用户名: 密码: 验证码:
转录因子Phox2对去甲肾上腺素能神经元表型的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Phox2a和Phox2b是两个同源异型结构域蛋白,在胚胎形成过程中控制去甲肾上腺素能神经元的分化。在中枢神经系统,它们在所有的去甲肾上腺素能神经元中表达,而且是去甲肾上腺素能表型的决定因素。作为去甲肾上腺素能循环的标志蛋白,转录因子Phox2a和Phox2b对多巴胺β-羟化酶(dopamineβ-hydroxylase,DBH)和去甲肾上腺素转运体(norepinephrine Transporter,NET)表达的调节和蓝斑(locus coeruleus,LC)神经元的发生与解离紧密联系。近年来,病毒载体已经成功地用于介导基因或小分子干扰RNA进入哺乳动物神经元或脑。然而,这个途径的缺点是病毒载体的表达会随时间而消退,表达的高峰出现在2-3天,7天后就消失了。如何将基因高效转染及长期稳定表达成为人们研究的热点。近期研究者把目光投向了以Ⅰ型人免疫缺陷病毒(human immunodeficiency virus type 1,HIV1)为代表的慢病毒,不仅具有可感染非分裂期的细胞、目的基因整合至靶细胞基因组以及长期表达、免疫反应小等优点,而且对重组包膜质粒、包装质粒及重组目的基因穿梭质粒进行改造后,极大降低了其自我复制能力,使安全性大大提高,有望成为理想的基因载体。本研究采用RT-PCR方法获得大鼠Phox2a和Phox2b全外显子片段,将其克隆入慢病毒表达载体并进行序列测定,利用293FT包装细胞制备了Phox2a/2b与增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)融合基因慢病毒。注射病毒浓缩液至大鼠LC部位,介导Phox2a和Phox2b在LC长期稳定表达,为研究Phox2a和Phox2b在去甲肾上腺素能系统中的作用及机制提供适合的稳定转染细胞的载体,为基因治疗一些神经退化性疾病提供理论和实验依据。
     本实验分两部分:一、用携带人类Phox2a/2b cDNA的pCMV6-XL5载体以及对人类Phox2a/2b基因特异的shRNA分别转染SK-N-BE(2)C细胞,从过表达、封闭基因表达两方面探索Phox2基因对分化成熟的去甲肾上腺素能神经元细胞中NET和DBH表达的影响。二、克隆大鼠Phox2基因并构建能稳定表达Phox2的慢病毒载体,通过慢病毒包装体系生成能有效感染分裂细胞和非分裂细胞的重组慢病毒颗粒;注射此重组慢病毒至大鼠LC部位,一段时间后观察Phox2基因的过表达对成年大鼠脑组织相关部位NET和DBH表达的影响。本研究首次探索转录因子(包括Phox2a/2b)和成熟的去甲肾上腺素能神经系统之间可能的关系,为深入了解帕金森氏病(Parkinson’s disease ,PD)、老年痴呆症(Alzheimer’s disease,AD)及重症抑郁(Major depression)等神经性疾病的发病机制提供了重要的理论和实验依据;构建的高效持久的携带Phox2基因的慢病毒表达载体为这些神经性疾病的临床治疗提供新的途径。
     第一部分转录因子phox2对SK-N-BE(2)C细胞中去甲肾上腺素传递体(NET)和多巴胺β-羟化酶(DBH)表达的影响
     目的:Phox2a和Phox2b是两个同源异型结构域蛋白,在胚胎形成过程中控制去甲肾上腺素能神经元的分化。NET和DBH是去甲肾上腺素能系统的两个重要标志物。本研究检测了Phox2a/2b在体外对NET和DBH表达的影响,从而了解Phox2基因对分化的去甲肾上腺素能神经元细胞的调控作用。
     方法:1.培养SK-N-BE(2)C细胞至90%汇合度时,分别用0.1、1、5μg携带人类Phox2a/2b cDNAs的pCMV6-XL5质粒,由脂质体Lipofectamine 2000介导转染细胞,对照组则转染pCMV6-XL5空载体。转染后3~4天收集各组细胞,RT-PCR法检测Phox2a或Phox2b、NET、DBH、TH等在mRNA水平的表达;Western Blot检测各指标在蛋白水平的表达;NET的转运功能以再摄取[3H]标记的去甲肾上腺素能力来判断。2. SK-N-BE(2)C细胞培养至50~60%汇合度时,用Arrest-In转染试剂将2μg对Phox2a或Phox2b特异的shRNA质粒DNA转染细胞,对照组按相同步骤转染pLKO.1空载体。转染5~7天后收集各组细胞,按与1相同的方法检测各指标。3.为证明Phox2a或Phox2b是否单独地调控甲肾上腺素能表型,将2μg对Phox2a(或Phox2b)特异的shRNA质粒与5μg Phox2b(或Phox2a)cDNA同时转染SK-N-BE(2)C细胞,对照组则同时转染pCMV6-XL5和pLKO.1空载体,3~4天后收集各组细胞测定DBH在mRNA、蛋白质水平的表达变化。
     结果:0.1~5μg的Phox2a/2b cDNAs能明显提高NET和DBH在mRNA及蛋白质水平的表达,且呈剂量相关性。转染后NET表达的增加相应地表现出[3H]标记的去甲肾上腺素摄入的增加。和单独转染Phox2a或Phox2b相比,共转染Phox2a和Phox2b并没有表现出对NET和DBH表达的协同促进作用。转染对Phox2a或Phox2b基因特异的shRNA后,通过关闭内源性Phox2a/2b,显著降低NET和DBH在mRNA及蛋白质水平的表达,同时伴随着[3H]标记的去甲肾上腺素摄取的下降。而且,共转染Phox2a和Phox2b基因特异的shRNAs后,其对NET的mRNA水平表达的影响具有累加效应。最后,转染Phox2a基因特异的shRNA所引起的DBH表达的下降可以通过转染Phox2b基因的cDNA来逆转,反之亦然。证明Phox2a和Phox2b对SK-N-BE(2)C细胞中DBH表达水平影响的互换效应。
     结论:该研究在体外证实了Phox2a和Phox2b对NET和DBH表达及生物学功能的调控作用,深入地阐明Phox2a/2b这两个转录因子对去甲肾上腺素能系统中关键蛋白的调节作用,可能开辟了治疗老年引起的去甲肾上腺素能系统功能失调的新途径。
     第二部分携带EGFP和大鼠phox2融合基因重组慢病毒载体的构建及其对大鼠脑去甲肾上腺素能神经元的调控作用
     目的:克隆全长大鼠转录因子Phox2 cDNA,制备大鼠Phox2基因与增强型绿色荧光蛋白(EGFP)融合基因慢病毒,病毒体外感染293FT细胞和体内感染大鼠LC部位,以确定病毒携带的Phox2基因表达效率,探索Phox2基因的神经生物学功能。
     方法:采用RT-PCR方法获得大鼠Phox2a/2b全外显子片段,运用TOPO克隆技术使之克隆到慢病毒表达载体质粒pLenti6/V5-DEST中。经限制性酶切、PCR扩增和测序鉴定重组载体。在脂质体介导下将慢病毒包装系统的包装结构基因pCMV△8.9、包膜基因VSVG和目的基因pLenti6/V5-EGFP-Phox2a/2b导入病毒包装细胞293FT,荧光显微镜检测基因的表达。包装成病毒后,收集病毒上清,浓缩。未浓缩的病毒液稀释到不同浓度梯度转染HT1080细胞,杀稻瘟素(Blasticidine)筛选抗性细胞克隆,计数细胞克隆后确定病毒滴度。制备的病毒感染293FT细胞,3天后荧光显微镜检测基因的表达,收集细胞以Western Blot法检测Phox2基因在蛋白质水平的表达。将大鼠分4组:对照组、假手术组、注射重组Phox2a病毒组和Phox2b组。浓缩的病毒(2~3μl,1x108 TU/ml)立体定位微量注射至大鼠LC部位,不同时间段(7 d,14 d,21 d)取大鼠蓝斑(LC)、海马(hippocampus ,HP)和嗅球(olfactory bulb ,OB)等组织,通过原位杂交(In Situ Hybridization)、Western Blot、免疫组化(Immunohistochemistry,IHC)、BrdU标记等方法检测各组Phox2、NET、DBH、TH及神经元细胞增殖(Neurogenesis)等的变化。
     结果:限制性内切酶酶切和DNA测序分析证实RT-PCR获得的大鼠Phox2a/2b cDNA片段与GenBank中公布的数据基本吻合; EGFP与大鼠Phox2a/2b融合基因准确克隆入pLenti6/V5-DEST的多克隆位点。慢病毒的3种质粒可高效转染入293FT细胞,荧光显微镜下观察可见大量的绿色荧光。未浓缩病毒液的滴度可达5×106 TU/ml。病毒感染293FT细胞后Phox2基因在蛋白质水平的表达有明显的增加。原位杂交结果显示,注射重组Phox2a/2b病毒组在不同时间点,Phox2a和Phox2b在LC部位的mRNA水平均有显著升高,注射后14天Phox2a增加最多,达146%;注射后7天Phox2b增加最多,达41%。与对照组及假手术组相比,Phox2a和Phox2b的过表达分别伴随着NET和DBH mRNA水平的明显增加,NET分别增加了78.2%和110%,DBH分别增加了42.2%和39.3%;同样,在HP部位,Western Blot结果显示,和对照组及假手术组相比,Phox2a和Phox2b的过表达也分别伴随着NET和DBH在蛋白质水平的明显增加,NET分别增加了78.4%和48.6%,DBH分别增加了37.6%和32.3%;在OB部位也获得相似的实验结果;BrdU标记结果证明由Phox2a/2b导致的NET、DBH表达的增加可以促进LC部位神经元细胞的增殖,尤其是联合注射重组Phox2a和Phox2b病毒组对神经元细胞增殖的效应最明显。
