用户名: 密码: 验证码:
稀土(La,Y)改性SAPO-34分子筛催化转化甲醇制烯烃研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇制低碳烯烃(methanol to olefins,简称MTO)解决了由于石油短缺而导致的低碳烯烃缺乏的难题,因而引起了世界各国的广泛关注。对于MTO反应,性能优异的催化剂是该项研究的核心。SAPO-34分子筛以其高甲醇转化率和高乙烯、丙烯的生成选择性成为目前MTO反应最好的催化剂。但是,做为一种微孔沸石材料,SAPO-34在反应过程中极易因积碳堵塞孔道而造成催化剂的快速失活。因此,如何提高MTO反应过程中催化剂抗积炭失活的能力,从而延长催化剂的寿命以降低催化剂的再生频度,是MTO反应亟待解决的问题。为此,本论文进行了以下几个方面的研究,所得的结果为:
     (1)分别采用固态离子交换法和液态离子交换法将稀土金属镧(La)和钇(Y)引入到SAPO-34中,制得了La、Y改性的SAPO-34催化剂,并将其用于MTO催化反应。结果发现,液态离子交换改性后的SAPO-34与母体分子筛相比,其催化性能没有明显改变,而固态离子交换改性后的SAPO-34上催化剂的寿命和低碳烯烃的选择性得到了显著改善。在评价的反应条件下,固态离子交换法改性的3%Y-SAPO-34-S催化剂上,因甲烷的生成得到了更好的抑制,催化剂的寿命达到了185分钟(比母体SAPO-34延长了近30分钟);C_2~=-C_4~=的选择性达到了95%(比在SAPO-34提高了近5个百分点)。
     (2)借助于XRD、FT-IR、N_2等温吸附/脱附、UV-Vis-DRS、XRF以及ICP表征手段对改性后SAPO-34的结构进行了研究。结果表明,在固态离子改性后的SAPO-34中,稀土离子取代了骨架AlO_4四面体中的Al进入了分子筛的骨架,而在液态离子交换的SAPO-34中,稀土离子很少存在。因此,可以认为,上述固态离子交换法改性的SAPO-34所给出的优越的催化性能,是由于稀土离子进入了分子筛骨架所致。
     (3)在连续流动固定床反应系统,考察了反应温度、甲醇进料空速、水醇比和稀土离子的含量等因素对固态离子交换法改性催化剂抗积炭失活能力的影响,优化了反应条件。得出了下述最佳反应条件:反应温度为450℃,甲醇的质量空速是2h~(-1),水醇摩尔比为5:1。
     (4)本论文还考察了用固态离子交换法改性所得3%Y-SAPO-34-S催化剂的再生性能。结果表明,催化剂经三次再生后,无论是催化剂的寿命还是甲醇的转化率都与相应新鲜的催化剂非常接近。这说明该改性催化剂具有良好的再生性能。
Catalytic conversion of methanol to olefins (called MTO reaction) has been the subject that received a global particular concern, as it may resolve the problem of the deficiency of light olefins caused by the shortage of petroleum. The key issue for the MTO reaction is to develop a new catalyst with excellent catalytic performance. SAPO-34 molecular sieve has turned out to be a superior catalyst for the MTO reaction, due to its high activity for the reaction and high selectivity to ethylene and propylene. Nevertheless, as a micropore zeolite material, SAPO-34 is known to suffer rapid deactivation due to coke deposition during the MTO reaction, which leads to the serious decrease in activity and selectivity of the zeolite towards the aimed reaction. Consequently, how to reduce the coke formation over the zeolite so as to reduce the regeneration frequency of the catalyst is a subject that is urgently required to be solved for the practical application of MTO reaction. Thus, the following research work in our investigations was carried out and the obtained results were described below:
     (1) SAPO-34 was successfully modified by rare earth metals (La or Y) in solid state ion exchange or liquid-phase ion exchange methods. The MTO reaction results indicated that the Re-SAPO-34-L catalysts, which were prepared by the modification of SAPO-34 with the rare earth metals in liquid-phase ion exchange method, behaved no different catalytic performance from that of SAPO-34. However, the Re-SAPO-34-S catalysts, which were prepared by the modification of SAPO-34 with the rare earth metals in solid state ion exchange method, gave substantially improved catalytic performance compared with that of the parent SAPO-34. Under the reaction conditions, the lifetime of the Re-SAPO-34-S catalysts was significantly prolonged and the selectivity to the aimed products was largely increased. For example, the lifetime of the 3%Y-SAPO-34-S catalyst reached 185 minutes that was ca. 30 minutes longer than that of the parent SAPO-34, and the selectivity to C_2~=-C_4~= over the catalyst increased to 95 % that was absolutely ca. 5% higher than that over SAPO-34. The improved catalytic performance over the 3%Y-SAPO-34-S catalyst can be correlated well with the distinct suppression of methane production in the reaction.
