用户名: 密码: 验证码:
A_2M FP_6 DNA片段转染神经干细胞移植治疗转基因AD小鼠的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease, AD)是发生于老年和老年前期以进行性认知障碍和记忆力损害为主的中枢神经系统退行性疾病。随着分子生物学和分子病理学的飞跃发展,AD的病因及发病机制的研究取得了很大进展,淀粉样蛋白级联反应被认为在AD的发病机制中占主导作用,已成为AD发病机制研究中的热点和治疗AD的突破点。淀粉样蛋白级联反应学说认为基因突变或其它因素使Aβ淀粉样蛋白(amyloidβprotein, Aβ)的表达增加或代谢紊乱,导致Aβ的产生和清除不平衡,日积月累造成Aβ的沉积,形成老年斑(senile plaque, SP)和神经原纤维缠结(neurofibillary tangles, NFTs),最终导致神经细胞变性坏死。越来越多的资料表明Aβ淀粉样肽产生过多,其聚集物在脑组织中的形成与沉积是AD发病的一个中心环节和共同通道。因此,若能够减少Aβ肽的形成、抑制Aβ肽的聚集、抑制Aβ多肽的神经毒性、加速Aβ肽的降解与清除,则可能成为预防和治疗AD的理想途径。
     目前AD常规的治疗,既不能消除Aβ的沉积,也没有改善神经元的丢失。难以达到理想的治疗效果。随着基因治疗和干细胞工程技术的迅猛发展,为解决这一难题提供了新的思路。
     α2巨球蛋白(Alpha-2 macroglobulin, A2M)是一泛蛋白酶抑制剂,也是脑组织免疫炎症反应的一种急性期反应蛋白,主要由肝脏合成,在脑内可由星形胶质细胞产生,它广泛分布在细胞外液中,在血浆中维持较高的浓度。近来研究发现,A2M是Aβ肽的一种高亲和力的结合蛋白,其C末端的27个氨基酸可与Aβ肽特异性结合。通过A2M与Aβ的相互作用,A2M可中和Aβ的毒性、降解并清除Aβ。另外,A2M还可与一些小分子如细胞因子、生长因子、免疫炎症因子等结合并清除这些分子,从而影响细胞的表型,影响细胞因子、生长因子、免疫炎症因子等的平衡以及局部微环境的稳定,调节细胞的生长和生理过程。通过不同的限制性内切酶消化及聚合酶链反应(Polymerase chain reaction, PCR)方法可将A2M分成6个片段,即FP1(aa99-392),FP2(aa341-590),FP3(aa591-744),FP4(aa775-1059),FP5(aa1030-1279),FP6(aa1242-1451)。各片段与生长因子、Aβ的体外试验证明,以转化生长因子( transforming growth factor-beta, TGF-β)为代表的生长因子选择性与FP3段结合,Aβ则与FP6段选择性结合,且其结合具有高度的特异性。这也提示A2M(FP6)可能成为一个治疗AD新的方向。
     神经干细胞(Neural Stem Cells,NSCs)作为神经系统的全能细胞,有很强的分裂、增殖能力,且在不同因子作用下,定向分化成神经元和神经胶质细胞。体外培养的神经干细胞作为神经损伤、修复的治疗性供体已经展现了诸多的优点。而且它也是非常理想的基因治疗载体。
     鉴于A2M具有中和Aβ的毒性、降解并清除Aβ及其FP6段能特异性结合Aβ的重要特性,利用NSCs可作为基因治疗的载体及其对缺失神经元的替代作用,本研究小组在成功构建了pEGFP/A2M(FP6)真核表达载体的基础上,应用脂质体转染获得转染pEGFP/A2M(FP6)的NSCs,探索转染pEGFP/A2M(FP6)的NSCs治疗AD的新方法。初步实验发现,pEGFP/A2M(FP6)的转染能明显提高体外培养的NSCs体系对Aβ毒性的耐受性,并减少Aβ处理后细胞的死亡。在此基础上,本实验采用PCR、NSCs分离培养、基因转染等技术,并结合水迷宫测试、转基因小鼠鉴定、定向海马移植、免疫组化染色以及荧光显微镜观察和图像分析等手段,首先对所获pEGFP/A2M(FP6)重组质粒进行鉴定,将构建好的pEGFP/A2M(FP6)真核表达载体转染至NSCs中,观察携带pEGFP/A2M(FP6)NSCs的生物学特性,并将其定向移植到APP/PS1双转基因AD小鼠海马内,观察移植细胞的存活、分化、迁移,脑内Aβ沉积的变化,以及对APP/PS1双转基因AD小鼠学习记忆功能的影响。结果如下:
     一、pEGFP/A2M(FP6)重组质粒转染神经干细胞的实验研究
     1.采用机械分离法,成功的分离出胚胎小鼠皮层NSCs,利用DMEM/F12(1:1)培养基,加入生长因子B27和碱性成纤维细胞生长因子( basic fibroblast growth factor, bFGF),成功地进行了NSCs的培养和传代。采用Nestin、GFAP、MAP-2进行鉴定,并进行了MAP-2和GFAP的双标记,培养的细胞有阳性表达,充分说明我们分离、培养的细胞为NSCs,而且具有向神经元和神经胶质细胞分化的潜能。NSCs分离、培养、鉴定的完成为pEGFP/A2M(FP6)转染提供了载体。
     2.利用Nucleofector转染技术成功将pEGFP/A2M(FP6)重组质粒转染入NSCs,转染率约为50%,经G418筛选传3代,荧光显微镜下仍可见EGFP的表达,经10%胎牛血清诱导后,免疫荧光组织化学染色显示部分细胞MAP-2、GFAP表达阳性。表明转染pEGFP/A2M(FP6)对神经干细胞的生长、分化无明显影响。转染pEGFP/A2M(FP6)的NSCs用RT-PCR可检测到A2M FP6mRNA的高表达,免疫荧光组织化学法观察到A2M蛋白的表达。这也为我们细胞移植治疗AD提供了理论及实验基础。
     二、APP/ PS1双转基因AD传代小鼠的基因型鉴定及其行为学和组织学分析
     1.对转基因小鼠杂合体种鼠(来源于Jackson实验室)进行繁殖,抽取小鼠的尾血提取基因组DNA,并进行基因型分析,筛选得到了APP/PS1双转基因AD小鼠。
     2.抗Aβ免疫荧光组织化学染色显示APP/PS1双转基因AD小鼠的皮层及海马区有大量的Aβ染色阳性斑块。透射电子显微镜下海马区Aβ周围神经元溃变、肿胀,细胞内含有大量的脂褐素,神经突触稀松形态不一,微管小泡及线粒体堆积,胶质细胞胞浆肿胀。水迷宫实验发现该小鼠逃避潜伏期较对照鼠显著延长。表明APP/PS1双转基因AD小鼠具有AD主要的病理及行为学特征,为本研究提供了理想的AD动物模型。
     三、携带目的基因的神经干细胞移植治疗AD小鼠的实验观察
     1. AD小鼠水迷宫测试,pEGFP/A2M(FP6)-NSCs组和pEGFP -NSCs组小鼠逃避潜伏期较SO组及ACSF组显著缩短;pEGFP/A2M(FP6)-NSCs组和pEGFP -NSCs组AD小鼠逃避潜伏期相比,差异有统计学意义(p<0.05)。表明两组均能有效改善AD小鼠的学习记忆障碍,以pEGFP/A2M(FP6)-NSCs组改善效果更佳。
     2.抗Aβ免疫荧光组织化学染色显示,pEGFP/A2M(FP6)-NSCs组和pEGFP -NSCs组AD小鼠海马及皮层内,部分Aβ染色阳性斑块周围可见表达EGFP的移植细胞,表明移植的神经干细胞可迁移并包绕Aβ斑块。观察pEGFP/A2M(FP6)-NSCs组AD小鼠额叶、海马区域,Aβ染色阳性斑块数量和平均面积均较pEGFP -NSCs组、SO组及ACSF组显著减少。表明pEGFP/A2M(FP6) NSCs移植治疗可以减少AD小鼠皮层及海马区Aβ斑块的沉积。
     3.移植的神经干细胞,部分细胞Nestin染色呈阳性,表明仍具有干细胞的活性,MAP-2染色显示少数移植细胞呈阳性, GFAP染色部分移植细胞呈阳性。说明部分移植的神经干细胞分化为神经元及星形胶质细胞。