     结论:成功制备了大鼠Phox2与EGFP融合基因慢病毒,为研究Phox2基因在去甲肾上腺素能系统的发生分化等过程中的作用机制提供合适的稳定转染细胞的载体;体内外试验证实上调Phox2的表达可促进成熟大鼠脑组织中NET和DBH的表达,预示了Phox2基因对维持大鼠出生后去甲肾上腺素能神经元的功能发挥着重要作用。
Part I Effects of Transcription Factors Phox2 on Expression of Norepinephrine Transporter and Dopamineβ–hydroxylase in SK-N-BE(2)C cells
     Objective: Phox2a and Phox2b are two homeodomain proteins that control the differentiation of noradrenergic neurons during embryogenesis. Norepinephrine transporter (NET) and dopamineβ-hydroxylase (DBH) are two important markers of the noradrenergic system. In the present study, we examined the possible effect of Phox2a/2b on the in vitro expression of NET and DBH to understand the regulatory function of Phox2a/2b on differentiated noradrenergic neuron cells in vitro.
     Methods: (1) The human neuroblastoma cell line SK-N-BE(2)C cells were grown to about 90% confluence on 6-well plates and transfected with 0.1, 1, 5μg pCMV6-XL5 plasmid DNA carrying cDNAs of human Phox2a or Phox2b, using Lipofectamine 2000 reagent. For the control group, cells were transfected with pCMV6-XL5 empty vectors. Cells were harvested 3~4 days after transfection for different measurements. The mRNA and protein level of Phox2a or Phox2b, NET, DBH and TH were measured by RT-PCR or Western Blot. The transport ability of NET was detected by uptake of [3H]NE. (2) When confluence of cultured SK-N-BE(2)C cells arrived to 50~60% on 6-well plates, 2μg shRNAs specific to Phox2a or Phox2b genes were transfected into cells mediated by Arrest-In reagent kits. Cells in the control group were transfected with pLKO.1 empty vectors based on the instruction from the manufacturer by the same procedure. Cells were harvested 5~7 days after transfection for different measurements using the same methods mentioned above. (3) In order to examine whether either Phox2a or Phox2b independently regulated the expression of the noradrenergic phenotype, two similar experiments were carried out. In the first experiment, SK-N-BE(2)C cells were transfected with either 2μg shRNA specific to Phox2a or this shRNA plus 5μg Phox2b cDNA for 5 (for RT-PCR) or 7 days (for western blotting). Another experiment was carried out with Phox2b shRNA and Phox2a cDNA using the same parameters as the first one. The mRNA and protein levels of DBH were measured.
     Results: Transfection of 0.1 to 5μg of cDNAs of Phox2a or Phox2b significantly increased mRNA and protein levels of NET and DBH in a concentration-dependent manner. As a consequence of the enhanced expression of NET after transfection, there was a parallel increase in the uptake of [3H] norepinephrine. Co-transfection of Phox2a and Phox2b did not further increase the expression of noradrenergic markers when compared with transfection of either Phox2a or Phox2b alone. Transfection of shRNAs specific to Phox2a or Phox2b genes significantly reduced mRNA and protein levels of NET and DBH after shutdown of endogenous Phox2, which was accompanied by a decreased [3H] norepinephrine uptake. Furthermore, there was an additive effect after cotransfection with both shRNAs specific to Phox2a or Phox2b genes on NET mRNA levels. Finally, the reduced DBH expression caused by the shRNA specific to Phox2a could be reversed by transfection with Phox2b cDNA and vice versa, which also indicates that in SK-N-BE(2)C cells there is a functionally reciprocal effect of Phox2a and Phox2b on DBH expression.
     Conclusions: The present findings verify the determinant role of Phox2a and Phox2b on the expression and function of NET and DBH in vitro. Further clarifying the regulatory role of these two transcription factors on key proteins of the noradrenergic system may open a new avenue for therapeutics of aging-caused dysfunction of the noradrenergic system.