     (2) The structures of modified SAPO-34 catalysts were studied by means of XRD, FT-IR, BET, UV-vis-DRS, XRF and ICP. The results confirmed that rare earth metal ions in the solid-state ion exchanged samples had incorporated into the zeolite framework (substituted Al in the AlO_4 tetrahedron), whereas they rarely existed there for the liquid-phase ion exchanged samples. Therefore, the modified catalytic performance for the Re-SAPO-34-S catalysts can be reasonably attributed to the incorporation of rare earth metal ions into the zeolite framework.
     (3) The lifetime of the Re-SAPO-34-S catalysts, which was influenced by the reaction temperature, methanol weight hourly space velocity, molar ratio of methanol to water in the feed as well as the amount of rare earth metal in the catalyst, was investigated in the continuous flowing fixed bed reaction system. In terms of the lifetime of the catalyst, the optimum reaction conditions proposed in this paper are as follows: the reaction temperature is 450℃,the methanol weight hourly space velocity is 2 h~(-1) and the molar ratio of methanol to water is 1:5.
     (4) The reproducibility of the 3%Y-SAPO-34-S catalyst for catalyzing the MTO reaction was also studied. It showed that the catalytic performance of the regenerated catalyst after 3 times changed little compared with the fresh one in terms of the lifetime and the conversion of methanol obtained over the catalyst.
引文
[1] John Q.C,Andrea B, Bryan G, et al.Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process [J]. Catalysis Today, 2005,106:103-107.
    [2] Editorial. An overview to 'Advances in Cl chemistry in the year 2002' [J]. Fuel Processing Technology, 2003,83:1-9.
    [3] 刘红星,谢在库,张成芳等.SAPO-34分子筛研究新进展[J].工业催化,2002,10(4):49-54.
    [4] 张大治.分子筛催化转化氯甲烷制取低碳烯烃及其反应机理的研究[D].大连:中国科学院大连化学物理研究所,2007.
    [5] Wei Y X,Zhang D Zh, Xu L, et al. Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins [J]. Catalysis Today, 2007,131:262-269.
    [6] Jeffery L. White, Matthew J. Truitt. Heterogeneous catalysis in solid acids [J].Progress in Nuclear Magnetic Resonance Spectroscopy,2007,51:139-154.
    [7] Lee Y J, Baek S C, Jun K W. Methanol conversion on SAPO-34 catalysts prepared by mixed template method [J]. Applied Catalysis A: General, 2007,329:130-136.
    [8] Misook Kang, Tomoyuki Inui. Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method [J]. Catalysis Letters, 1998,53:171-176.
    [9] B. Valle,A. Alonso, A. Atutxa, et al. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process [J]. Catalysis Today, 2005,106:118-122.
    [10] Graham J. Hutchings, Graeme W. Watson, David J. Willock. Methanol conversion to hydrocarbons over zeolite catalysts: comments on the reaction mechanism for the formation of the first carbon - carbon bond [J]. Microporous and Mesoporous Materials, 1999,29:67-77.
    [11] Xu L, Liu Z M, Du A P, et al. Synthesis, characterization and MTO performance of MeAPSO-34 molecular sieves [J]. Studies in Surface Science and Catalysis,2004,147:445-450.
    [12] Andre's T. Aguayo, A Ana G. G, Raquel V, et al. Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins [J]. Applied Catalysis A: General, 2005,283:197-207.
    [13] Wei Y X, He Y L, Zhang D Zh, et al. Study of Mn incorporation into SAPO framework:Synthesis characterization and catalysis in chloromethane conversion to light olefins [J]. Microporous and Mesoporous Materials, 2006,90:188-197.
    [14] Daniel L. Obrzut, Prakash M.Adekkanattu,Jyothi Thundimadathil,et al.Reducing methane formation in methanol to olefins reaction on metal impregnation SAPO-34 molecular sieve [J]. Reaction Kinetics and Catalysis Letters, 2003,80:113-121.
    [15] T. Tsoncheva, R. Dimitrova. Methanol conversion to hydrocarbons on porous alumino-silicates [J]. Applied Catalysis A: General, 2002,225:101-107.