     本实验首先对所获pEGFP/A2M(FP6)重组质粒进行鉴定,将之成功地转染入神经干细胞,使其高表达具有生物学活性的A2M(FP6)。并将转染pEGFP/A2M(FP6)神经干细胞移植到APP/PS1双转基因AD小鼠海马,观察到AD小鼠脑内Aβ斑块沉积减少,部分移植的神经干细胞分化为神经元及星形胶质细胞,小鼠的学习记忆功能显著改善。本研究从神经干细胞应用及基因治疗的角度对AD的治疗进行了有益的探索。
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that mainly impaires central nervous system and clinically characterized by progressive memory loss, cognitive decline in elderly population. Great advancement has been gained in etiology. The amyloid cascade hypothesis is widely accepted in AD pathogenesis. The hypothesis presumes that gene mutation or other factors upregulate beta-amyloid (Aβ) and disorder its metabolism, and Aβdeposits as fibril aggregates forming senile plaques (SP) and intracellular neurofibrillary tangles (NFTs), which results in the degeneration and necrosis of neurons. Therefore, amyloid cascade hypothesis has become a hot spot on the investigation of pathogenesis and a breakthrough of the therapy on AD. Many studies show that deposits of Aβin brain is a central and common passage in pathogenesis of AD. AD can be relieved and even cured by decreasing formation, inhibiting aggregate, restraining neurotoxicity, accelerating degradation and clearness of Aβin brain.
     Alpha-2 macroglobulin (A2M) is a proteinase inhibitor with broad-range specificity and an acute phase reactive protein relating to immune and inflammatory reaction of brain tissues. A2M is found mainly in the liver and in astrocytes of the brain. It is widely distributed over extracellular fluid, and kept in the plasma at higher concentration. Present studies show that A2M is a high affinity protein of Aβ, of which 27 amino acids of C-terminal can specifically bind, neutralize toxicity, degrade and clean Aβ. Furthermore, A2M can also bind and clean some micromolecules, such as cytokines, growth factors, immunine and inflammatory factors. Therefore, A2M effects corpuscular phenotype and balances of cytokines, growth factors, immune and inflammatory factors, stabilizes the region microenviroment and accommodates the procedure of cells growth and physiology. A2M can be fractionated into six fusion proteins, including FP1 (aa99-392), FP2 (aa341-590), FP3 (aa591-744), FP4 (aa775-1059), FP5 (aa1030-1279) and FP6 (aa1242-1451). In-vitro studies have confirmed that growth factors (such as TGF-β, PDGF-BB, NGF-β) bind selectively FP3 and Aβbind preferentially FP6.
     Considering the important role that A2M can counteract toxicity of Aβ, degenerate and clean up Aβ, and FP6 can specificially bind to A2M, and neural stem cells (NSCs) can repair the absenced neuron and gene therapy as vector, our research team has successfully constructed Eukaryotic expression plasmid vector pEGFP/A2M(FP6)and transfected it into NSCs with lipotransfection in order to explore a new therapeutical means of AD. Initial experiments found that pEGFP/A2M(FP6)-transfected neural stem cells can elevate toleration of Aβtoxicity, and reduce cells death attributable to Aβ. Based on above experiments, the objective of this present study is to identify the plasmid pEGFP/A2M(FP6)and transfect it into NSCs, and then the gene-modified NSCs were transplanted into hippocampus of APP/PS1 double transgenic mice thus investigating the survivial, migration and differentiation of NSCs and the aleration of Aβin the brain of transgene mice. The main results are as follows:
     Ⅰ. Transfection of NSCs with pEGFP/A2M (FP6) in vitro.