     Part II Construction of Recombinant Lentiviral-vector with EGFP-Phox2 Fusion Genes and Their Regulatory Effects on Noradrenergic Neuron System in Rat Brains
     Objective: Lentivirus mediated gene expression is one of the most promising methods to produce transgenic animals. To prepare high titer of lentiviral particle packaging is the key of this technology. Phox2a and Phox2b, two homeodomain transcriptional factors, are determinants of the noradrenergic phenotype during embryogenesis. However, their roles for the function of the noradrenergic neurons in mature brains remain unknown. The norepinephrine transporter (NET) and dopamineβ-hydroxylase (DBH) are two important markers of the noradrenergic system. In the present study, possible effects of Phox2a/2b on expression of the NET and DBH in the brain were examined. First, cDNAs of rat Phox2a and Phox2b were cloned. Then the recombinants of pLenti6/V5-DEST vector carrying EGFP-Phox2a/2b fusion genes were constructed. These lentiviral-gene constructs were further transducted into 293FT cells to test the expression level of Phox2 genes. Finally, lentiviral vectors carrying cDNAs of Phox2a/2b were microinjected into the locus coeruleus (LC) in adult Fischer 344 rats.
     Methods: The cDNA sequences of rat Phox2a and Phox2b were cloned by RT-PCR. Using pENTRTM Directional TOPO cloning technology, EGFP-Phox2 fusion genes were inserted into pLenti6/V5-DEST expression vectors to construct two recombinant entry vectors. These two recombinants were analyzed by restriction analysis, PCR reaction, and sequencing to confirm the presence and correct orientation of the insert. Then, 293FT cells were cotransfected with three plasmids: pCMVΔR8.9, pVSVG and pLenti6/V5-EGFP-phox2a/2b, using the TransIT?-293 Transfection Reagent kit. After observed strong fluorescences under fluorencent microscope, virus supernatant was collected after 48-72 hours, and concentrated by ultracentrifuge. Two further experiments were performed. 1) Testing the titer of virus preparation: HT1080 cells were transduced with 10 fold serial dilutions ranging from 10-2~10-6 of lentivirus and the positive transduced cells were selected with 4mg/ml Blasticidine. The titer was determined by counting the blue-stained colonies. 2) Testing the expression of Phox2a/2b: 293FT cells was transduced using different concentration of lentiviral preparation stock for three days. After observed the fluorescence, cells were harvested to examine Phox2a/2b protein level by Western Blot. After all these pretests verified the viral titer and expressional ability of Phox2a/2b in vitro, the stereotaxic microinjection experiments were started. The concentrated lentivirus stock (2~3μl, ~108TU/ml) was microinjected into the LC region of rats. These rats were sacrificed after 7, 14, 21 days of injection. The brain LC, hippocampus and frontal cortex were sectioned or dissected for different measurements. mRNA levels of Phox2, NET and DBH in the LC were determined by in situ hybridization. Protein levels of NET and DBH in the hippocampus and frontal cortex were measured by Western Blot. The neurogenesis in the hippocampus was determined by BrdU immunostaining.
     Results: The full length of rat Phox2 cDNA was successfully cloned. The constructs of recombinant expression vector pLenti6/V5-EGFP-Phox2a/2b were confirmed by restriction analysis, PCR reaction, and sequencing. After 293FT cells were effectively cotransfected with these constructs, a lentiviral stock was produced and a satisfactory EGFP expression was verified by fluorescence microscopic analysis. The nonconcentrated virus titer reached higher than 5x106 TU/ml. In vitro expressional tests proved that transfection with Lentiviral vectors carrying cDNAs of Phox2a/2b increased mRNA and protein levels of Phox2 genes, indicating that a high titer lentiviral packaging platform was preliminary established. In situ hybridization showed that microinjection with cDNAs of Phox2a and Phox2b for different time periods significantly increased their mRNAs in the LC regions with highest levels on 14 days (for Phox2a, increased by 146%) and 7 days (for Phox2b, increased by 41%) post-injection, respectively. Compared to those in the control and sham operation groups, overexpressions of Phox2a and Phox2b were respectively paralleled by a significant increase in NET mRNA levels by 78.2% and 110%; and a significantly increased DBH mRNA level by 42.2% and 39.3%. Similarly, microinjection with cDNAs of Phox2a and Phox2b markedly increased protein levels of NET in the hippocampus by 78.4% and 48.6%; and those of DBH by 37.6% and 32.3%, respectively. BrdU immunostaining results showed that overexpression of Phox2a/2b in the LC stimulated the neurogenesis in the hippocampus area, especially after the injection with lentivirus carrying both Phox2a and Phox2b cDNAs.
     Conclusion: The present study presented a successful construction of two recombinant lentivirus vectors which contained genes of rat Phox2a and Phox2b respectively. With these constructs, the present study demonstrates an upregulatory effect of Phox2a and Phox2b on the expression of NET and DBH in the mature rat brains, indicating that Phox2 genes may play an important role in maintaining the function of the noradrenergic neurons after birth. These results may indicate the possible therapeutic strategy for the treatment of noradrenergic deficiency occurred in the neuronal degeneration diseases. Also, these methodologies will be benefit of the further study to produce transgenic animals.
引文
1. Foote SL, Bloom FE and Aston-Jones. Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiological Rev G, 1983; 63(3): 844-914.
    2. Berridge CW and Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev, 2003; 42(1): 33-84.
    3. Vijayashankar N and Brody H. A quantitative study of the pigmented neurons in the nuclei coeruleus and subcoeruleus in man as related to aging. J Neuropathol Exp Neurol, 1979; 38(5): 490-497.
    4. Bondareff W, Mountjoy CQ and Roth M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurology, 1982; 32(2): 164-168.
    5. Mann DMA, Yates PO and Hawkes J. The pathology of the human locus coeruleus. Clin Neuropathol, 1983; 2(1): 1-7.
    6. Tomonaga M. Neuropathology of the locus coeruleus: a semiquantitative study. J Neurol, 1983; 230(4): 231-240.
    7. Yoshinaga T. Morphometric study of the human locus coerulus: the changes with ageing and degenerative neurological diseases. Fukuoka Igaku Zasshi, 1986; 77(6): 293-308.
    8. German DC, Walker BS, Manaye K, Smith WK, Woodward DJ and North AJ. The human locus coeruleus: computer reconstruction of cellular distribution. J Neurosci , 1988; 8(5): 1776-1788.
    9. Lohr JB and Jeste DV. Locus coeruleus morphometry in aging and schizophrenia. Acta Psychiatr Scand, 1988; 77(6): 689-697.
    10. Chan-Palay V and Asan E. Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J Comp Neurol, 1989; 287(3): 357-372.
    11. Manaye KF, McIntire DD, Mann DMA and German DC. Locus coeruleus cell loss in the aging human brain: a non-random process. J Comp Neurol, 1995; 358(1):79-87.
    12. Morley GK, Haxby JV and Lundgren SL.Memory, aging, and dementia. In: The aging nervous system. (eds: Maletta GJ, Pirozzolo F) Praeger, New York, 1980; pp210-240.
    13. Sturrock RR and Rao KA. A quantitative histological study of neuronal loss from the locus coeruleus of aging mice. Neuropathol Appl Neurobiol, 1985; 11:55-60.
    14. Tatton WG, Greenwood CE, Verrier MC, Holland DP, Kwan MM and Biddle FE. Different rate of age-related loss for murine monoaminergic neuronal populations. Neurobiol Aging, 1991; 12(5):543-556.
