用户名: 密码: 验证码:
重症肌无力患者胸腺和外周血CD4~+CD25~+ Treg细胞数量和表型变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景调节性T细胞的概念首先是由Gershon等在1971年提出来的,但直到1995年Sakaguchi等在小鼠脾脏和淋巴结中发现了具有无能性和免疫抑制特性的CD4+CD25+ T细胞以后,调节性T细胞才引起了人们的重视。目前人们已经发现了多种具有调节作用的T细胞亚群,如Tr1细胞、Th3细胞、CD8+CD25+ T细胞、γδT细胞以及NKT细胞等,它们共同参与了外周自身免疫耐受的维持。越来越多的证据表明CD4+CD25+ Treg细胞在外周免疫耐受的维持中发挥着主要的作用,它的缺乏或功能缺陷与动物自身免疫性疾病的发生和发展密切相关。由于人类效应性T细胞(Responsive T cell, Tresp)在活化的早期也可中低水平表达CD25,因此目前人类Treg细胞的研究大都采用CD25hi作为细胞的标记物。现已发现人类外周血CD4+CD25hi细胞与多种自身免疫性疾病如系统性红斑狼疮、类风湿性关节炎及多发性硬化症等关系密切,但同时也有许多研究得出了相反的结论。重症肌无力(Myathenia gravis,MG)是一种典型的自身免疫性疾病,但目前关于人类MG Treg细胞的研究还比较少,并且结论也不一致。
     最近的研究发现一些CD25呈中低表达(CD25low-int)的CD4+细胞也具有抑制功能,因此以CD25hi作为标记物就会遗漏许多CD4+CD25lo-int Treg细胞。在Treg细胞的研究中最重要的进展就是发现了Foxp3基因,它是目前最特异的nTreg细胞标记物。但由于Foxp3表达于细胞核内,其检测需要固定和破膜,因此不能用于鉴别和分选活性Treg细胞以进行体外功能检测。最近有研究发现CD25与CD27联合表达可以很好地区分风湿性关节炎滑液中的Treg细胞和活化的CD25+效应性T细胞,但目前尚未见用于其他人类自身免疫性疾病研究的报道。
     胸腺切除是目前治疗MG的主要方法,虽然其疗效已经得到了公认,但确切机制尚不完全清楚。深入研究胸腺切除前后外周血Treg细胞和活化的Tresp细胞的变化,也有助于我们了解胸腺切除对MG外周免疫耐受的影响。
     研究已发现IL-6可以通过阻断Treg细胞的抑制作用来促进Tresp细胞的活化和功能,并且MG外周血中IL-6、IL-2及TNF-a等细胞因子水平升高。因此分析它们在胸腺切除前后外周血中的变化,可能有助于了解手术前后MG Treg细胞和自身反应性T细胞的活动状态。
     方法1、采用免疫组化染色方法同时检测MG胸腺组织中nTreg细胞标分子CD25和Foxp3的阳性表达及分布情况。2、通过流式细胞技术检测MG患者和正常人胸腺组织中CD4+ CD25+、CD4+ CD25hi、CD4+ CD25+ CD27+和CD4+ CD25+CD27- T细胞的数量及其功能表型Foxp3、CTLA-4、GITR和CD62L的表达。3、通过流式细胞技术检测正常对照和MG患者术前外周血中CD4+ CD25+、CD4+ CD25hi、CD4+ CD25+ CD27+ T细胞的表型特点和数量变化以及CD4+ CD25+CD27-T细胞的数量变化,同时分析上述细胞亚群数量变化与手术前后QMG评分的关系;通过CBA流式蛋白分析系统检测胸腺切除前后外周血IL-6、IL-2及TNF-a水平,并分析它们与各细胞亚群和QMG的关系。
     结果1、CD25+和Foxp3+细胞在正常胸腺中主要分布于胸腺的髓质和血管周围纤维间隔区,皮质中也有少量分布;在增生胸腺的淋巴滤泡内也有分布并围绕在生发中心的周围,髓质胸腺小体的周围也有CD25+和Foxp3+细胞环绕。2、MG胸腺CD25阳性表达明显高于正常胸腺(P<0.05),Foxp3表达明显低于正常胸腺(P<0.05),同时各MGFA分型中CD25和Foxp3的表达也明显不同(P<0.05,P<0.01)。3、与对照相比,MG胸腺中CD4+CD25+细胞的比例明显增加(P<0.05),CD4+CD25hi细胞的比例无明显变化(P>0.05)。4、MG胸腺CD4+CD25+、CD4+CD25hi细胞亚群中Foxp3+和CTLA-4+T细胞的比例与对照相比均明显降低(P<0.01,P<0.05),CD62L+和GITR+细胞的比例无明显差异(P>0.05) ;MG和正常胸腺CD4+CD25+T细胞中的Foxp3+和CTLA-4+ T细胞的比例都显著低于CD4+CD25hi T细胞中的比例(P<0.01),GITR+T细胞的比例高于CD4+CD25hi细胞(P<0.01),CD62L+T细胞的比例未见显著性差异。5、MG胸腺与正常胸腺相比,CD4+CD25+CD27+T细胞的比例显著下降(P<0.05),CD4+CD25+CD27-细胞的比例显著增加(P<0.01);在对照胸腺和MG胸腺中,CD4+CD25+亚群中CD27+的比例都明显低于CD4+ CD25hi亚群(P<0.001),CD27-细胞的比例都明显高于CD4+ CD25hi亚群(P<0.001)。6、MG胸腺CD4+ CD25+ CD27+、CD4+ CD25+ CD27- T细胞亚群中Foxp3+、CTLA-4+、GITR+和CD62L+ T细胞的比例与对照胸腺相比,均无明显差异(P>0.05);对照胸腺和MG胸腺CD4+CD25+ CD27+T细胞中Foxp3+、CTLA-4+T细胞的比例均明显高于CD4+ CD25+ CD27- T细胞中的比例(P<0.001),GITR+T细胞和CD62L+T细胞的比例在上述各组别之间未见显著性差异(P>0.05)。7、MG患者术前外周血CD4+CD25+和CD4+CD25hi T细胞的比例与健康对照相比均无明显差异(P>0.05),胸腺切除前后也无明显改变(P>0.05)。8、MG患者术前外周血CD4+CD25+细胞中Foxp3+的比例明显低于正常对照(P<0.05),CTLA-4+、GITR+及CD62L+的比例无明显差异(P>0.05); CD4+CD25hi细胞中Foxp3+、CTLA-4+、GITR+及CD62L+的比例与正常对照相比都无显著性差异(P>0.05)。9、MG患者术前外周血CD4+CD25+CD27+细胞中Foxp3+、CTLA-4+、GITR+、CD62L+的比例与正常对照相比无显著差异(P>0.05)。10、MG外周血CD4+CD25+CD27+细胞的比例与正常对照相比无明显差异(P>0.05),手术前后也无明显变化(P>0.05);CD4+ CD25+ CD27- T细胞的比例与对照相比明显升高(P<0.01),术后较术前稍有下降(P>0.05);CD25+ CD27+ /CD25+ CD27-比值(RCD27)与对照相比明显降低(P<0.01),术后较术前明显升高(P<0.05)。11、MG患者术前外周血IL-2、IL-6和TNF-a的水平与正常对照相比明显升高(P<0.05, P<0.01,P<0.05)。术后IL-6水平与术前相比下降明显(P<0.05),但与对照相比仍明显升高(P<0.05);术后IL-2和TNF-a与术前相比下降都不明显(P>0.05),IL-2仍明显高于对照(P<0.05),但TNF-a与对照相比无明显差异(P>0.05)。12、术后溴吡啶斯的明用量较术前明显减少(P<0.05), QMG评分明显下降(P<0.01)。13、术前CD25+CD27-细胞的比例与QMG评分呈正相关(R=0.723,P<0.01),与血中IL-6水平呈正相关(R=0.582,P<0.05)。术前RCD27值与QMG评分、手术前后QMG评分下降幅度及IL-6水平均呈负相关(R=-0.896, P<0.001; R=-0.786,P<0.001;R=-0.975,P<0.001),术后Rcd27值与QMG呈显著负相关(r=-0.939,p<0.01),但与手术前后QMG评分下降幅度无关(P>0.05)。外周血中CD4+CD25+CD27+细胞的比例与QMG评分无显著相关性(P>0.05)。
     结论1、在胸腺中,并不是所有的CD4+CD25+T细胞都是调节性T细胞。MG胸腺内nTreg细胞的数量下降,活化的自身反应性T细胞大量增加,在MG胸腺内确实存在着免疫调节的失控。2、采用CD25hi作为Treg细胞标记物是导致目前MG患者外周血Treg细胞研究中结论相互矛盾的主要原因。3、CD27与CD25联合表达可以很好地区分CD4+CD25+Treg细胞和活化早期的CD25+自身反应性T细胞,可用于MG胸腺和外周血Treg细胞群整体抑制功能体外评价研究中的细胞分选。4、MG患者外周血Treg细胞的数量没有明显的改变,Treg细胞对自身反应性T细胞的抑制功能的下降是导致外周血中免疫调节失控的原因。5、外周血IL-6的水平与CD25+ CD27-的比例、RCD27值及QMG评分明显相关,IL-6水平的升高是外周血Treg细胞抑制作用下降的重要原因之一。6、胸腺切除对外周血Treg细胞的比例无影响,但可以降低外周血中活化的自身反应性T细胞的数量,降低IL-6水平,恢复Treg细胞与自身反应性T细胞的动态平衡。7、MG患者术前外周血RCD27值与手术前后QMG评分下降的幅度高度相关,术前检测外周血RCD27值对胸腺切除的预后判断有一定的意义。