     1. Culture and identification of NSCs.
     NSCs were isolated and cultivated. Immunohistochemistry showed the NSCs of passage 3 expressed Nestin, GFAP, and MAP-2, suggesting that the cells have NSCs characteristics. Further, The co-localization of GFAP, and MAP-2 confirmed NSCs. It differentiated to neuron and glia.
     2. The pEGFP/A2M (FP6) was successfully transfected into neural stem cells.
     With the aid of Nucleofector, the pEGFP/A2M (FP6) was successfully induced into NSCs with high transfection rate of 50%. Green fluorescence was observed in the transfected cells, indicating the existence of reporter gene. After screening with G418, the assay of cell proliferation and immunohischemistry showed that the proliferation of cells is unchanged and the expression of MAP-2, GFAP positive. The expression of A2M FP6 mRNA was detected with RT-PCR and electrophoresis showed that the expression of A2M FP6 in transfected NSCs was higher than that of pEGFP transfected cells. Immunofluorenscent analysis observed the expression of A2M FP6 protein. These findings suggest that pEGFP/A2M (FP6) was successfully transfected into NSCs.
     Ⅱ. Identification and ethology, histologic analysis of APP/PS1 double transgenic Alzheimer’s disease mice model.
     1. APP/PS1 double transgenic AD mice were purchased from Jackson laboratory. The animals were breeded and the offsprings were genotyped according to the guildeline of Jackson laboratory.
     2. Immunofluorescent assay showed that many Aβdeposits were discovered in cortex and hippocampus of APP/PS1 mice. Transmission electron microscope observed that neurons were found to be degenerating and swelling surrounding the Aβ, synapse loosing, microtube and mitochondrium accumulating, glias swelling. Water maze test showed the latencies of double transgenic APP/PS1 mice were longer than that of control group. This suggests APP/PS1 mice could simulate the specific pathogenesis of Alzheimer’s disease, thus can be regard as a efficiently experimental animal model.
     Ⅲ. The effect of pEGFP/A2M (FP6) transfected NSCs in transgenic mice of Alzheimer’s disease
     1. The pEGFP/A2M (FP6) transfected NSCs and infused into the hippocampal area of APP/PS1 mice, and water maze test was carried out at 53th-59th day. The latencies of pEGFP/A2M (FP6)-NSCs group and pEGFP-NSCs group were shorter than that of sham operated (SO) group and artificial cerebrospinal fluid (ASCF) group. pEGFP/A2M(FP6)- NSCs group showed the best improvement, its mean latencies were significantly shorter than pEGFP -NSCs group (p<0.05) and learning and memory were improved.
     2. Anti-Aβdetection showed Aβdeposits in hippocampal and cortex of pEGFP/A2M (FP6)-NSCs group and pEGFP- NSCs group were surrounded by transplanted NSCs. The amount of Aβdeposits and average size of Aβdeposits in hippocampus and cortex of pEGFP/A2M(FP6)-NSCs group were reduced markedly, compared with that of sham operated group, ASCF group and pEGFP -NSCs group(p<0.05) .This suggests pEGFP/A2M(FP6)-NSCs can reduced Aβdeposits in hippocampus and cortex of AD mice.
     3. The expression of Nestin protein were still detected positively 2 months after transplantation, and this manifested they still had stem cells potential ability. Immunofluorescent detection indicated that majority of transplanted cells were positively expressed GFAP while only a few espressed MAP-2. This findings suggest the transplanted NSCs were differentiated into neurons and glias.
     In conclusion, we first identified pEGFP/A2M (FP6) and transfected it into NSCs to obtain the seed cells with efficient expression of A2M (FP6), and then transplanted the transfected NSCs into the hippocampal district of APP/PS1 double transgenic mice. Partial transplanted NSCs were differentiated into neurons and glias, Aβdeposits were reduced, and the function of learning and memory were promoted. This study lay the foundation on developing new approaches to treat AD.
引文
1. Clark C and Karlawish J. Alzheimer disease: Current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med, 2003, 138 (5): 400-410.
    2. Xu BG, Wu X. Advances in molecular biology and clinical study of amyloid precursor protein for Alzheimer's disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2004, 26(2):201-209.
    3. Guo Q, Robinson N, Mattson M. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappa B and stabilization of calcium homeostasis. J Biol Chem, 1998,273 (20):12341-12351.
    4. Borchelt DR, Tatovitski T, Van LJ, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron, 1997,19: 939-945.
    5. Turner PR. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol, 2003,70(1):1-2.
    6. Du Y, Bales KR, Dodel RC, et al. Alpha2-macroglobulin attenuates beta-amyloid peptide 1–40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons. J Neurochem,1998,70:1182-1188.
    7. Hughes S, Khorkova O, Goyal S et al. α2-macroglobulin associates withβ-amyloid peptide and prevents fibril formation. Proc Natl Acad Sci USA, 1998, 95:93275-93280
    8. Webb DJ, Wen J, Karns LR, et al . Localization of the binding site for transforming growth factor-β in human 2-macroglobulin to a 20-kDa peptide that also contains the bait region. J.Biol.Chem,1998, 273:13339-13346.
    9. Mettenburg JM, Webb DJ, Gonias SL. Distinct binding sites in the structure of 2-macroglobulin mediate the interaction with -amyloid peptide and growth factors. J Biol Chem, 2002, 277:13338-13345.
