HAT, no muscle, EMBO J, 2001, 20(23):6816-6825.
    [130] P.L. Puri, M.L. Avantaggiati, C. Balsano, N. Sang, A. Graessmann and A. Giordano et al., p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription, EMBO J, 1997,16:369-383.
    [131] P.L. Puri, V. Sartorelli, X.J. Yang, Y. Hamamori, V.V. Ogryzko and B.H. Howard et al., Differential roles of p300 and PCAF acetyltransferases in muscle differentiation, Mol Cell, 1997,1(1): 35-45.
    [132] V. Sartorelli, P.L. Puri, Y. Hamamori, V.V. Ogryzko, G. Chung and Y. Nakatani et al., Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program, Mol Cell, 1999, 4(5):725-734.
    [133] A. Polesskaya, A. Duquet, I. Naguibneva, C. Weise, A. Vervisch and E. Bengal et al., CREB-binding protein/p300 activates MyoD by acetylation, J Biol Chem, 2000,275:34359-34364.
    [134] F.J. Dilworth, K.S. Seaver, A. Fishburn, S. Htet and S.J. Tapscott, In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation, Proc Natl Acad Sci USA 2004,101(32):11593-11598.
    [135] A. Polesskaya, I.Naguibneva,A. Duquet, E. Bengal,P. Robin and A.Harel-Bellan,Interaction between acetylated MyoD and the bromodomain of CBP and/or p300, Mol Cell Biol, 2001, 21(16):5312-5320
    [136] U. Dressel, P.J. Bailey, S.C. Wang, M. Downes, R.M. Evans and G.E. Muscat, A dynamic role for HDAC7 in MEF2-mediated muscle differentiation, J Biol Chem, 2001, 276(20): 17007-17013.
    [137] T.A. McKinsey, C.L. Zhang and E.N. Olson, Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5, Proc Natl Acad Sci USA, 2000, 97 (26):14400-14405.
    [138] T.A. McKinsey, C.L. Zhang and E.N. Olson, Control of muscle development by dueling HATs and HDACs, Curr Opin Genet Dev, 2001, 286(1):80-86.
    [139] P.L. Puri, S. Iezzi, P. Stiegler, T.T. Chen, R.L. Schiltz and G.E. Muscat et al., Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis, Mol Cell, 2001, 8 (4):885-897.
    [140] J. Lu, T.A. McKinsey, C.L. Zhang and E.N. Olson, Regulation of skeletal myogenesis by association of the MEF2 transcriptionfactor with class II histone deacetylases, Mol Cell, 2000, 6:233-244.
    [141] A. Mal, M. Sturniolo, R.L. Schiltz, M. Ghosh and M.L. Harter, A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program, EMBO J, 2001, 20:1739-1753.
    
    [142] Z. Wu, P.J. Woodring, K.S. Bhakta, K. Tamura, F. Wen and J.R. Feramisco et al., p38 and extracellular signal-regulated kinase regulate the myogenic program at multiple steps, Mol Cell Biol, 2001, 20:3951-3964.
    
    [143] O. Halevy, B.G. Novitch, D.B. Spicer, S.X. Skapek, J. Rhee and G.J. Hannon et al., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD, Science, 1995, 267:1018-1021.
    
    [144] A.D. Otten, E.J. Firpo, A.N. Gerber, L.L. Brody, J.M. Roberts and S.J. Tapscott, Inactivation of MyoD-mediated expression of p21 in tumor cell lines, Cell Growth Differ, 1997, 8:1151-1160.
    
    [145] D.A. Bergstrom, B.H. Penn, A. Strand, R.L.S. Perry, M.A. Rudnicki and S.J. Tapscott, Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression, Mol Cell, 2000,9:587-600.
    
    [146] L.P. Lim, N.C. Lau, P. Garrett-Engele, A. Grimson, J.M. Schelter and J. Castle et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 2005,433(7027): 769-773.
    
    [147] Z. Wu, P.J. Woodring, K.S. Bhakta, K. Tamura, F. Wen and J.R. Feramisco et al., p38 and extracellular signal-regulated kinase regulate the myogenic program at multiple steps, Mol Cell Biol, 2001, 20:3951-3964.
    
    [148] D.M. Cox, M. Du, M. Marback, E.C. Yang, J. Chan and K.W. Siu et al., Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A, J Biol Chem, 2003, 278:15297-15303.
    
    [149] J. Han, Y. Jiang, Z. Li, V.V. Kravchenko and R.J. Ulevitch, Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation, Nature, 1997, 386:296-299.
    