Backgroud The concept of regulatory T cells(Tregs) was first proposed by Gershon in 1971. No attention was payed on it till 1995, when CD4+CD25+ T cells with anergy and immunoregulatory function were found in the spleen and lymphonodes of rats by Sakaguchi and his colleagues. Up to now, researchers have founded many kinds of Tregs, such as Tr1, Th3,CD8+ CD25+ T cell,γδT cell , NKT cell, etc. These Tregs together take part in the maintance of peripheral immune tolerance. More and more evidences shows that CD4+CD25+ Tregs are the key controllers in the peripheral immunological self-tolerance, and their quantitative deficiency or the functional down-regulation had significant correlations with the onset and persistance of autoimmune diseases in animal models. Now the CD4+CD25+ Tregs are called natural regulatory T cells (nTregs) so as to be differentiated from other Tregs. Because the human responsive T cells could also express CD25 in the early stage of activation ,CD25hi is used as the marker molecule in most human Treg cell Researches now. Unfortunately, while some researches got the conclusion that the deficiency of peripheral CD4+CD25hi Treg cells had close relationships with the onsets of many kinds of human autoimmune diseases , such as systemic lupus erythematous , rehumatoid arthritis and multiple sclerosis etc, there are still some other researches with contradictory conclusions exist. Although myasthenia gravis (MG) is a typical autoimmune disease, few studies have been down on the roles of CD4+CD25hi Treg cells in the onset and progression of MG so far and the conclusions of them are not in accordance either. As the CD4+ T cells with low-intermediate expression of CD25 (CD25low-int) also have immuno-suppressive function in recent researches, a lot of CD4+CD25low-int Treg cells might be lost in the studies using CD25hi as the marker of Treg cells. Then, the usage of CD25hi as the marker molecule might be the main reason of the inconsistent conclusions in the studies of human Tregs. The most important progress in the research of Tregs is the discovery of Foxp3, which is the most specific marker molecule for Tregs up to date. Hower, Foxp3 can’t be used to isolate viable Treg cells for functional study because of its intranuclear expression and the detection of it requires fixation and permeabilization. Latest research sugested that the coexpression of CD25 and CD27 could effectively differentiate Treg cells from activated CD25+ Tresp cells in synovia fluid of rheumatoid arthritis. Hower, this method has not been used in other researches on human autoimmune disease till now.
     Although thymectomy (Tx) is a current treatment for MG and its effect has been recognized Nowdays, the exact mechnism of this method is still unclear. Then, futher researches on the changes of Treg and Tresp cells pre- and post-thymectomy might help us find out the influences of Tx on the peripheral autoimmune tolerance in MG.
     Studies have showed that the peripheral blood levels of IL-6, IL-2 and TNF-a were higher in MG, IL-6 could enhance the activity of Tresp cells by blocking the supressive function of Tregs. Then, the study of the changes of their levels pre-TX and post-Tx might help us understand the functional state of MG Treg and Tresp cells.
     Mthods 1. The detection of CD25 and Foxp3 expression in normal and MG thymus via immunohistological staining. 2. The detection of frequencies of CD4+ CD25+ , CD4+ CD25hi , CD4+ CD25+ CD27+ and CD4+ CD25+CD27- T cell and the expression of Foxp3, CTLA-4, GITR and CD62L in the herein before cell subgroups by FCM; 3. The detection of the frequencies CD4+CD25+, CD4+CD25hi , CD4+CD25+CD27+ and CD4+ CD25+CD27- T cell groups in the peripheral blood of normal controls , per-Tx and post-Tx MG patients via FCM; The detection of the expression of Foxp3, CTLA-4, GITR and CD62L in the herein before cell subgroups by FCM; The detection of IL-6, IL-2 and TNF-a in the peripheral blood of normal controls , pre-Tx and post-Tx MG patients via cytometric bead array system (CBA); The analysis of the relationships between QMG and the hereinbefore T cell subgroups, IL-6, IL-2 and TNF-a in pre-Tx and post-Tx MG patients.