    10. Gage HF. Mammalian neural stem cells. Science, 2000,287(5457):1433-1438.
    11. Kan CC, Solomon E, Belt KT, et al. Nucleotide sequence of cDNA encoding human 2-macroglobulin and assignment of the chromosomal locus. Proc Natl Acad Sci USA, 1985,82:2282-2286.
    12. Borth W. α 2-Macroglobulin, a multifunctional binding protein with targetingcharacteristics. Faseb J,1992,6:3345-3352
    13. Lars SJ. α2-Macroglobulins:Structure,Shape,and Mechanism of Proteinase Complex Formatio. J Biochem, 1989, 264(20):11539-11542.
    14. Ulery PG, Beers J, Mikhailenko I, et al. Modulation of -amyloid precursor protein rocessing by the low density lipoprotein receptor-related protein(LRP). J Biol Chem, 2000,275(10):7410-7415.
    15. Hyman BT, Strickland D, Rebeck W. Role of the low density lipoprotein receptor- related protein in -amyloid metabolism and Alzheimer’s disease. Arch Neurol, 2000,57:646-650.
    16. Birkenmeier G, Stigbrand T. Production of conformation-specific monoclonal antibodies against α2-macroglobulin and their use for quantitation of total and transformed α2-macroglobulin. J Immunol Methods,1993,162:59-67.
    17. Bauer J, Strauss S, Schreiter-Gasser U et al. Interleukin-t and α2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices. FEBS Lett, 1991; 285: 111-114
    18. Hughes SR, Khorkova O, Goyal S, et al. Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation. Proc Natl Acad Sci USA 1998,95:3275-3280.
    19. Lauer D, Reichenbach A,Birkenmeier G. Alpha 2-macroglobulin-mediated degradation of amyloid beta 1-42: a mechanism to enhance amyloid beta catabolism. Exp Neurol, 2001,167:385-392.
    20. Narita M, Holtzman DM, Schwartz AL. Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem, 1997, 69:1904-1911.
    21. Umans L, Serneels L, Overbergh L, et al. alpha 2-macroglobulin and murinoglobulin- 1-deficient mice: a mouse model for acute pancreatitis. Am J Pathol,1999, 155:983-993.
    22. Birkenmeier G, Müller R, Huse K, et al. Human α2-macroglobulin: genotype–phenotype relation. Experimental Neurology, 2003,184(1):153-161.
    23. Scacchi R, Ruggeri M, Gambina G, et al. Alpha2-macroglobulin deletion polymorphism and plasma levels in late onset Alzheimer’s disease. Clin Chem Lab Med, 2002,40: 333-336.
    24. Kang DE, Pietrzik CU, Baum, et al. Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. J Clin Invest, 2000,106:1159-1166.
    25. Chalfie M, Yu T, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science,1994,263(5148):802-805.
    26. Cubitt A, Heim R, Adama SR, et al. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci, 1995,20(11):448-455.
    27. J. 萨姆布鲁克,D.W.拉塞尔著,黄培堂等译. 分子克隆实验指南. 科学技术出版社,2002.
    28. Tsoen RY. The green fluorescent protein. Anu Rev Biochem,1998,67:509-544.
    29. Ormo M, Cubitt AB, Kallio K, et al. Crysta structure of the aequorea Victoria green fluorescent protein. Science,1996,273(5280):1392-1395.
    30. Yang F, Moss LG, Phillips GN, et al. The molecular stucture of green fluorescent protein. Nat Biotechnol,1996,14(10):1246-1251.
    31. Mazurier F, Moreau FG, Maguer VS, et al. Rapid analysis on deficient selection of human transduced pronitive hematopoietic cells using the humanixed S65T green fluorescent protein. Gene,1998,5:556-562.
    32. Cheng LZ, Fu JC, Tsukamto A, et al. Use of green fluorescent protein variants to monotor gene transfer and expression in mammalian cells. Nat biotechnol, 1996, 14(5):606-609.
    1. Wang QH, Xu RX, Nagao S. Transplantation of cholinergic neural stem cells in a mouse model of Alzheimer's disease. Chin Med J (Engl), 2005, 118(6):508-11.
    2. Aleksandrova MA, Poltavtseva RA, Revishchin AV, et al. Development of human brain neural/progenitor cells after transplantation into the brain of adult rats. Morfologiia, 2003,123(3):17-20.
    3. Shen LH, Zhang JT. Culture of neural stem cells from cerebral cortex of rat embryo and effects of drugs on the proliferation ability of stem cells. Yao Xue Xue Bao, 2003,38(10):735-738.
    4. Gaunitz F, Papke M. Gene transfer and expression. Methods Mol Biol, 1998, 107:361-370.
    5. Xia Z, Dudek H, Mirantt CK, et al. Calcium influx via the NMDA receptor induces immediate early gene transcrip-lion by a MAP kinase/ERK-dependent mechanism. Neurosci, 1996, 16: 5425-5436.
    6. Jaworski J, Figiel I, Proszynski T, et al. Efficient expression of tetracycline-responsive gene after transfection of dentate gyros neurons in vitro. J Neurosci Res,2000, 60: 754-760.
    7. Haas K, Sin WC, Javaherian A, et al. Single-cell electroporation for gene transfer in vivo. Neuron, 2001,29: 583-591.
    8. Barkats M, Bilang-Bleuel A, Buc MH, et al. Adenovirus in the brain: recent advances of gene therapy for neurodegenerative diseases. J Prog Neurobiol, 1998,55: 333-341.
    9. Sarkis C, Serguera C, Petres S, et al. Efficient transduckion of neural cells in vitro and vivo by a baculovims-derived vector. Proc Natl Acad Sci USA, 2000, 97:14638-14643.