    15. Leslie F, Loughlin SE, Sternberg DB, McGaugh JL, Young LE and Zornetzer SF. Noradrenergic changes and memory loss in aged mice. Brain Res, 1985; 359(1-2):292-299.
    16. Riihioja P, Jaatinen P, Haapalinna A, Kiianmaa K and Nervonen A. Effects of ageing and intermittent ethanol exposure on rat locus coeruleus and ethanol-withdrawal symptoms. Alcohol Alcohol, 1999; 34(5): 706-717.
    17. Lu W, Jaatinen P, Rintala J, Lu W, Sarviharju M, Eriksson P, Kiianmaa K and Hervonen A. Effects of lifelong ethanol consumption on rat locus coeruleus. Alcohol Alcohol, 1997; 32(4): 463-470.
    18. Rintala J, Jaatinen P, Lu W, Sarviharju M, Eriksson P, Kiianmaa K and Hervonen A. Lifelong ethanol consumption and loss of locus coeruleus neurons in AA and ANA rats. Alcohol, 1998; 16(3): 243-248.
    19. Marcyniuk B, Mann DMA and Yates PO. The topography of cell loss from locus coeruleus in Alzheimer’s disease. J Neurol Sci, 1986; 76(2-3): 335-345.
    20. Zweig RM, Ross CA, Hedreen JC, Steele C, Cardillo JE, Whitehouse PJ, Folstein SE and Price DL. The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol, 1988; 24:233-242.
    21. German DC, Manaye K, White III CL, Woodward DJ, McIntire DD, Smith WK, Kalaria RN and Mann DMA. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol, 1992; 32(5): 667-676.
    22. Cash R, Dennis T, L'Heureux R, Raisman R, Javoy-Agid F and Scatton B. Parkinson's disease and dementia: norepinephrine and dopamine in locus ceruleus. Neurology, 1987; 37:42-6.
    23. Chan-Palay V and Asan E. Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol, 1989; 287(3): 373-392.
    24. Mann DMA, Yates PO and Marcyniuk B. Monoaminergic neurotransmitter systems in presenile Alzheimer’s disease and in senile dementia of Alzheimer type. Clin Neuropathol, 1984; 3(5): 199-205.
    25. Zweig RM, Ross CA, Hedreen JC, Peyser C, Cardillo JE, Folstein SE and Price DL. Locus coeruleus involvement in Huntington’s disease. Arch Neurol, 1992; 49(2): 152-156.
    26. Zarow C, Lyness SA, Mortimer JA and Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol, 2003; 60(3): 337-341.
    27. Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I and Fornai F. The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev, 2000; 24(6): 655-668.
    28. Barker EL and Blakely RD. Norepinephrine and serotonin transporter. Molecular targets of antidepressant drugs. In: Psychopharmacology. A Fourth Generation of Progress. Eds: Bloom FE and Kupfer DJ, Raven Press, New York, 1995; pp 321-333
    29. Reis DJ, Ross RA and Joh TH. Changes in the activity and amounts of enzymes synthesizing catecholamines and acetylcholine in brain, adrenal medulla, and sympathetic ganglia of aged rat and mouse. Brain Res, 1977; 136(3): 465-474.
    30. Hurst JH, LeWitt PA, Burns RS, Foster NL and Lovenberg W. CSF dopamine-beta-hydroxylase activity in Parkinson’s disease. Neurology, 1985; 35(4): 565-568.
    31. Miyata S, Nagata H, Yamao S, Nakamura S and Kameyama M. Dopamine-beta-hydroxylase activities in serum and cerebrospinal fluid of aged and demented patients. J Neurol Sci, 1984; 63:403-9.
    32. Tejani-Butt SM and Ordway GA. Effect of age on [3H]nisoxetine binding to uptake sites for norepinephrine in the locus coeruleus of humans. Brain Res, 1992; 583(1-2): 312-315.
    33. Shores MM, White SS, Veith RC and Szot P. Tyrosine hydroxylase mRNA is increased in old age and norepinephrine uptake transporter mRNA is decreased in middle age in locus coeruleus of Brown-Norway rats. Brain Res, 1999; 826(1):143-147.
    34. Kiyono Y, Kanegawa N, Kawashima H, Iida Y, Kinoshita T, Tamaki N, Nishimura H, Ogawa M and Saji H. Age-related changes of myocardial norepinephrine transporter density in rats: implications for differential cardiac accumulation of MIBG in aging. Nucl Med Biol, 2002; 29(6): 679-684.
    35. Tejani-Butt SM, Yang J and Zaffair H. Norepinephrine transporter sites are decreased in the locus coeruleus in Alzheimer’s disease. Brain Res, 1993; 631(1): 147-150.
    36. Hirsch MR, Tiveron MC, Guillemot F, Brunet JF and Goridis C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development, 1998; 125(4): 599-608.
    37. Morin X, Cremer H, Hirsch M, Kapur RP, Goridis C and Brunet JF. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron, 1997; 18(3): 411-423.
    38. Pattyn A, Goridis C and Brunet J. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci, 2000; 15(3): 235-243.
    39. Valarche I, Jean-Philippe TS, Marie-Rose H, Salvador M, Christo G and Brunet JF. The mouse homeodomain protein Phox2 regulates Ncam Promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development, 1993; 119(3):881-896
    40. Tiveron M, Hirsch M and Brunet J. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci, 1996; 16(23): 7649-7660.
    41. Pattyn A, Morin X, Cremer H, Goridis C and Brunet J. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development, 1997; 124(20): 4065-4075.
    42. Pattyn A, Morin X, Cremer H, Goridis C and Brunet J. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature, 1999; 399(6734): 366-370.
    43. Lo L, Morin X, Brunet JF and Anderson DJ. Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron, 1999; 22(4): 693-705.
    44. Goridis C and Rohrer H. Specification of catecholaminergic and serotonergic neurons. Nature Rev, Neurosci, 2002; 3(7): 531-541.
    45. Brunet JF and Pattyn A. Phox2 genes–from patterning to connectivity. Curr Opin Genet Dev, 2002; 12(4): 435-440.
    46. Flora A, Lucchetti H, Benfante R, Goridis C, Clementi F and Fornasari D. SP proteins and Phox2b regulate the expression of the human Phox2a gene. J Neurosci, 2001; 21(18):7037-7045
    47. Thomas SA, Matsumoto AM and Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature, 1995; 374(6523): 643-646.
    48. Swanson DJ, Zellmer E and Lewis EJ. The homeodomain protein Arix interacts synergistically with cyclic AMP to regulate expression of neurotransmitter biosynthetic genes. J Biol Chem, 1997; 272(43): 27382-27392.
    49. Kim HS, Seo H, Yang C, Brunet JF and Kim KS. Noradrenergic-specific transcription of the dopamine beta-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Pho2a-binding sites. J Neurosci, 1998; 18(20): 8247-8260.
    50. Yang C, Kim HS, Seo H, Kim CH, Brunet JF and Kim KS. Paired-like homeodomain proteins, Pho2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine beta-hydroxylase gene. J Neurochem, 1998; 71(5): 1813-1826.