     Results 1. The CD25+ and Foxp3+ cells in MG and normal thymus were mainly located in the vascular septa area of medulla and a few were located in the cortex. In MG thymus, the CD25+ and Foxp3+ cells could also be found in the lymphoid follicles, surrounding the germinal centers and hassall corpuscles. 2. The expression of CD25 was significantly higher and the expression of Foxp3 was significantly lower in MG thymus than that in control tymus respectively(P<0.05). In addition, the expressions of CD25 and Foxp3 were both different between MGFA classes (P<0.05, P<0.01). 3. The percetages of CD4+CD25+ cells were signifacantly increased in MG thymus compared with control thymus (P<0.05), but there was no significant difference in the percentage of CD4+CD25hi cells between MG and control thymus (P>0.05). 4. The percentages of Foxp3+ and CTLA-4+ cells within the CD4+CD25+ subgroup of MG thymus were both significantly lower than that within the CD4+CD25+ subgroup of control thymus respctively (P<0.05,P<0.01); The percentages of Foxp3+ and CTLA-4+ cells with the CD4+CD25hi subgroup were also significantly decreased in MG thymus than controls thymus (P<0.05,P<0.01); the percentages of CD62L+ and GITR+ cells within the CD4+CD25+ /CD4+CD25hi subgroup have no significant difference between MG and control thymus (P>0.05). Both in control and MG thymus, the percentages of Foxp3+ and CTLA-4+ cells within the CD4+CD25hi subgroup were significantly higher than that within the CD4+CD25+ subgroup(P<0.01), the percentages of GITR+ cells within the CD4+CD25hi subgroup were significantly lower than that within the CD4+CD25+ subgroup(P<0.01)and there’s no significant difference in the percentage of CD62L+ cells between the hereinbefore cell subgroups was found(P>0.05). 5. The percentages of CD4+CD25+CD27+ cells were significantly lower (P<0.05) and the percentages of CD4+CD25+CD27- cells were significantly higher (P<0.01) in MG thymus compared with their counterparts in control thymus respectively. Both in control and MG thymus, the percentages of CD27+ cells were greatly decreased(P<0.001) and the percentages of CD27- cells were greatly increased (P<0.001) within the CD4+CD25+ subgroup than that within the CD4+CD25hi subgroup. 6. There was no significant difference in the percentages of Foxp3+, CTLA-4+, CD62L+ and GITR+ cells had been found between control and MG thymus not only in the CD4+CD25+CD27+ subgroups but also in the CD4+CD25+CD27- subgroups (P>0.05). Both in control and MG thymus, the percentages of Foxp3+ and CTLA-4+ cells within the CD4+CD25+CD27+ subgroups were greatly higher than that within the CD4+CD25+CD27- subgroups (P<0.001) and there’s no difference in the percentages of CD62L+ and GITR+ cells within these two subgroups respectvely(P>0.05). 7. There’s no significant difference in the percentages of both peripheral CD4+CD25+ and CD4+CD25hi cells between pre-Tx MG patients and controls (P>0.05), and, there’s no significant difference had been found in the percentages between pre-Tx and post-Tx either (P>0.05). 8. In peripheral blood, the percentages of Foxp3+ cells within the CD4+CD25+ groups of pre-Tx MG patients were significantly lower than that of controls (P<0.05), and no significant difference had been found in the percentages of CTLA-4+, CD62L+ and GITR+ cells within the CD4+CD25+ groups between pre-Tx MG patients and controls (P>0.05); There was no difference in the percentages of Foxp3+, CTLA-4+, CD62L+ and GITR+ cells within the CD4+CD25hi subgroups between the pre-Tx MG patients and controls (P>0.05). 9. The expression of Foxp3, CTLA-4, CD62L and GITR in peripheral CD4+CD25+CD27+ subgroups of MG patients had no signifecant difference compared with controls (P>0.05). 10. There was no significant difference in the percentages of peripheral CD4+CD25+CD27+ cells between MG patients pre-Tx and controls (P>0.05), and no evident difference had been found in MG patients pre- and post-Tx either; The percentages of peripheral CD4+CD25+CD27- cells were greatly increased in MG patients pre-Tx compared with that in controls (P<0.01), while there was only a slight decrease in patients post-Tx compared with that in patients pre-Tx (P>0.05); The propotions of peripheral CD25+CD27+/CD25+CD27- (RCD27) in MG patients pre-Tx were significant lower than that in controls (P<0.01), and increased evidently after thymectomy in MG patients (P<0.05). 11. The levels of IL-2, IL-6 and TNF-a in the peripheral blood of MG patients pre-Tx were all higher than that of controls (P<0.05, P<0.01,P<0.05). The level of peripheral IL-6 decrased greatly in MG patients post-Tx compared with pre-Tx (P<0.05), but it was still higher than that in normal controls (P<0.05). There was no significant difference in the levels of IL-2 and TNF-a between the post-Tx and pre-Tx MG patients (P>0.05), but the difference of TNF-a level between the the post-Tx patients and the controls failed to achieve stastistical significance (P>0.05). 12. The dosage of pyridostigmin bromide decreased significantly after thymectomy (P<0.05), and the Quantative MG score (QMG) also significantly decreased (P<0.01). 13. The percentages of peripheral CD4+CD25+CD27- cells in patients pre-Tx were significantly correlated with the QMG scores (R= 0.723,P< 0.01), IL-6 level (R= 0.582,P< 0.05) and TNF-a level (R= - 0.675,P< 0.01); RCD27 in patients pre-Tx was also correlated significantly with the QMG score pre-Tx (R=-0.896, P<0.001), the difference value of QMG between pre-Tx and post-Tx (R=-0.786,P<0.001), and the peripheral IL-6 level of pre-Tx (R=-0.975,P<0.001). RCD27 in patients post-Tx was correlated significantly with the QMG score post-Tx (r= - 0.939,p<0.01), but was not significantly correlated with the difference value of QMG between pre-Tx and post-Tx (P>0.05). There’s no significant correlation between the percentages of peripheral CD4+CD25+CD27+ cells and the QMG scores (P>0.05).