    [150] O.I. Ornatzky, D.M. Cox, P. Tangirala, J.J. Andreucci, Z.A. Quinn and J.L. Wrana et al., Post-translational control of the MEF2A transcriptional regulatory protein, Nucleic Acids Res, 1999, 27:2646-2654.
    
    [151] M. Zhao, L. New, V.V. Kravchenko, Y. Kato, H. Gram and F. di Padova et al., Regulation of the MEF2 family of transcription factors by p38, Mol Cell Biol, 1999,19:21-30.
    [152] J. Han, J.D. Lee, Y. Jiang, Z. Li, L. Feng and R.J. Ulevitch, Characterization of the structure and function of a novel MAP kinase (MKK6), J Biol Chem, 1996,271:2886-2891.
    [153] P.L. Puri, Z. Wu, P. Zhang, L.D. Wood, K.S. Bhakta and J. Han et al., Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells, Genes Dev, 2000,14:574-584.
    [154] C. Simone, S.V. Forcales, D.A. Hill, A.N. Imbalzano, L. Latella and P.L. Puri, p38 pathway targets SWI-SNF chromatin remodeling complex tomuscle-specific loci, Nat Genet, 2004,36(7)738-743.
    [155] A.L. Clayton, S. Rose, M.J. Barratt and L.C. Mahadevan, Phosphoacetylation of histone H3 on c-fos and c-jun-associated nucleosomes upon gene activation, EMBO J, 2000,19(14):3714-3726.
    [156] S. Thomson, A.L. Clayton, C.A. Hazzalin, S. Rose, M.J. Barratt and L.C. Mahadevan, The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase, EMBO J, 1999,18(17):4779-4793.
    [157] S. Huntley, D.M. Baggot, A.T.Hamilton, M. Tran-Gyamfi, S. Yang, J. Kim, L Gordon, E. Branscomb, and L. Stubbs, A comprehensive catalogue of human KRAB-associated zinc finger genes: Insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. .2006,16: 669 - 677.
    [158] T. Akimoto, S.C. Pohnert, P. Li, M. Zhang, C. Gumbs, P.B. Rosenberg, R.S. Williams, and Z. Yan, Exercise stimulates PGC-1a promoter in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem, 2005, 280, 19587-93.
    [159] W. Bains, P. Ponte, H. Blau, L. Kedes, Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol Cell Biol, 1984, 4, 1449-53.
    [160] M. Onyama, N. Suzuki, Y. Yamaguchi, M. Maeno, K. Otsuka, and K. Ito, J Periodontol, 2002, 73,543-50.
    [161] R.L. Perry, and M.A. Rudnick, Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci, 2002, 5, D750-767.
    [162] L.A. Gossett, D.J. Kelvin, E.A. Sternberg, and E.N. Olson, A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol, 1989, 9,5022-33.
    [163] M.E. Pownall, M. K. Gustafsson, and C.P.Jr. Emerson, Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell Dev. Biol. 2002, 18, 747-783.
    [164] C.P. Emerson, Myogenesis and developmental control genes. Curr. Opin. Cell Biol. 1990, 2,1065-1075.
    [165] W.E. Wright, D.A. Sassoon, and V.K.. Lin, Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 1989,56, 607-617.
    [166] A.B. Lassar, R.L. Davis, W.E. Wright, T. Kadesch, C. Murre, A. Voronova, D. Baltimore, and H. Weintrauh, Functional activity of myogenic HLH protein requires hetero-oligomerization with E12/E47-lick protein in vivo. Cell 1991, 66. 305-315.
    [167] G.C. Teg Pipes, E. EstherCreemers and Eric N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes & Dev., 2006, 20:1545-1556.
    [168] Etian Shaulian and Michael Karin, AP-1 as a regulator of cell life and death. Natu. Cell Biol. 2002,4,131-136.
    [169] S. Dedieu, G.Mazeres, P. Cottin and J.J. Brustis, Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int. J. Dev. Biol 2002, 46, 235-241.
    [170] A. Porrello, M.A. Cerone, S. Coen, A. Gurtner, G.Fontemaggi, L. Cimino, G. Piaggio, A. Sacchi, and S. Soddu, p53 regulates myogenesis by triggering the differentiation activity of pRb. J. Cell Biol. 2000, 151,1295-1304.
    [171] M.A. Rudnicki, T. Braun, S. Hinuma, and R. Jaenisch, Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 1992, 71,383-390.
    [172] J.D. White, C. Rachel, R. Vermeulen, M. Davies, and M.D. Grounds, The role of p53 in vivo during skeletal muscle post-natal development and regeneration: studies in p53 knockout mice. Int. J. Dev. Biol. 2002,46,577-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700