    51. Adachi M, Browne D and Lewis EJ. Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine beta-hydroxylase gene transcription. DNA Cell Biol, 2000; 19(9): 539-554.
    52. Seo H, Hong SJ, Guo S, Kim HS, Kim CH, Hwang DY, Isacson O, Rosenthal A and Kim KS. A direct role of the homeodomain proteins Phox2a/2b in noradrenaline neurotransmitter identity determination. J Neurochem, 2002; 80(5): 905-916.
    53. Kim CH, Hwang DY, Park JJ and Kim KS. A proximal promoter domain containing a homeodomain-binding core motif interacts with multiple transcription factors, including HoxA5 and Phox2 proteins, and critically regulates cells type-specific transcription of the human norepinephrine transporter gene. J Neurosci, 2002; 22(7): 2579-2589.
    54. Kempermann G, Kuhn HG and Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci USA, 1997; 94(19): 10409-10414.
    55. Kornack DR and Rakic P. The generation, migration and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA, 2001; 98(8): 4752-4757.
    56. Loy R, Koziell DA, Lindsey JD and Moore RY. Noradrenergic innervation of the adult rat hippicampal formation. J Comp Neurol, 1980; 189(4): 699-710.
    57. Moudy AM, Kunkel DD and Schwartzkroin PA. Development of dopamine-beta-hydroxylase-positive fiber innervation of the rat hippocampus. Synapse, 1993; 15(4):307-18.
    58. Popovik E and Haynes LW. Survival and mitogenesis of neuroepithelial cells are influenced by noradrenergic but not cholinergic innervation in cultured embryonic rat neopallium. Brain Res, 2000; 853(2): 227-235.
    59. Corotto FS, Henegar JR and Maruniak JA. Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse. Neuroscience, 1994; 61(4): 739-744.
    60. Bauer S, Moyse E, Jourdan F, Colpaert F, Martel JC and Marien M. Effects of theα2-adrenoreceptor antagonist dexefaroxan on neurogenesis in the olfactory bulb of the adult rat in vivo: Selective protection against neuronal death. Neuroscience, 2003; 117(2): 281-291.
    61. Kolb B and Sutherland RJ. Noradrenaline depletion blocks behavioral sparing and alters cortical morphogenesis after neonatal frontal cortex damage in rats. J Neurosci, 1992; 12(6): 2321-2330.
    62. Kulkarni VA, Jha S and Vaidya VA. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur J Neurosci, 2002; 16(10): 2008-2012.
    63. Ishida Y, Shirokawa T, Miyaishi O, Komatsu Y and Isobe K. Age-dependent changes in projections from locus coeruleus to hippocampus dentate gyrus and frontal cortex. Eur J Neurosci, 2000; 12(4): 1263-1270.
    64. Kuhn HG, Dickinson-Anson H and Gage FH. Neurogenesis in the dentate gyrus of the adult rat: agfe-related decrease of neuronal progenitor proliferation. J Neurosci, 1996; 16(6): 2027-2033.
    65. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG and Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA, 1999; 96(9): 5263-5267.
    66. Maslov AY, Barone TA, Plunkett RJ and Pruitt SC. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci, 2004; 24(7): 1726-1733.
    67. Zhu M. Y., Wang W. P., Iyo A. H., Ordway G. A. and Kim K. S. Age-associated changes in mRNA levels of Phox2, norepinephrine transporter and dopamine beta-hydroxylase in the locus coeruleus and adrenal glands of rats. J. Neurochem, 2005; 94(3): 828–838.
    68. Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U and Rohrer H. The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development, 1999; 126(18): 4087-4094.
    69. Guo S., Brush J., Teraoka H., Goddard A., Wilson S. W., Mullins M. C. and Rosenthal A. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron, 1999; 24(3): 555–566.
    70. Vogel-Hopker A. and Rohrer H. The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs). Development, 2002; 129(4):983–991.
    71. Kim C. H., Kim H. S., Cubells J. F. and Kim K. S. A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J. Biol. Chem, 1999; 274(10): 6507–6518.
    72. Biedler J. L. and Spengler B. A. A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture. J. Natl Cancer Inst, 1976; 57(3): 683–695.
    73. Ross R. A., Biedler J. L., Spengler B. A. and Reis D. J. Neurotransmitter-synthesizing enzymes in 14 human neuroblastoma cell lines. Cell. Mol. Neurobiol, 1981; 1(3): 301–311.
    74. Tissier-Seta JP, Hirsch MR, Valarche I, Brunet JF and Goridis C. A possible link between cell adhesion receptors, homeodomain proteins and neuronal identity. C R Acad Sci (Paris), 1993; 316(11): 1305-1315.
    75. Zellmer E, Zhang Z, Greco D, Rhodes J, Cassel S and Lewis EJ. A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J Neurosci, 1995; 15(12): 8109-8120.
    76. Paris M., Wang W. H., Shin M. H., Franklin D. S. and Andrisani O. M. Homeodomain transcription factor Phox2a, via cyclic AMP-mediated activation, induces p27Kip1 transcription, coordinating neural progenitor cell cycle exit and differentiation. Mol. Cell. Biol, 2006; 26(23): 8826–8839.
    77. Lim K. C., Lakshmanan G., Crawford S. E., Gu Y., Grosveld F. and Engel J. D. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat. Genet, 2000; 25(2): 209–212.
    78. Xu H., Firulli A. B., Zhang X. and Howard M. J. HAND2 synergistically enhances transcription of dopamine-beta-hydroxylase in the presence of Phox2a. Dev. Biol, 2003; 262(1): 183–193.
    79. Hong S. J., Lardaro T., Oh M. S., Huh Y., Ding Y., Kang U. J., Kirfel J., Buettner R. and Kim K. S. Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2beta. J. Biol. Chem, 2008; 283(24): 16860–16867.
    80. Hong S. J., Chae H., Lardaro T., Hong S. and Kim K. S. Trim11 increases expression of dopamine beta-hydroxylase gene by interacting with Phox2b. Biochem. Biophys. Res. Commun, 2008; 368(3): 650–655.
    81. Yokoyama M., Watanabe H. and Nakamura M. Genomic structure and functional characterization of NBPhox (PMX2B), a homeodomain protein specific to atecholaminergic cells that is involved in second messenger-mediated transcriptional activation. Genomics,1999; 59(1): 40–50.
    82. Benfante R., Flora A., Di Lascio S., Cargnin F., Longhi R., Colombo S., Clementi F. and Fornasari D. Transcription factor PHOX2A regulates the human alpha3 nicotinic receptor subunit gene promoter. J. Biol. Chem, 2007; 282(18): 13290–13302.
    83. Klimek V, Stockmeier CA, Overholser JC, Meltzer HY, Kalka S, Dilley G and Ordway GA. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci, 1997; 17(21): 8451-8458.
    84. Lorang D, Amara SG and Simerly RB. Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci, 1994; 14(8): 4903-4914
    85. Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR and Blakely RD. Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol, 2000; 420(2): 211-232.