     Conclusions 1. CD4+CD25+ T cells within the thymus are not all Treg cells, some of them are autoreactive T cells in early active stage. The number of intrathymic CD4+CD25+ Treg cells is lower and the number of actvive autoreactive T cells is higher in MG patients , and there’s realy a disturbance of immune regulation in the MG thymus. 2. the usage of CD25hi as the marker molecule is the main reason for the inconsistent conclusions in the studies of human Tregs. 3. the coexpression of CD25 and CD27 can effectively differentiate Treg cells from early activated CD25+ Tresp cells and can be used to isolate viable Treg cell populations for functional studies. 4. There’s no quantitative deficiency of Treg cells in the peripheral blood of MG patients. The founctional defect is the main mechanism of the imbalance between Tregs and autoreactive T cells in the blood. 5. The peripheral level of IL-6 has a significant relationship with the percentage of CD25+ CD27- cells, RCD27, and QMG score. The increase of peripheral IL-6 is one of the crucial reasons for the functional down-regulation of Tregs in MG blood. 6. Thymectomy has no effect on the percentage of Tregs,but can reduce the percentage of active autoreactive cells and the IL-6 level in the peripheral blood , and recover the dynamic balance between the Tregs and active autoreactive T cells. 7. The RCD27 in the MG patients pre-Tx has a significant correlation with the decrease of QMG score after thymecomy, then, the detection of RCD27 pre-Tx might help us estimate the prognosis of thymectomy in MG patients.
引文
1. Robertson DN. Enumerating neurology. Brain, 2000, 123(4):663–664.
    2. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science, 1973, 180: 871– 872.
    3. Melms A, Malcherek G, Gern U,et al. T cells from normal and myasthenic individuals recognize the human acetylcholine receptor: heterogeneity of antigenic sites on the alpha-subunit. Ann Neurol, 1992, 31(3): 311-318.
    4. Milani M,Ostlie N,Wang W,et al. T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci, 2003, 998: 284-307
    5. Vigouroux S, Yvon E, Biagi E,et al.Antigen-induced regulatory T cells. Blood. 2004, 104(1): 26-33.
    6. Sakaguchi S , Sakaguchi N , Asano M, et al . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breackdown of single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151-1164.
    7. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol, 2003, 3(3): 253-257
    8. Shevach EM. Regulatory T cells in autoimmunity. Annu Rev Immunol, 2000, 18: 423-449.
    9. Amold B. Levels of peripheral T cell tolerance.Transpl Immunol, 2002, 10(2-3): 109-114.
    10. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann Rev Immunol, 2004, 22: 531- 562.
    11. Lan RY, Ansari AA, Lian ZX, et al. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev, 2005, 4(6): 351-363.
    12. Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4(+) CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood, 2005, 105(2): 735-741.
    13. Battaglia A, Di Schino C, Fattorossi A, et al. circulating CD4+CD25+ T regulatory and natural killer T cells in patients with myasthenia gravis: a flow cytometry study.J Biol Regul Homeost Agents, 2005, 19(1-2): 54-62.
    14. Huang YM, R Pirskanen, R Giscombe,et al. Circulating CD4+CD25+ and CD4+CD25- T Cells in Myasthenia Gravis and in Relation to Thymectomy. Scand J Immunol, 2004, 59(4):408- 414.
    15. Luther C, Poeschel S, Varga M, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol, 2005, 164(1-2): 124 – 128.
    16. Sun Y, Jian Qiao, Chuan-Zhen Lu, et al. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. J Clin Immunol, 2004, 112(3): 284- 289.
    17. Fattorossi A, Battaglia A, Buzzonetti A, et al. Circulating and thymic CD4+ CD25+ T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology, 2005, 116(1): 134- 141.
    18. Ochando JC, Yopp AC, Yang Y, et al. Lymph node occupancy is required for the peripheral development of alloantigen specific Foxp3+ regulatory T cells. J Immunol, 2005, 174(11): 6993-7005.
    19. Belkaid Y, Piccirillo CA, Mendez S, et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature, 2002, 420(6915): 502-507.
    20. Ludewig B, Odermatt B, Landmann S, et al. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med, 1998, 188(8): 1493-1501.
    21. Mokhtarian F, Pino, M, Ofosu-Appiah, et al. Phenotypic and functional characterization of T cells from patients with myasthenia gravis. J Clin Invest, 1990, 86(6), 2099–2108.
    22. Roth T, Ackermann R, Stein R, et al. Thirteen years follow-up after radical transsternal thymectomy for myasthenia gravis. Do short-term results predict long-term outcome? Eur J Cardio thorac Surg, 2002, 21(4) : 664-670.
    23. Buckingham JM, Howard FM, Bematz PE, et al. The value of thymectomy in myasthenia gravis: a computer-assisted matched study. Ann Surg, 1976, 184(4): 453-458.
    24. Huang CS, Hsu HS, Huang BS, et al. Factors influencing the outcome of transsternal thymectomy for myasthenia gravis. Acta Neurol Scand, 2005, 112(2):108- 114.
    25. Wekerle H, Müller-Hermelink HK. The thymus in myasthenia gravis. Curr Topics Pathol, 1986, 75:179–206.
    26. Moulian N, Bidault J, Truffault F, et al. Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti-acetylcholine receptor antibody. Blood,1997,89(9): 3287-3295.
    27. Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol,1990,145(7): 2115-2122.
    28. Luther C, Poeschel S, Varga M, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol, 2005, 164(1-2): 124 -128.
    29. Strobel P, Preisshofen T, Hemnreich M, et al. Pathomechanisms of paraneoplastic muasthenia gravis. Clin Dev Immunol, 2003,10(1): 17-12.
    30. Baecher-Allan C, Brown JA, Freeman GJ, et al. CD4+CD25high regulatory cells in human peripheral blood. J Immunol,2001, 167(3): 1245–53.
    31. Cao D, Malmstrom V, Baecher-Allan C,et al. Isolation and functional characte- rization of regulatory CD25bright CD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol, 2003, 33(1): 215–223.
    32. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5609): 1075-1061.
    33. Suhubert LA, Jeffery E, Zhang Y, et al. Scurfin (Foxp3) act as a repressor of transcription and regulatory T cell activation. J Biol Chem, 2001, 276(40): 37672-37679.
    34. Ruprecht CR, Gattorno M, Ferlito F, et al. Coexpression of CD25 and CD27 identifies FoxP3 regulatory T cells in inflamed synovia. J Med Exp, 2005, 201(11): 1793-1803.
    35. Koenen HJPM, Fasse E, Joosten I. CD27/CFSE-Based Ex Vivo Selection of Highly Suppressive Alloantigen-Specific Human Regulatory T Cells. J Immunol , 2005, 174(11): 7573–7583.