    10. Noguchi A, Furuno T, Kawaura C, et al. Membrane fusion plays an important role in gene trans-fection mediated by cationic liposomes. FEBS Lett, 1998,433: 169-173.
    11. Wang S, Bui V, Hughes JA, et al. Adeno-associated virus mediated gene transfer into primary rat brain neuronal and glial cultures: enhancement with the pH-sensitive sur-factant dodecyl 2-(1 P-imidazolyl) propionate. Neurochem lnt, 2000, 37: 1-6.
    12. Neumann E, Schaefer-Ridder M, Wang Y, et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields . EMBO J, 1982, 1: 841-845.
    13. Watanabe M, Shirayoshi Y, Koshimizly U, et al. Gene transfection of mouse primordial germ cells in vitro and analysis of their survival and growth control . Experi-mental Cell Research, 1997, 230: 76-83.
    14. Harriague J, Bismuth G. Imaging antigen induced PI3K activation in T cells. Nat Immunol, 2002,3(11):1090-1096.
    15. Santourlidis S, Trompeter HI, Weinhold S, et al.Crucial role of DNA methylation in determination of clonally distributed killer cell Ig like receptor expression patterns in NK cells. J Immunol,2002,169(8):4253-4261.
    16. Buttgereit P, Schmidt-Wolf. Journal of hemotherapy and stem cell research IG. Gene therapy of lymphoma. J Hematother Stem Cell Res, 2002,11(3):457-467.
    17. Murphy LL, Hughes CC.Endothelial cells stimulate T cell NFAT nuclear translocation in the presence of cyclosporin A : involvement of the wnt /glycogen synthase kinase 3 beta pathway. J Immunol,2002,169(7):3717-3725.
    18. Chun HJ, Zheng L, Ahmad M, et al.Pleiotropic defects in lymphocyte activation caused by caspase 8 mutations lead to human immudeficiency.Nature,2002, 419(6905): 395-399.
    19. Cesnulevicius K, Timmer M, Wesemann M, et al. Nucleofector is the most efficient non-viral transfection method for neuronal stem cells derived from ventral mesencephali with no changes in cell composition or dopaminergic fate. Stem Cells, 2006,24(12):2776-2791.
    1. Price DL, Tanzi RE, Borchelt DR, et al. Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Gent, 1998,32(4):461-493.
    2. Jankowsky JL, Slunt HH, Ratovitski T, et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng, 2001,17(6):157-165.
    3. Borchelt DR, Tatovitski T, Van LJ, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron, 1997,19: 939-945.
    4. 梁宝星.记忆的耗散结构模式. 思维科学通讯, 1991, 2:34.
    5. 吴敏, 杨治良. 试论内隐记忆的性质和理论解释. 心理学动态, 1994, 2(1):1.
    6. Morris RGM, Garrud P, Rawlins JN P, et al. Place navigation impaired in rats with hippocampal lesions. Nature,1982,297:681.
    7. Lisman J. A mechanism for the Hebb and anti Hebb processes underlying learing and memory. Proc Natl Acad Sci USA, 1989,86:9574.
    8. Squire LR, Zola, Morgan S. Memory brain system and behavior. Trends in Neuroscience,1988,11:170.
    9. Arendash GW, King DL, Gordon MN, et al. Progressive, age-related behavioral impairments in transgenic mice carrying borth mutant amyloid precursor protein and presenilin-1 transgenes. Brain Res, 2001,891:42-53.
    10. Tsai J, Grutzendler J, Duff K, et al. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 2004, 11(7):1181-1183.
    1. Martin Citron. Alzheimers disease; Treatments in discovery and development. Nature neuroscinece supplement, 2002, 5: 1055-1057.
    2. Clark C and Karlawish J. Alzheimer disease: Current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med, 2003, 138 (5): 400-410.
    3. Hardy JA, Higgins G. A. Alzheimer’s disease; the amyloid cas-cade hypothesis. Science, 1992, 256(5054): 184-185.
    4. Hardy JA , David A. Amyloid deposition as the central event in the aetiollgy of Alzheimer’s disease. Trends pharmacol Sci. 1991,12:283-388
    5. Seubert P, Carmen VP, Fred E, et al. Isolation and quantification of soluble Alzhermer’s beta-peptide from biological fluids. Nature,1992,359:325-327.
    6. Gassar R, Citron MA. β-generating enzyme: recent advance in and β-secretase research. Neuron, 2000, 27(3): 419-422.
    7. Selkoe DJ. Alzheimer’s disease: genes, proteins and therapy. Physiol Rev, 2001, 81(2):741-766.
    8. Selkoe DJ, Schenk D. Alzheimer’s disease:molecular understanding predicts amyloid-base therapeutics. Ann Rev Pharmacol Toxicol, 2003, 43:545-584.
    9. Rocchi A, Pellegrini S, Siciliano G, et al. Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull, 2003;61:1-24.
    10. Ling Y,Morgan K, Kalsheker N. Amyloid precursor protein(APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int J Biochem Cell Biol, 2003;35:1505-1535.
    11. Engidawork E, Gulesserian T, Yoo BC, et al. Alteration of caspases and apoptosis related proteins in brains of patients with Alzheimer’s disease. Biochem Biophs Res Commun, 2001,281:84-97.
    12. Lu DC, Rabizadeh S, Chandm S, et al. A second cytotoxic proteolytic peptide derived from amyloid b-protein precursor. Nat Med, 2000,6:397-398.
    13. Manchin-Njock C, Alves da Costa CA, Mereken I, et al. The caspase-derived C-terminal fmgment of beta APP induces caspase independent toxicity and triggers selective increase of Abeta42 in mammalian cells. J Neurochem, 2001,78:1153-1155.
    14. Soriano S, Lu DC, Chandra S, et al. The amyloidegenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem, 2001,276:29045-29050.