    86. Kim CH, Hwang DY, Park JJ and Kim KS. A proximal promoter domain containing a homeodomain-binding core motif interacts with multiple transcription factors, including HoxA5 and Phox2 proteins, and critically regulates cells type-specific transcription of the human norepinephrine transporter gene. J Neurosci, 2002; 22(7): 2579-2589.
    87. Figlewicz DP, Bentson K and Ocrant I. The effect of insulin on norepinephrine uptake by PC12 cells. Brain Res Bull, 1993; 32(4): 425-431.
    88. Kaye DM, Wiviott SD, Kobzik L, Kelly RA and Smith TW. S-Nitrosothiols inhibit neuronal norepinephrine transport. Am J Physiol, 1997; 272(2 Pt 2): H875-H883.
    89. Sumners C and Raizada MK. Angiotensin II stimulates norepinephrine uptake in hypothalamus-brain stem neuronal cultures. Am J Physiol, 1986; 250(2 Pt 1): C236-C244.
    90. Vatta MS, Bianciotti LG and Fernandez BE. Influence of artial natriuretic factor on uptake, intracellular distribution, and release of norepinephrine in rat adrenal medulla. Can J Physio Pharmacol, 1993; 71(3-4): 195-200.
    91. Giros B and Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci, 1993; 14(2): 43-49.
    92. Ganguly PK, Dhalla KS, Innes IR, Beamish RE and Dhall NS. Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circ Res, 1986; 5996): 684-693.
    93. Jacob G, Shannon JR, Costa F, Furlan R, Biaggioni I, Mosqueda-Garcia R, Robertson RM and Robertson D. Abnormal norepinephrine clearance and adrenoreceptor sensitivity in idiopathic orthostatic intolerance. Circulation, 1999; 99(13):1706-1712.
    94. Melon PG, Boyd CJ, McVey S, Mangner TJ, Wieland DM and Schwaiger M. Effects of active chronic cocaine use on cardiac sympathetic neuronal function assessed by carbon-11-hydroxyephedrine. J Nucl Med, 1997; 38(3): 451-456.
    95. Meredith IT, Eisenhofer G, Lambert GW, Dewar EM, Jennings GL and Esler MD. Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation, 1993; 88(1): 136-145.
    96. Jellinger KA. Morphological substrates of dementia in parkinsonism: a critical update. J Neural Transm [Suppl], 1997; 51:57-82.
    97. Carlezon Jr WA, Boundy VA, Haile CN, Lane SB, Kalb RG, Neve RL and Nestler EJ. Sensitization to morphine induced by viral-mediated gene transfer. Science, 1997; 277(5327): 812-814.
    98. Carlezon Jr WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hirol N, Duman RS, Neve RL and Nestler EJ. Regulation of cocaine reward by CREB. Science, 1998; 282(5397): 2272-2275.
    99. Xia H, Mao Q, Paulson HL and Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol, 2002; 20(10): 1006-1010.
    100. lesch A. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods, 2004; 33(2): 164-172.
    101. Blomer U, Naldini L, Kafri T, Trono D, Verma IM and Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vectors. J Viol, 1997; 71(9): 6641-6649.
    102. Naldini L, Blomer U, Gage FH, Trono D and Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vectors. Proc Natl Acad Sci USA, 1996; 93(21): 11382-11388.
    103. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Zhang M, McManus MT, Gertler FB, Scott ML and Van Parijs L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003; 33(3): 401-406.
    104. Paxinos G and Watson C. AChE-stained horizontal sections of the Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego, CA. 1998.
    105. M. E. Gilbert, M. E. Kelly, T. E. Samsam and J. H. Goodman.Chronic Developmental Lead Exposure Reduces Neurogenesis in Adult Rat Hippocampus but Does Not Impair Spatial Learning. Toxicological Sciences, 2005; 86(2): 365-374
    106. Elder GA, De Gasperi R, Gama Sosa MA. Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med, 2006 Nov; 73(7): 931-40
    107. Chen J, Cai F, Cao J, Zhang X, Li S. Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. J Neurosci Res, 2009 Oct; 87(13): 2898-907
    108. Lipkowitz MS, Hanss B, Tulchin N, Wilson PD, Langer JC, Ross MD, Kurtzman GJ, Klotman PE, Klotman ME. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors. J Am Soc Nephrol. 1999 Sep; 10(9): 1908-15.
    109. Tenenbaum L,Lehtonen E,Monahan PE.Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther.2003,3(6): 545-565.
    110. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996, 272(5259): 263-267.
    111. Ruitenberg MJ,Plant GW,Christensen CL,et al. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord. Gene Ther, 2002; 9(2):135-146.
    112. Hendriks WT,Ruitenberg MJ,Blits B,et al.Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res, 2004; 146: 451-476.
    113. Oka M,Chang L J,Costantini F,et al. Lentiviral vector mediated gene transfer in embryonic stem cells. Methods Mol Biol. 2006; 329: 273-281.
    114. ZHAO J,PET'FIGREW G J,THOMAS J,et a1.Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol, 2002; 97 (5): 348-351.
    115. Goldman M J, Lee P S, Yang J S, et al. Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Thera, 1997; 8(18): 2261-2268.
    116. Naldini L, Blomer U, Gage F H, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Nat1 Acad Sci USA, 1996; 92(21):11382-11388.
    117. Zufferey R, Nagy D, Mandel R J, et al. Mutiply attenuated lentiviral vector achieved efficient gene delivery in vivo. Nat Biotechnol, 1997; 15(9): 871-875.
    118. Miyoshi H, Takshashi M, Gage F H, et al. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA, 1997; 94(19):10319-10323.
    119. Jinnah H A, Friedmann T. Gene therapy and the brain. British Medical Bulletin, 1995; 51(1):138-148.
    120. Ward WW. Biochemical and physical properties of green fluorescent protein. Methods Biochem Anal. 2006; 47: 39-65.
    121. Gerdes HH, Kaether C. Greenfluorescent protein: application incellbiology. FEBS Lett.1996; 389: 44-47.
    122. Howard S. A., Nakayama A. Y., Brooke S. M. and Sapolsky R. M. Glucocorticoid modulation of gp120-induced effects on calcium-dependent degenerative events in primary hippocampal and cortical cultures. Exp Neurol, 1999; 158(1): 164-170.
    123. Hornykiewicz O and Kish SJ. Biochemical pathophysiology of Parkinson’s disease. Adv Neurol, 1987; 45:19-34.
    124. Rogers JD, Brogan D and Mirra SS. The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol , 1985; 17(2): 163-170.