    36. Tuzun E,Meriggioli MN, Rowin J, et al. Myasthenia gravis patients with low plasma IL-6 and IFN-gamma benefit from etanercept treatment.J Autoimmune, 2005, 24(3):61-68.
    37. 何国胜,徐金枝,杨明山,等. 症肌无力患者血清白介素-6水平测定. 卒中与神经疾病, 2001, 8(4): 227-229.
    38. Pasare C, Medzhitov R.Toll pathway-dependent blockade of CD4+CD25+ Tcell-mediated suppression by dendritic cells. Science, 2003, 299(5609): 1033-1036.
    39. Schwartz M, Kipnis J. Autoimmunity on alert: naturally occurring regulatory CD4+CD25+ T cells as part of the evolutionary compromise between a ‘need’ and a ‘risk’. Trends Immunol, 2002, 23 (11)530–534.
    40. Ota K, Matsui M, Milford EL, et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature, 1990, 346(6280): 183-187.
    41. Tung KS. Mechanism of self-tolerance and events leading to autoimmune disease and autoantibody response. Clin Immunopathol, 1994, 73(3):555-556.
    42. Piccirillo CA, Shevach EM. Naturally-occurring CD4+ CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol,2004,16(2): 81-88.
    43. Khattri R, Cox T, Yasayko SA, et al. An essential role for scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 2003(4): 337-342.
    44. Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg, 2000, 70(1):327-334.
    45. Wekerle H , The thymus in myasthenia. Ann NY Acad Sci, 1993,681, 47–55.
    46. Berrih S, Morel E, Gaud C, et al. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology,1984,34: 66-71.
    47. Papiernik M, de Moraes ML, Pontous C, et al. Regulatory CD4+ T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2. Int Immunol, 1998, 10(4): 371-378.
    48. Sakaguchi S. Regulatory T Cells: key controllers of immunological self-tolerance. Cell, 2000, 101(5): 455–458.
    49. Waldmann TA. The interleukin-2 receptor. J Biol Chem,1991, 266(5): 2681- 2684.
    50. 张其刚,李进东,尚文军,等.胸腺瘤旁胸腺组织 Fas 及其配体表达在重症肌无力发病中的意义.中华神经科杂志,2005, 38(1):46-48
    51. Onodera J, Nakamura S, Nagano I, et al. Upregulation of Bcl-2 protein in the myasthenic thymus. Ann Neurol, 1996, 39(4): 521-528.
    52. Park IK,Choi SS, Lee JG, et al. Complete stable remission after extended transsternal thymectomy in myasthenia gravis. Eur J of Cardio-thorac Surg, 2006,30 (3): 525—528.
    53. Aandahl EM, Michaelsson J, Moretto WJ, et al. Human CD4 + CD25 + regulatory T cell control T cell response to human immunodeficiency virus and cytomegalovirus antigens. J Virol , 2004 , 78 (5) : 2454-2459.
    54. Kuibeom K, Yamazaki S, Kyoko Nakamura, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+ CD25+ CD4+ regulatory T cells. J Exp Med, 2005, 202(7): 885- 891
    55. Wang RF, Peng GY, Wang HY, et al. Regulatory T cells and Toll-like receptors in tumor immunity. Semin Immunol, 2006, 18 (2): 136–142
    56. Shevach EM. Regulatory/suppressor T cells in health and disease. Arthritis Rheum, 2004,50(9): 2721–2724.
    57. Annunziato F, Cosmi L, Liotta F et al. S. Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J Exp Med, 2002, 196(3): 379–87.
    58. Wing K, Ekmark A, Karlsson H, et al. Characterization of human CD25+CD4+ T cells in thymus, cord and adult blood. Immunology, 2002, 106(3): 190–199.
    59. Balandina A, Saoudi A, Dartevelle P, et al. Analysis of CD4+CD25+ cell population in the thymus from myasthenia gravis patients. Ann NY Acad Sci, 2003, 998: 275–277.
    60. Gershon RK, Kondo K. Infectious immunological tolerance. Immunology, 1971, 21(6): 903- 914.
    61. Kojima A, Prehn RT. Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics, 1981, 14(1-2):15-27.
    62. Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996. 184(2): 387-396.
    63. Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid- induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+ CD25+ T cells. J Immunol, 2004, 173(8): 5008-5020.
    64. Taams LS, Smith J, Rustin MH, et al. Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol, 2001,31(4): 1122-1131.
    65. Stephens LA, Mottet C, Mason D, et al. Human CD4(+)CD25(+) thymocytes andperipheral T cells have immune suppressive activity in vitro. Eur J Immunol, 2001,31(4): 1247-54.
    66. Hartigan-O'Connor DJ, Poon C,Sinclair E, et al. Human CD4+ regulatory T cells express lower levels of the IL-7receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J Immunol Methods, 2007, 319(1-2): 41-52.
    67. Sedidiki N, Sanrner-Nanan B, Martison J, et al. Expression of interlerkin(IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med, 2006, 203(7): 1693-1700.
    68. Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity, 2005, 22(3): 329-341.
    69. Zelnay S, Lopes-Carvalho T, Caramalho I, et al. Foxp3+CD25-CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA, 2005, 102(11): 4091-4096.
    70. Chen C, Gu T,Li M, et al. The role of PD-L1 on the surface of mouse dendritic cells in costimulating T lymphocyte. Chin J Immunol, 2005, 21(4): 243-246.
    71. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med, 2000, 192(2): 295- 302.
    72. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic selftolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med, 2000, 192 (2) : 3032310.
    73. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science, 1996, 272(5258): 60-66.
    74. Ermann J, Hoffmann P, Edinger M. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood, 2005 , 105(5): 2220-2226.
    75. Muriglan SJ,Ramirez-Montagut T, Alpdogan O, et al. GITR Activation Induces an Opposite Effect on Alloreactive CD4+ and CD8+ T Cells in Graft-Versus-Host Disease. J Exp Med, 2004, 200(2):149-157.
    76. Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol, 2002, 3(2): 135-142.
    77. Morris GP, Kong YC. Interference with CD4+CD25+ T-cell mediated tolerance to experimental autoimmune thyroiditis by glucocorticoid-induced tumor necrosis factor receptor monoclonal antibody. J Autoimmun, 2006,26(1): 24-31。
    78. Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med, 2002, 195(12): 1641- 1646.
    79. Cao D, van Vollenhoven R, Klareskog L, et al. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther, 2004, 6(4): R335–346.
    80. van Amelsfort JM, Jacobs KM, Bijlsma JW, et al. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum, 2004, 50(9): 2775-2785.