    15. Jeyashekan NS, Sandan A, Vodinht T. Protein amyloidose misfolding mechanisms detection and pathological implications. Methods Mol Biol, 2005,300:417-435.
    16. Pereira C, Santos MS, Oliveira C. Involvement of oxidative stress on the impaiment of energy metabolism induced by Aβpeptides on PC12 cells protection by antioxidants. Neurobiol Dis, 2000,6:209-213.
    17. Holsinger RM, Schnarr I, Henry P, et al. Quantitation of BDNFmRNA in human parietal cortex by competitive reverse transcription-poly-merase chain reaction decreased levels in Alzheimer’s disease. Acta Neuropathol, 2000,98:345-356.
    18. Li YP, Bushnell AF, Lee CM, et al. β-amyloid induces apoptosis in human-derived nerotypic SH-SY5Y cells. Brain Res, 1996,738:196-200.
    19. Laferla FM, Hall CK, Ngo L, et al. Extracellular deposition of β-amyolid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest, 1996, 98:1626-1645.
    20. Kim HC, Yamada K, Nitta A, et al. Immunocy to chemical evidence that amyloid beta impairs endogenous antioxidant systems in vivo. Neruoscience, 2003,119(2):339-345.
    21. Hepper FL, Gandy S, Mclaurin. Current status and perspectivers on the development of the rapeutic agents for Alzheimer’s disease. Nippon Yakurigaku Zasshi, 2004,123(6): 421-426.
    22. Qiu Z, Gruol DL. Interleukin-6, beta-amyloid peptide and NMDA interactions in rat cortical neurons. J Neuro immuol, 2003,139(1-2):51.
    23. Rberds SL, Anderson I, Basi G, et al. BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain implications for Alzheimer’s disease the rapeutics. Hum Mol Gene. 2001,10(1):1317-1320.
    24. Stephan A, Laroche S, Davis S. Learning deficits and dysfunctional synaptic plasticity induced by aggregated amyloid deposits in the dentate gyrus are rescued by chronic treatment with in domethacin. Eur J Neruosci,2003,17(9):1921-1932.
    25. Maurice T, lockhart B, Privat A. Amnesia in mice induced by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Res, 1996,706:181-187.
    26. Itoh A, Nitta A, Nadai M, et al. Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats. J Neurochem, 1996,66:1113-1120.
    27. Harkany T, Lengyel Z, Soos K, et al. Cholinotoxic effects of amyloid β(1-420 peptide on cortical projections of the rat nucleus basalis magnocellularis. Brain Res, 1995,695:71-78.
    28. Giovannelli L, Casamenti F, Scali C, et al. Differential effects of β-amyolid peptideβ(1-40) andβ(25-35) injections into the rat nucleus basalis. Neurosci,1995,66:781-788.
    29. Sidell KR, Montine KS, Picklo MJ, et al. Mercapturate metabolism of 4-hydroxy-2- nonenal in rat and human cerebrum. J Neuropathol Exp Neurol, 2003,62(2):146-150.
    30. Hartmann H, Muller WE. Age related change in receptor-mediated and depolarization-induced phosphatidy linosit of turn over in mouse brain. Brain Res, 2003,622:86-90.
    31. Villalba M, Martinez-Serrano A, Borner C. NMDA induced increase in Ca2+ and Ca2+ uptake in acutely dissocinted brain cells devired from adult rats. Brain Res, 2002,507:347-353.
    32. Ueda K, Shinohara S, Yagmi T, et al. Amyloid β-protein petentiates calcium influx through L-type voltage-senstive calcium channels: A possible involvement of freeradicals. J Neurochem, 1997,68:265-276.
    33. Zhou Y, Gopalakrishnan V, Richardson JS. Actions of neurotoxicβ-amyloid on calicium homeostasis and viability of PC12 cells are blocked by antioxidants but not by calicium channel antagonists. J Neruochem, 1996, 67:1419-1429.
    34. Luo X, Weber GA, Zheng I, et al. Clq-caloeticul in induced oxidative neurotoxicity relevance for the neuropathogenesis of Alzheimer’s disease. J Neuroimmunol, 2003,135(2):62.
    35. McLellan ME, Kajdasz ST, Hyman BT, et al. In vivo imaging of reactive oxygen species specifically associated with thioflavines-positive amyloid plaques by multiphoton microscopy. J Neruosci, 2003,23(6):2212-2218.
    36. Frost D, Goman PM, Yip CM. Co-incorporation of A beta 40 and A beta 42 to form mixed pre-fibrillar aggregates. Eur J Biochem, 2003,270(4):654-659.
    37. Jesberger JA, Richardson JS. Oxygen free radicals and brain dysfunction. Int J Neurosci,1991,57:1-3.
    38. Famulari AL, Marschoff ER, Liesuy SF, et al. The antioxidant enzymatic blood profile in Alzheimer’s and vascular disease. Their assosiation and a possible assay to different demented subjects and controls. J Neurol Sic, 1996,141:69-77.
    39. Avdulov NA, Chochina SV, Lgbavboa U, et al. Amyloidβ peptides increase annular and bulk fluidity and induce pipid peroxidantion in brain synaptic plasma membranes. J Neurochem, 1997,68:2083-2086.
    40. Butterfield DA. β-amyloid-associated free radical oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Chem Res Toxicol, 1997,10:495-500.
    41. Yankner BA. Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron. 1996,16:921-925.
    42. Bam Berger ME, Harris ME, McDonald DR, et al. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci, 2003,23(7): 2665-2670.
    43. Li Y, Liu L, Barger SW. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38- MAPK pathway. J Neurosci, 2003,23(5):1605-1611.
    44. Casal C, Serratosa I, Tusell JM. Relationship between beta-APP peptide aggregation and microglial activation. Brain Res, 2002,928(1):76.