    1. Pattyn A, Morin X, Cremer H, Goridis C and Brunet JF.Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development, 1997; 124(20): 4065-4075
    2. Pattyn A, Morin X, Cremer H, Goridis C and Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature, 1999; 399(6734): 366-370
    3. Adachi M, Browne D and Lewis EJ. Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine betahydroxylase gene transcription. DNA Cell Biol, 2000; 19(9): 539-554
    4. Treisman J, Harris E, Wilson D, Desplan C. The homeodomain: a new face for the helix-turn-helix? Bioessay, 1992;14(3):145-50
    5. Edelman GM, Jones FS. Cytotactin: a morphoregulatory molecule and a target for regulation by homeobox gene products. Trends Biochem Sci, 1992;17(6):228-32
    6. Johnson KR, Smith L, Johnson DK, Rhodes J, Rinchik EM, Thayer M, Lewis EJ . "Mapping of the ARIX homeodomain gene to mouse chromosome 7 and human chromosome 11q13". Genomics, 1996, 33 (3): 527–31
    7. Rowitch DH, Danielian PS, Lee SM, Echelard Y, McMahon AP.Cell interactions in patterning the mammalian midbrain. Cold Spring Harb Symp Quant Biol, 1997; 62:535-544
    8. Candiani S, Pestarino M. Evidence for the presence of the tissue-specific transcription factor Pit-1 in lancelet larvae. J Comp Neuro, 1998; 400(3):310-316
    9. Isabelle Valarché1, Jean-Philippe Tissier-Seta, Marie-Rose Hirsch, Salvador Martinez, Christo Goridis and Jean-Fran?ois Brunet. The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development,1993; 119(3): 881-896
    10. Grueneberg, D. A., Natesan, S., Alexandre, C. and Gilman, M. Z. Human and Drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science, 1992; 257(5073): 1089-1095
    11. Cserjesi, P., Lilly, B., Bryson, L., Wang, Y., Sassoon, D. A. and Olson, E.N. MHox: a mesodermally restricted homeodomain protein that binds an essential site in the muscle creatine kinase enhancer. Development, 1992: 115(4), 1087-1101
    12. Kern, M. J., Witte, D. P., Valerius, M. T., Aronow, B. J. and Potter,. S.S. A novel murine homeobox gene isolated by a tissue specific PCR cloning strategy. Nucl. Acids Res, 1992; 20(19), 5189-515
    13. Scott, M. P., Tamkun, J. W. and Hartzell, G. W., III. The structure and function of the homeodomain. Biochem. Biophys. Acta, 1989; 989(1), 25-48
    14. Laughon, A. DNA-binding specificity of homeodomains. Biochemistry, 1991; 30(48), 11357-11367
    15. Tiveron M-C, Hirsch M-R, Brunet J-F. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci, 1996; 16(23):7649-7660
    16. Pattyn A, Goridis C, Brunet J-F: Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci, 2000; 15(3):235-243
    17. ValarchéI, Tissier-Seta JP, Hirsch MR, Martinez S, Goridis C, Brunet JF. The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development, 1993; 119(3), 881-896
    18. Grzanna, R. and Coyle, J. T. Dopamine-β-hydroxylase in rat submandibular ganglion cells which lack norepinephrine. Brain Res, 1978; 151(1), 206-214
    19. Landis, S. C., Jackson, P. C., Fredieu, J. R. and Thibault, J. Catecholaminergic properties of cholinergic neurons and synapses in adult rat ciliary ganglion. J. Neuroscience, 1987; 7(11), 3574-3587
    20. Leblanc, G. G. and Landis, S. C. Differentiation of noradrenergic traits in the principal neurons and small intensely fluorescent cells of the parasympathetic sphenopalatine ganglion of the rat. Dev. Biol, 1989; 131(1), 44-59
    21. Jonakait, G. M., Wolf, J., Cochard, P., Goldstein, M. and Black, I. B. Selective loss of noradrenergic phenotypic characters in neuroblasts of the rat embryo. Proc. Natl. Acad. Sci. USA, 1979; 76, 4683-4686
    22. Baetge, G., Pintar, J. E. and Gershon, M. D. Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev. Biol, 1990; 141(2), 353-380
    23. Jonakait, G. M., Markey, K. A., Goldstein, M. and Black, I. B. Transient expression of selected catecholaminergic traits in cranial sensory and dorsal root ganglia of the embryonic rat. Dev. Biol, 1984; 101, 51-60
    24. Kapur, R. P., Hoyle, G. W., Mercer, E. H., Brinster, R. L. and Palmiter, R. D. Some neuronal cell populations express human dopamineβ-hydroxylase-lacZ transgenes transiently during embryonic development. Neuron, 1991; 7(5), 717-727
    25. Mercer, E. H., Hoyle, G. W., Kapur, R. P., Brinster, R. L. and Palmiter, R. D. The dopamineβ-hydroxylase gene promoter directs expression of E. coli lacZ to sympathetic and other neurons in adult transgenic mice. Neuron, 1991; 7(5), 703-716
    26. Black, I. B. Stages of neurotransmitter development in autonomic neurons. Science, 1982; 215(4537), 1198-1204
    27. Erkman, L., McEvilly, R. J., Luo, L., Ryan, A. K., Hooshmand, F., O’Connell, S. M., Keithley, E. M., Rapaport, D. H., Ryan,A. F. and Rosenfeld, M. G. Role of transcription factors Brn-3. 1 and Brn-3. 2 in auditory and visual system development. Nature, 1996; 381(6583), 603-606
    28. Gan, L., Xiang, M., Zhou, L., Wagner, D. S., Klein, W. H. and Nathans, J. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl. Acad. Sci. USA, 1996; 93(9), 3920-3925
    29. Xiang, M., Gan, L., Zhou, L., Klein, W. H. and Nathans, J. Targeted deletion of the mouse POU domain gene Brn-3a causes a selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc. Natl. Acad. Sci. USA, 1996; 93(21), 11950-11955
    30. Pfaff, S. L., Mendelsohn, M., Stewart, C. L., Edlund, T. and Jessell, T. M. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell, 1996; 84(2), 309-320
    31. Morin, X., Cremer, H., Hirsch, M-R., Kapur, R. P., Goridis, C. and Brunet, J-F. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron, 1997; 18(3), 411-423
    32. Xiang, M., Zhou, L., Macke, J. P., Yoshioka, T., Hendry, S. H. C., Eddy, R. L., Shows, T. B. and Nathans, J. The Brn-3 family of POU-domain factors: primary structure, binding specificity and expression in subsets of retinal ganglion cells and somatosensory neurons. J. Neurosci, 1995; 15, 4762-4785
    33. Turner, E. E., Jenne, K. J. and Rosenfeld, M. G. Brn-3. 2: a Brn3-related transcription factor with distinctive central nervous system expression and regulation by retinoic acid. Neuron, 1994; 12(1), 205-218
    34. McEvilly, R. J., Erkman, L., Luo, L., Sawchenko, P. E., Ryan, A. F. and Rosenfeld, M. G. Requirement for Brn-3. 0 in differentiation and survival of sensory and motor neurons. Nature, 1996; 384(6609), 574-577
    35. Zhou Q-Y, Quaife CJ, Palmiter RD: Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature, 1995; 374(6523):640-643
    36. Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature, 1995; 374(6523): 643-646
    37. Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U, Rohrer H. The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development, 1999; 126(18):4087-4494
    38. Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC, Rosenthal A. Development of noradrenergic neurons in the Zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron, 1999; 24(3):555-566