    81. de Kleer IM, Wedderburn LR, Taams LS, et al. CD4+CD25bright regulatory T cells actively regulate inflamation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol, 2004. 172(10):6435–6443.
    82. Liu WH, Putnam AL, Zhou XY, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med, 2006, 203(7): 1701- 1711.
    83. Camerini D, Walz G, Loenen WA, Borst J, Seed B. The T cell activation antigen CD27 is a member of the nerve growth factor ?tumor necrosis factor receptor gene family. J Immunol, 1991, 147(9):3165–3169.
    84. De Jong R, Brouwer M, Hooibrink B, et al. The CD27- subset of peripheral blood memory CD4+ lymphocytes contains functionally differentiated T lymphocytes that develop by persistent antigenic stimulation in vivo. Eur J Immunol, 1992, 22(4): 993–999.
    85. Hintzen RQ, de Jong R, Lens SM, et al, Regulation of CD27 expression on subsets of mature T-lymphocytes. J Immunol, 1993 , 151(5):2426-2435.
    86. Hamann D, Baars PA, Rep MH, et al.Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med, 1997, 186(9): 1407-1418.
    87. Bardos T, Czipri M, Vermes C, et al. CD4+CD25+ immunoregulatory T cells may not be involved in controlling autoimmune arthritis. Arthritis Res Ther, 2003, 5(2): R106–113.
    88. Berrih-Aknin S, Morel E, Raimond F, et al. The role of the thymus in myastheniagravis: immunohistological and immunological studies in 115 cases. Ann N Y Acad Sci, 1987, 505: 50-70.
    89. Deng CS, Goluszko E, Tuzun E, et al. Resistance to Experimental Autoimmune Myasthenia Gravis in IL-6-Deficient Mice Is Associated with Reduced Germinal Center Formation and C3 Production.J Immunol, 2002, 169(2): 1077-1083.
    90. Marsteller HB. The first American case of myasthenia gravis. Arch. Neurol, 1988, 45(2):185–187.
    91. Pascuzzi RM. The history of myasthenia gravis. Neurol Clin, 1994, 12(2):231–242.
    92. Hughes T. The early history of myasthenia gravis. Neuromuscul Disord, 2005,15(12): 878-886.
    93. Godfrey VL, Wilkinson JE, Russell LB. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol, 1991, 138(6): 1379-1387.
    94. Durkin HG, Waksman BH. Thymus and tolerance. Is regulation the major function of the thymus? Immunol Rev, 2001, 182: 33–57.
    95. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet, 2001, 27(1): 20–21.
    96. Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet, 2001, 27(1):18–20.
    97. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet, 2002, 39(8):537– 545.
    98. Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol, 2005,175(12): 8392- 8400.
    99. Toubi E, Kessel A, Mahmudov Z, et al. Increased spontaneous apoptosis of CD4+CD25+ T cells in patients with active rheumatoid arthritis is reduced by infliximab . Ann N Y Acad Sci, 2005, 1051: 506-514.
    100. Furuno K, Yuge T, Kusuhara K, et al. CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J Pediatr, 2004, 145(3): 385-390.
    101. Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med, 2004, 199(7): 971–979.
    102Putheti P, Soderstrom M, Link H, et al. Effect of glatiramer acetate (Copaxone) on CD4+CD25high T regulatory cells and their IL-10 production in multiple sclerosis. J Neuroimmunol,2003,144(1-2):125–31.
    103Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med, 2004, 200(3): 277– 285.
    104Putheti P, Pettersson A, Soderstrom M, et al. Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol, 2004, 24(2): 155–161.
    105Huang Y, Pirskanen R, Cosgimos R, et al. Circulating CD4+CD25+ and CD4+CD25- T cells in myasthenia gravis. Ann N Y Acad Sci, 2003, 998: 318– 319.
    106Hoffmann P, Boeld TJ, Eder R, et al. Isolation of CD4+CD25+ regulatory T cells for clinical trials. Biol Blood Marrow Transplant, 2006, 12(3): 267-274.
    107Cao D,Borjesson O, Larsson P, et al. FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints. Scand J Immunol, 2006, 63(6): 444-452.
    108李向培,翟志敏,钱龙,等.系统性红斑狼疮患者 CD4+CD25+调节性 T 细胞的变化.中华风湿病学杂志,2006,10(3):141-144.
    109Baecher-Allan C, Viglietta V, Hafler DA, et al. Inhibition of human CD4(+)CD25 (+high) regulatory T cell function. J Immunol, 2002, 169(11): 6210-6217.
    110Okuda Y, Sakoda S, Bernard CC, et al. IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol, 1998, 10(5): 703-708.
    111Ohshima S, Saeki Y, Mima T, et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci USA, 1998, 95(14): 8222-8226.
    112Savcenko M, Wendt GK, Prince SL, et al. Video-assisted thymectomy for myasthenia gravis: an update of a single institution experience. Eur J Cardiothorac Surg, 2002, 22(6): 978-983.
    113王如文,蒋耀光,赵云平,等.电视胸腔镜胸腺切除治疗重症肌无力症.中国微创外科杂志,2004,4(1): 21-22.
    114王俊. 电视胸腔镜在胸部疾病治疗中的应用.临床外科杂志,2005,13(6): 384-385.
    115 Vukmanovic-Stejic M, Zhang Y, Cook JE, et al. Human CD4+CD25hiFoxp3+regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest, 2006, 116(9): 2423–2433.
    116Schluep M, Wilcox N, Vincent A, et al. Acetylcholine in human thymic myoid cells in situ: An immunologic study. Ann Neurol, 1987, 22(2), 212-222.
    117Sommer N, Willcox N, Harcourt GC, Newsom- Davis J. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptorreactive T cells. Ann Neurol, 1990, 28(3): 312-319.
    118Ahlberg R, Yi Q, Pirskanen R, et al. The effect of thymectomy on autoreactive T- and B-lymphocytes in myasthenia gravis J Neuroimmunol, 1997, 74(1-2): 45-54
    119Cohen-Kaminsky S,Deverge O,Dellattre RM, et al. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Network, 1993, 4(2): 121-132.