    45. Rohn TT, Rissman RA, Davis MC, et al. Caspase-9 activation and caspase cleavage of tau in the Alzheimer’s disease brain. Neurobiol Dis, 2002,11(2):341-347.
    46. Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease-adouble-edged sword. Neruon, 2002,35(3):419-426.
    47. Townsend KP, Obregon D, Quadros A, et al. Proinflammatory and vasoactive effects of A beta in the cerebrovasculature. Ann N Y Acad Sci, 2002,977:65-70.
    48. Arias C, Arrieta L, Tapia R. β-amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J Neurosci Res, 2000,41:561-567.
    49. Thomas T, Mclendon C, Sutton ET, et al. Cerebrovascular endothelial dysfunction mediated byβ-amyloid. Neuro Report, 1997,8:1387-1389.
    50. Van WE, Davis SI, Saporito SM. Amyloidβ-protein induces the cerebrovascular cellular pathology of Alzheimer’s disease and related disorders. Ann NY Acad Sci, 1996,777:297-286.
    51. Khalil Z, Chen H, Helem RD. Mechanisms underlying the vascular activity ofβ-amyloid protein fragment at the level of skin microvasculature. Brain Res, 1996,736:206-217.
    52. Sutton ET, Hellermann GR, Thomas T. β-amyloid-induced endothelial necuosis and inhibition of oxide production. Exp Cell Res, 1997,230:368-375.
    53. Miyakawa T. Electron microscopy of amyloid fibrils and microvessels. Ann NY Acad Sci, 1997,826:25-30.
    54. Sam Gandy. Molecular basis for anti-amylloid therapy in the prevention and treatment of Alzheimer’s disease. Neurobiology of Aging, 2002; 23 (6): 1009-1016.
    55. Vassar R, Bennett BD, Babu-Khan S, et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic proterinase BACE. Science, 1999,286:735.
    56. Li R, Lindholm K, Yang LB, et al. Amyloid-beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA, 2004,101:3632-3648.
    57. Luo Y, Bolon B, Kahn S, et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolishied β -amyloid generation. Nat Neyrosci, 2001,4:231-237.
    58. Mohajeri MH, Saini KD, Nitsch RM, et al. Transgenic BACE expression in mouse neurons accelerates amyloid plaque pathology. J Nerual Transm, 2004,111:413-418.
    59. Ho A, Sudhof TC. Binding of F-spondin to amyloid –precursor protein: A candidate amyloid-precursor protein ligand that modulates amyloid-precursor protein cleavage. Proc Natl Acad Sci USA, 2004,101:2548-2554.
    60. Li YM, Xu M, Lai MT. et al. Photactivated r-secretase in –hibitors directed to the active site covalently label presenilin-l. Nature, 2000, 405(6787): 689-694.
    61. Esler WP, Kimberly WT, Ostaszewski BL, et al. Transition-state analogue inhibitors of β-secretase bind directly to persenilin-1. Nat Cell Biol, 2000, 2(7): 428-434.
    62. Felsenstein KM. Aβmodulation: the next generation of AD thera-peutics. Proc. of the Ninth Meeting of the International Study Group on the Pharmacology of Memory Disorders Associ-ated with Aging. Switzerland; Zurich, 2000. 245-249.
    63. Churcher I, Nadin AJ, Owens AP. MerkSharp & Dohme Limit-ed. Benzodiazepine derivatives as inhibitors of gama secretase. WO: 00230912. 2002-04-18.
    64. Thompson LA. Dupont Pharmaceuticals Company. Lactams as inhibitors of A-beta protein production. WO: 00172324. 2001-04-01.
    65. Wolfe MS, Esler WP, Das C. Continuing strategies for inhibiting Alzheimer’s gamma-sccretase. J Mol Neurosci, 2002, 19(1-2): 83-87.
    66. Feng R, Rampon C, Tang YP, et al. Deficient neurogenesis in forebrain-specific presenilin-l knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron, 2001, 32 (5): 911-926.
    67. Skovronsky DM, Moore DB, Milla ME, et al. Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network. J Bi-ol Chem, 2000,275(4): 2568-2575.
    68. Hock C, Maddalena A, Heuser I, et al. Treatment with the selec-tive muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of total amyloid beta-peptide in patients with Alzhcimer’s didease. Ann N Y Acad Sci, 2000, 920: 285-291.
    69. Robinson P. 8th Intl Conf Alzheimer’s Dis Relat Disord, Stock-holm, 2002, Abst 356.
    70. Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002, 416(6880): 535-539.
    71. Wu Yi, Ji SR, Jiang W, et al. Comparison of the aggregation of beta-amyloid peptide1-42 and beta-amyloid peptide 1-40. J Chin Electr Microsc Soc, 2003,22:20-28.
    72. Liu Ruitian. Residues 17-20 and 30-35 of beta-amyloid play critical roles in aggregation. J Neurosci Res, 2004,75:162-169.
    73. Wyss-Coray T, Loike JD, Brionne TC, et al. Serum insulin-like growth factor 1 regulates brain amyloid-βin vivo and in situ. Nat Med, 2003,9(4):453-455.
    74. Chacon MA, Barria MI, Soto C, et al. β-sheet breaker peptide prevents Aβ-induced spatial memory impairments with partial reduction of amyloid deposits. Mol Psychiatry, 2004,4:20-27.
    75. Rogers J. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA, 1992,89:10016-10020.
    76. Lim GP, Chu T, Yang F, et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci, 2001, 21: 8370-8377.
    77. Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N En-gl J Med, 2001,345: 1515-1521.
    78. Schenk D, Barbour R, Dunn W, et al. Immunization with A β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 1999,400:173-178.
    79. Wilcock DM, Munireddy SK, Rosenthal A, et al. Microglial activation facilitates Aβ plaque removal following intracranial anti- Aβ antibody administration. Neurobiol Disea, 2004,15:11-20.