    39. Vogel-Hopker A, Rohrer H. The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs). Development, 2002; 129(4):983-991
    40. Kim H, Seo H, Yang C, Brunet J-F, Kim K. Noradrenergic-specific transcription of the dopamineβ-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Phox2a-binding sites. J Neurosci, 1998; 18(20):8247-8260
    41. Yang C, Kim H-S, Seo H, Kim C-H, Brunet J-F, Kim K-S. Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamineβ-hydroxylase gene. J Neurochem, 1998; 71(5):1813-1826
    42. Swanson DJ, Zellmer E, Lewis EJ. The homeodomain protein Arix interacts synergistically with cyclic AMP to regulate expression of neurotransmitter biosynthetic genes. J Biol Chem, 1997; 272(43):27382-27392
    43. Swanson DJ, Adachi M, Lewis EJ. The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine beta-hydroxylase promoter through multiple elements and interaction with the coactivator cAMP-response element-binding protein-binding protein. J Biol Chem, 2000; 275(4):2911-2223
    44. Joyner, A. L. and Martin, G. R. En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes Dev, 1987; 1(1), 29-38
    45. He, X., Treacy, M. N., Simmons, D. M., Ingraham, H. A., Swanson, L. W. and Rosenfeld, M. G. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature, 1989; 340(6228): 35-41
    46. Lillycrop, K. A., Budrahan, V. S., Lakin, N. D., Terrenghi, G., Wood, J. N., Polak, J. M. and Latchman, D. S. A novel POU family transcription factor is closely related to Brn-3 but has a distinct expression pattern in neuronal cells. Nucleic Acids Res, 1992; 20(19), 5093-5096
    47. Turner, E. E., Jenne, K. J. and Rosenfeld, M. G. Brn-3. 2: a Brn3-related transcription factor with distinctive central nervous system expression and regulation by retinoic acid. Neuron, 1994; 12(1), 205-218
    48. Ninkina, N. N., Stevens, G. E. M., Wood, J. N. and Richardson, W. D. A novel Brn3-like POU transcription factor expressed in subsets of rat sensory and spinal cord neurons. Nucleic Acids Res, 1993; 21(14), 3175-3182
    49. Simeone, A., Acampora, D., Mallamaci, A., Stornaiulo, A., Rosaria D’Apice, M., Nigro, V. and Boncinelli, E. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J, 1993; 12(7), 2735-2747
    50. Lamonerie, T., Tremblay, J. J., Lanct?t, C., Therrien, M., Gauthier, Y. and Drouin, J. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the proopiomelano- cortin gene. Genes Dev, 1996; 10(10): 1284-1295
    51. Szeto, D. P., Ryan, A. K., O’Connell, S. M. and Rosenfeld, M. G. POTX: a PIT-1-interacting homedomain factor expressed during anterior pituitary gland development. Proc. Natl. Acad. Sci. USA, 1996; 93(15), 7706-7710
    52. Mucchielli, M. -L., Martinez, S., Pattyn, A., Goridis, C. and Brunet, J. -F. Otlx2, an Otx-related homeobox gene expressed in the pituitary gland and in restricted pattern in the forebrain. Mol. Cell. Neurosci, 1996; 8(4), 258-271
    53. Karlsson, O., Thor, S., Norberg, T., Ohlsson, H. and Edlund, T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of protein containing both a homeo- and a Cys-His domain. Nature, 1990; 344(6269): 879-882
    54. Tsuchida, T., Ensini, M., Morton, S. B., Baldassare, M., Edlund, T., Jessell, T. M. and Pfaff, S. L. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell, 1994; 79(6), 957-970
    55. Hérault, Y., Hraba-Renevey, S., van der Hoeven, F. and Duboule, D. Function of the Evx-2 gene in the morphogenesis of vertebrate limbs. EMBO J, 1996; 15(23): 6727-6738
    56. Muragaki, Y., Mundlos, S., Upton, J. and Olsen, B. R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science, 1996; 272(5261): 548-551
    57. Han, K. and Manley, J. L. Transcriptional repression by the Drosophila Even-skipped protein: definition of a minimal repression domain. Genes Dev, 1993; 7(3): 491-503
    58. Han, K. and Manley, J. L. Functional domains of the Drosophila Engrailed protein. EMBO J, 1993; 12(7): 2723-2733
    59. Reissmann, E., Ernsberger, U., Francis-West, P.H., Rueger, D., Brickell, P.M. & Rohrer, H. Involvement of bone morphogenetic proteins-4 and bone morphogenetic protein -7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development, 1996; 122(7): 2079-2088
    60. Lo, L., Morin, X., Brunet, J.-F. & Anderson, D.J. Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron, 1999; 22(4): 693-705
    61. Maxwell, G.D. & Forbes, M.E. Stimulation of adrenergic development in neural crest cultures by a reconstituted basement membrane-like matrix is inhibited by agents that elevate cAMP. J. Neurosci. Res, 1990; 25(2): 172-179
    62. Sieber-Blum, M., Sieber, F. & Yamada, K.M. Cellular fibronectin promotes adrenergic differentiation of quail neural crest cells in vitro. Exp. Cell Res, 1981; 133(2): 295-295
    63. Maxwell, G.D., Reid, K., Elefanty, A., Bartlett, P.F. & Murphy, M. Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures. Proc. Natl Acad. Sci. USA, 1996; 93(23): 13274-13279
    64. Howard, M.J., Stanke, M., Schneider, C., Wu, X. & Rohrer, H. The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development, 2000; 127(18): 4073-4081
    65. Howard, M., Foster, D.N. & Cserjesi, P. Expression of HAND gene products may be sufficient for the differentiation of avian neural crest-derived cells into catecholaminergic neurons in culture. Dev. Biol, 1999; 215(1): 62-77
    66. Lo, L.C., Johnson, J.E., Wuenschell, C.W., Saito, T. & Anderson, D.J. Mammalian achaete -scute homolog I is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev, 1991; 5(9): 1524-1537
    67. Groves, A.K., George, K.M., Tissier-Seta, J.P., Engel, J.D., Brunet, J.F.& Anderson, D.J. Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development, 1995; 121(3): 887-901
    68. Ernsberger, U., Patzke, H., Tissier-Seta, J.-P., Goridis, C., Reh, T. & Rohrer, H. The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells. Mech. Dev, 1995; 52(1): 125-136
    69. George, K.M., Leonard, M.W., Roth, M.E., Lieuw, K.H., Kioussis, D., Grosveld, E. & Engel, J.D. Embryonic expression and cloning of the murine GATA-3 gene. Development, 1994; 120(9): 2673-2686
    70. Hirsch MR, Tiveron MC, Guillemot F, Brunet JF and Goridis C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development, 1998; 125(4): 599-608
    71. Goridis C and Rohrer H. Specification of catecholaminergic and serotonergic neurons. Nature Rev, Neurosci, 2002; 3(7): 531-541
    72. Brunet JF and Pattyn A. Phox2 genes–from patterning to connectivity. Curr Opin Genet Dev, 2002; 12(4): 435-440
    73. Flora A, Lucchetti H, Benfante R, Goridis C, Clementi F and Fornasari D. SP proteins and Phox2b regulate the expression of the human Phox2a gene. J Neurosci, 2001; 21(18): 7037-7045

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700