    120Hase R, Sugiura H, Fukunaga A, et al. Clinical outcomes following estendend thymectomy for myasthenia gravis: report of 17 cases. Ann Thorac Carciovasc Surg, 2006, 12(3):203-206
    1. Shevach E. Regulatory T cells in autoimmunity. Annu Rev Immunol, 2000, 18: 423-449.
    2. Sakaguchi S. Regulatory T cells: key controllers of immunologic self- tolerance. Cell, 2000, 101(5): 455– 458.
    3. Amold B, Levelsof peripheral T cell tolerance.Transpl Immunol, 2002, 10(2-3): 109-114
    4 Gershon RK, Kondo K. Infectious immunological tolerance. Immunology, 1971, 21: 903- 914.
    5 Strphane Vigouroux,Eric Yvon,Ettore Biagi,et al.Antigen-induced regulatory Tcells. Blood, 2004, 104(1): 26-33.
    6. Sakaguchi S , Sakaguchi N , Asano M, et al . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breackdown of single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151-1164.
    7. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol , 2003, 3: 253– 257.
    8. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann Rev Immunol, 2004, 22: 531– 562.
    9. Ciriaco A. Piccirillo , Ethan M. Shevach. Naturally-occurring CD4+CD25+ immunoregulatory T cells central players in the arena of peripheral tolerance. Seminars in Immunology, 2004, 16(2): 81–88.
    10. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 2001, 27(1): 68-73.
    11. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5609): 1075-1061.
    12. Hori S, Sakaguchi S. Foxp3: a critical regulator of the development and function ofregulatory T cells. Microbes and Infection, 2004, 6: 747-751.
    13. Papiernik M,de Moraes ML,Pontous C,et al. Regulatory CD4+ T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2. Int Immunol, 1998, 10(4): 371-378
    14. Waldmann TA. The interleukin-2 receptor. J Biol Chem, 1991, 266(5): 2681–2684.
    15. Beacher-Allan C, Brown JA, Freeman GJ,et al. CD4+CD25high regulatory cells in human peripheral blood. J Immunol, 2001, 167: 1245–1253.
    16. Liu WH, Putnam AL, Zhou XY,et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med, 2006, 203(7):1701–1711.
    17. Ruprecht CR. Ruprecht,Marco Gattorno,Francesca Ferlito,et al. Coexpression of CD25 and CD27 identifies FoxP3 regulatory T cells in inflamed synovia.J Med Exp, 2005, 201(11): 1793–1803.
    18. De Jong R, Brouwer M, Hooibrink B, et al. The CD27- subset of peripheral blood memory CD4+lymphocytes contains functionally differentiated T lymphocytes that develop by persistent antigenic stimulation in vivo. Eur J Immunol, 1992, 22(4): 993- 999.
    19. Seddiki NB,Santner-NananSG,Tangye SI,et al. Persistence of na?ve CD45RA+ regulatory T cells in adult life. Blood, 2006, 107: 2830–2838.
    20. Roifman CM, Zhang J, Chitayat D, et al. A partial deficiency of Interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood, 2000, 96(8): 2803- 2807.
    21. Fuller MJ, Hildeman DA, Sabbaj S, et al. Cutting edge: emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J. Immunol, 2005, 174(10): 5926–5930.
    22. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol, 2002, 3(2): 135-142.
    23. Chen C,Gu T,Li M, et al.The role of PD-L1 on the surface of mouse dendritic cells in costimulating T lymphocyte. Chin J Immunol, 2005, 21(4): 243-246.
    24. Tang Q, Henriksen KJ, Boden EK, Tooley AJ, Ye J, Subudhi SK, et al. CD28 controlsperipheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol, 2003, 171(7): 3348- 3352.
    25. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med, 2000, 192(2): 295-302.
    26. Neufeld G, Cohen T, Shraga N, et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med, 2002, 12(1): 13–19.
    27. Bruder D, Probst-Kepper M, Westendorf AM, et al. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol, 2004, 34(3): 623- 630.
    28. F. Annunziato, L. Cosmi, F. Liotta,et al. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes, J Exp Med, 2002, 196 (3) : 379–387.
    29. Shuang Liang, Pascale Alard, Yuan Zhao,et al. Conversion of CD4- CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus.J Exp Med, 2005, 201(1): 127-137.
    30. Asano M,Toda M,Sakaguchi N,et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med, 1996, 184(2): 387-396.
    31. Apostolou I, Von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med, 2004, 199(10): 1401– 1408.
    32. Shohei Hori, Takashi Nomura, Shimon Sakaguchi. Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science, 2003, 299:1057~1061.
    33. Zoltan Fehervari, Shimon Sakaguchi. CD4+ Tregs and immune control. J Clin Invest, 2004, 114(9): 1209–1217.
    34. Norihiko Watanabe, Yi-Hong Wang, Heung Kyu Lee,et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature, 2005, 436(25): 1181- 1185.
    35. Enrico Maggi,Lorenzo Cosmi,Francesco Liotta,et al. Thymic regulatory T cells. Autoimmunity Reviews, 2005, 4(8): 579- 586.
    36. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatoryT cells induced by an agonist self-peptide. Nat Immunol, 2001, 2(4): 301- 3066.
    37. Hisse-Martien van Santen,Christophe Benoist, Diane Mathis. Number of T reg Cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med, 2004, 200(10): 1221–1230.
    38. von Boehmer, H. Selection of the T-cell repertoire: receptor- controlled checkpoints in T-cell development. Adv Immunol, 2004, 84: 201–-238.
    39. Watanabe, N. et al. Human thymic stromal lymphopoietin promotes dendritic cell-mediated CD4t T cell homeostatic expansion. Nature Immunol, 2004, 5(4): 426- 434.
    40. Soumelis, V. et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nature Immunol, 2002, 3(7): 673–-680.
    41. Jason D Fontenot, James L Dooley, Andrew G Farr, et al. Developmental regulation of Foxp3 expression during ontogeny. J Exp Med, 2005, 202(7): 901- 906
    42. Zelenay S, Lopes-Carvalho T, Caramalho I, et al. Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion.Proc Natl Acad Sci, 2005, 102(11): 4091-4096
    43. Jens Lohr, Birgit Knoechel, Estelle C. Kahn,et al. Role of B7 in T Cell Tolerance. The Journal of Immunology, 2004, 173(8): 5028–5035.
    44. Tsvetelina Pentcheva-Hoang, Jackson G. Egen, Kathleen Wojnoonski,et al. B7-1 and B7-2 Selectively Recruit CTLA-4 and CD28 to the Immunological Synapse. Immunity, 2004, 21(3): 401–413.
    45. Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 2003, 4(4):337-342.
    46. Xing Chang, Pan Zheng, Yang Liu.FoxP3: A genetic link between immunodeficiency and autoimmune diseases. Autoimmunity Reviews, 2006, 5(6): 399–402.
    47. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nat Immunol, 2003, 4(4): 330- 336.
    48. Khattri R, Cox T, Yasayko SA, Ramsdell F, An essential role for scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 2003, 4(4): 337- 342.