    80. Check E. Nerve inflammation halts trials for Alzheimer’s drug. Nature, 2002, 415:462-469.
    81. Wilcock DM, Dicarlo G, Henderson D, et al. Intracranially administered anti- Aβ antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci, 2003,23:3745.
    82. Annaert W, De Strooper B. A cell biological perspective on Alzheimer’s disease. Annu Rev Cell Dev Boil, 2002,18:25-37.
    83. Broytman O, Malter JS. Anti- Aβ:the good, the bad, and the unforeseen. J Neurosci Res, 2004,75:301-302.
    1. Guo Q, Robinson N, Mattson M. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J Biol Chem, 1998,273(20):12341-12351.
    2. Selkoe DJ. Defining molecular targets to prevent Alzheimer disease. Arch Neurol, 2005,2(62):192-195.
    3. Johnasson CB, Momma S, Clarke DL, et al. Identification of a neural stem cell in the adult mammalian central nerveous system. Cell, 1999,96(1):25-34.
    4. Vescovi AL, Synder EY. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathology, 1999,9(3):569-598.
    5. Groszer M, Erickson R, Scripture-Adams DD, et al. Negative regulation of neural stem: progenitor cell proliferation by the pten tumor suppressor gene in vivo. Science, 2001,294(5549):2186-2189.
    6. Hitoshi S, Alexson T, Tropepe V. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev, 2002,16(5):846-858.
    7. Amar AP, Zlokovic BV, Apuzzo MLJ. Endovascular restorative neurosurgery: A novel concept for molecular and cellular therapy of the nervous system. Neurosurgery, 2003,52(2):402-413.
    8. Modo M, Rezaie P, Heuschling P, et al. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Research, 2002,958(8):70-82.
    9. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature, 2000,405(6789):951-955.
    10. Haughey NJ, Liu D, Nath A, et al. Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Med, 2002,1(2):125-135.
    11. Haughey NJ, Nath A, Chan SL, et al. Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem, 2002,83(6):1509-1524.
    12. 胥显民,牛勃,王廷杰,等. β-淀粉样蛋白对神经干细胞致凋亡作用研究. 中国药物与临床, 2004, 4(1):31-33.
    13. 李学坤,左萍萍,孔令娜,等. Aβ25-35 抑制成年小鼠海马齿状回区神经前体细胞增殖.中国药理学通报,2004,20(7):808-811.
    14. Miguel A, Shelanski ML. Neurogenic effect ofβ-amyloid peptide in the development of neural stem cells. J Neuroscience, 2004,24(23):5439-5444.
    15. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. PNAS, 2004,101(1):343-347.
    16. Tsai J, Grutzendler J, Duff K, et al. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 2004,11(7):1181-1183.
    17. Calza L, Giuliani A, Fernandez M, et al. Neurla stem cells and cholinergic neurons: regulation by immunolesion and treatment with mitogens, retinoic acid, and nervegrowth factor. PNAS, 2003,100(12):7325-7330.
    18. Sugaya K, Brannen C. Stem cell strategies for neuroreplacement therapy in Alzheimer’s disease. Med Hypotheses, 2001,57(6):697-700.
    19. Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J Neurosci Res, 2002, 68(5):501-510.
    20. Shihabuddin LS, Homer PJ, Ray J, et al. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci, 2000, 20(23):8727-8735.
    21. Suhonen JO, Peterson DA, Ray J, et al. Differentiation of adult hippocampus derived progenitors into olfactory neurons in vivo. Nature, 1996, 383(6601):624-627.
    22. Tate BA, Werzanski D, Marciniack A, et al. Migration of neural stem cells to Alzheimer-like lesions in an animal model of AD. Soc Neurosci Abstr, 2000, 26(2):496-497.
    23. Kim HM, Qu T, Kriho V, et al. Reelin function in neural stem cell biology. Proc Natl Acad Sci USA, 2002, 99(6):4020-4025.
    24. Qu T, Brannen C, Kim HM, et al. Human neural stem cells improve cognitive function of aged brain. Neuroreport, 2001, 12(6):1127-1132.
    25. Gray J, Grigoryan G, Virley D, et al. Conditionally immortalized, multipotential and multifunctional neural stem cell lines as an approach to clinical transplantation. Cell Transplant, 2000, 9(2):153-168.
    26. Wu P, Tarasenko Y, Gu Y, et al. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci, 2002, 5(12): 1271-1278.
    27. 杨丹迪,龙大宏,宣爱国,等. 神经干细胞与 BDNF 联合促进 AD 鼠学习记忆及海马胆碱能纤维再生. 中国行为医学科学, 2005, 14(1):35-38.
    28. Vescovi AL, Parati EA, Gritti A, et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol, 1999, 156(1):71-83.
    29. Gvetchen V. Rat brains respond to embryonic stem cells. Science, 2002, 295(5553):254-255.
    30. Philips MF, Mattiasson G, Mieloch T, et al. Neuroprotective and behavioral efficacy of nerve growth factor transfected hippocampal progenitor cell transplants afterexperimental traumatic brain injury. J Neurosurg, 2001, 94(5):765-774.
    31. 阮奕文,王传恩,童建尔,等. NGF/GDNF 基因修饰神经干细胞移植对 AD 模型鼠行为学的疗效. 解剖学报,2002,33(2):122-125.
    32. 阮奕文,袁群芳,王传恩,等. NGF/GDNF 基因修饰神经干细胞移植对 AD 模型鼠前脑胆碱能神经元的保护作用. 解剖学报,2002,33(2):126-129.
    33. Auerbach JM. Transplanted CNS stem cells from functional synapses in vivo. Eur J Neurosci, 2002, 12(5):1696-1704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700