    49. Tai, X., M. Cowan, L. Feigenbaum, A. Singer.CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiationindependently of interleukin 2. Nat Immunol, 2005, 6(2): 152- 162.
    50. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998 , 188(2): 287-296.
    51. Wilson NS, El-Sukkari D, Villadangos JA. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood, 2004, 103(6): 2187–2195.
    52. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by _-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a co-administered protein. J Exp Med, 2003, 198(2): 267–279.
    53. Yamazaki S, Iyoda T, Tarbell K,et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med, 2003, 198(2): 235-247.
    54. Yamazaki S, Patel M, Harper A, Bonito A, Fukuyama H, Pack M, et al.Effective expansion of alloantigen-specific foxp3+ CD25+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci USA, 2006, 103(8): 2758-2763.
    55. Tarbell KV, Yamazaki S, Steinman RM.The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin Immunol, 2006 , 18(2): 93-102.
    56. Hartigan-O'Connor DJ, Poon C, Sinclair E,et al. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J Immunol Methods, 2007, 319(1-2): 41-45
    57. Ermann J, Hoffmann P, Edinger M Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood, 2005 ,105(5): 2220-2226.
    58. Jeffrey A Bluestone ,Qizhi Tang. How do CD4+CD25+ regulatory T cells control autoimmunity? Current Opinion in Immunology, 2005, 17(6): 638- 642.
    59. Ochado JC, Yopp AC, Yang Y, et al. Lymph node occupancy is required for the peripheral development of alloantigenspecific Foxp3+ regulatory T cells. J Immunol,2005, 174(11): 6993- 7005.
    60. Fu S, Zhang N, Yopp AC, et al. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am J Transplant, 2004, 4(10): 1614- 1627.
    61. Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med, 2002, 195(12): 1641- 1646.
    62. Siegmund K, Feuerer M, Siewert C, et al. Migration matters: regulatory T cell compartmentalization determines suppressive activity in vivo. Blood, 2005, 106(9): 3097-3104.
    63. Durkin HG, Waksman BH. Thymus and tolerance. Is regulation the major function of the thymus? Immunol Rev, 2001, 182: 33–57.
    64. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Gene.t 2001; 27(1): 20–21.
    65. Fattorossi A, Battaglia A, Buzzonetti A, et,al. Circulating and thymic CD4+ CD25+ T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment[J]. Immunology, 2005, 116(1): 134- 141.
    66. David A Hafler,Jacqueline M Slavik,David E Anderson, et al. Multiple sclerosis. J Clin Invest, 2004, 113(6): 788–794.
    67. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell, 1996, 85(3): 299- 302.
    68. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med, 2004, 199(7): 971–979.
    69. Mendel I, Kerlero de Rosbo N,Ben-Nun A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic Tcells. Eur J Immunol, 1995, 25(7): 1951- 1959.
    70. Kohm AP, Carpentier PA, Anger HA. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactiveimmune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol, 2002, 169(9): 4712–4716.
    71. Wing K, Lindgren S, Kollberg G, et al. CD4 T cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25+ T cells. Eur J Immunol, 2003, 33(3): 579–587.
    72. Wing K, Ekmark A, Karlsson H, et al. Characterization of human CD25+CD4+ T cells in thymus, cord and adult blood. Immunology, 2002, 106(2): 190–199.
    73. Mills JA . Systemic lupus erythematosus. N Engl J Med, 1994, 330(26): 1871- 1879.
    74. Lispky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol, 2001, 2(9):764-766.
    75. Georgescu L, Vakkalanka RK, Elkon KB, et al. Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J Clin Invest, 1997, 100(10): 2622- 2633.
    76. Crispin JC, Mart?′nez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun, 2003, 21(3): 273- 276.
    77. Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol, 2005, 175(12): 8392- 8400.
    78. Lee JH, Wang LC, Lin YT, et al . Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology, 2006, 117(2): 280- 286.
    79. Hsu WT, Suen JL, Chiang BL. The role of CD4CD25 T cells in autoantibody production in murine lupus. Clin Exp Immunol, 2006,145(3): 513- 519
    80. Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D. Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun, 2006, 27(2): 110-1188.
    81. Monk CR, Spachidou M, Rovis F, et al. MRL/Mp CD4+CD25- T cells show reduced sensitivity to suppression by CD4+ CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum, 2005, 52(4): 1180-1184.
    82. Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med, 2004, 200(3): 277-285
    83. van Amelsfort JM, Jacobs KM, Bijlsma JW, et al. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function betweenperipheral blood and synovial fluid. Arthritis Rheum, 2004, 50(9): 2775- 2785
    84. Toubi E, Kessel A, Mahmudov Z, et al. Increased spontaneous apoptosis of CD4+CD25+ T cells in patients with active rheumatoid arthritis is reduced by infliximab . Ann N Y Acad Sci, 2005, 1051: 506-514.
    85. Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. J Clin Invest, 2006, 116(11):2843-2854
    86. Balandina A, Lecart S, Dartevelle P,et al. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood, 2005, 105(2): 735- 741.
    87. Luther C, Poeschel S, Varga M, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol, 2005, 164(1-2): 124 -128.
    88. Sun Y, Jian Qiao, Chuan-Zhen Lu, et al. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clinical Immunology, 2004, 112(3): 284- 289.
    89. Huang Y-M, R Pirskanen, R Giscombe,et al. Circulating CD4+CD25+and CD4+CD25_ T Cells in Myasthenia Gravis and in Relation to Thymectomy. Scandinavian Journal of Immunology, 2004, 59(4):408- 414.
    90. Huang YM, Pirskanen R, Cosgimos R, et al. Circulating CD4+CD25+ and CD4+CD25- T cells in myasthenia gravis. Ann N Y Acad Sci, 2003, 998: 318- 319.
    91. Battaglia A, Di Schino C, Fattorossi A, Scambia G, Evoli A. No evidence for alterations in circulating CD4+CD25+ T regulatory and natural killer T cells in patients with myasthenia gravis: a flow cytometry study. J Biol Regul Homeost Agents, 2005,19(1-2): 54-62.
    92. Cao D, Malmstrom V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C. Isolation and functional characterization of regulatory CD25brightCD4t T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol, 2003,33: 215–23.
    93. Hoffmann P, Boeld TJ, Eder R,et al. Isolation of CD4+CD25+ regulatory T cells for clinical trials. Biol Bliid Marrow Transplant, 2006, 12(3):267-274.
    94. 李向培,翟志敏,钱龙,等.系统性红斑狼疮患者 CD4+CD25+调节性 T 细胞的变化.中华风湿病学杂志,2006,10(3): 141-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700