    [16] M. StOcker. Methanol-to-hydrocarbons:catalytic materials and their behavior [J].Microporous and Mesoporous Materials, 1999,29:3-48.
    [17] Masahiko Sawa, Miki Niwa, Yuichi Murakami. Development of Long-life Dealuminated Mordenite for Methanol Conversion to Hydrocarbons[J].Journal of Physical Chemistry B, 1987, 8: 1637-1640.
    [18] 徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成[M].吉林大学出版社,1987.
    [19] 李军,张凤美,李黎声.SAPO-18分子筛研究进展.工业催化[J].2005,13:1-5.
    [20] Stephen W,Paul B. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins[J]. Microporous and Mesoporous Materials, 1999,29:117-126.
    [21] 郭颀,谢朝钢.甲醇在ZRP分子筛上转化为轻烯烃的研究[J].石油炼制与化工.2005,36(9):26-30.
    [22] D. Chen, H. P. Rebo, A. Gr(?)nvold, et al. Methanol conversion to light olefins over SAP0-34:kinetic modeling of coke formation [J]. Microporous and Mesoporous Materials, 2000,35-36:121-135.
    [23] 柯明,王燮卿,张风美.分子筛孔结构和硅铝比对催化裂化产品中乙烯选择性的影响[J].石油炼制与化工.2003,34(9):54-58.
    [24] Inui T, Matsuda H, Yamase O,Nagata H. Highly selective synthesis of light olefinsfrom methanol on a novel Fe-silicate [J]. Journal of Catalysis, 1986,98: 491-501.
    [25] 严志敏.甲醇催化转化反应的固体核磁共振研究[D].大连:中国科学院大连化学物理研究所,2003.
    [26] Xu T, Jeffrey L. White. Production of light olefins from oxygenate using framework gallium-containing medium pore molecular sieve: US, 0018231 A1[P]. 2003.
    [27] 张飞,姜健准,张明森,等.甲醇制低碳烯烃催化剂的制备与改性[J].石油化工,2006,35(10:919-923.
    [28] Ana G. Gayubo, Pedro L. Benito, Andres T. Aguayo,et al. Relationship between Surface Aciditv and Activity of catalysts in the Transformation of Methanol into Hydrocarbons [J]. Journal of Chemical Technology & Biotechnology.1996,65:186-192.
    [29] Parakash AM, Unnikrishnan S. Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template [J]. Journal of the Chemical Society,Faraday Transactions, 1994,90(15):2291-2296.
    [30] Liu G Y, Tian P, Li J Z, et al.Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template [J]. Microporous and Mesoporous Materials, 2008,111:143-149.
    [31] Liang J, Li H Y, Zhao S Q , Guo W G,et al. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion [J]. Applied Catalysis,1990,64:31-40.
    [32] Michael W. Anderson, Bogdan Sulikowski, Patrick J. Barrie, et al. In Situ Solid-state NMR Studies of the Catalytic Conversion of Methanol on the Molecular Sieve SAPO-34 [J]. Journal of Physical Chemistry B, 1990,94:2130-2134.
    [33] Watanabe Y, Koiwai A, H. Takeuchi, et al. Multinuclear NMR Studies on the Thermal Stability of SAPO-34 [J]. Journal of Catalysis, 1993,143(2):430-436.
    [34] A. Buchholz, W.Wang, M. Xu, et al. Thermal stability and dehydroxylation of Br(?)sted acid sites in silicoaluminophosphates H-SAPO-11,H-SAPO-18,H-SAPO-31,and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy [J].Microporous and Mesoporous Materials, 2002,56:267-278.
    [35] M. Popova, Ch. Minchev, V. Kanazirev. Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium [J]. Applied Catalysis A: General, 1998,169:227-235.
    [36] 谭涓,刘中民,何长青等.SAPO-34分子筛晶化过程中硅进入骨架的方式和机理[J].催化学报,1999,20(3):227-232.
    [37] 刘红星,谢在库,张成芳等.不同模板剂合成SAPO-34分子筛的表征与热分解过程研究[J].化学物理学报,2003,16(6):521-527.
    [38] 郑燕英,杨廷录,周小虹等.制各条件对SAPO-34分子筛结构及MTO活性的影响[J].燃料化学学报,1999,27(2):140-142.
    [39] 谭涓,何长青,刘中民.SAPO-34分子筛研究进展[J].天然气化工,1999,24:47-52.
    [40] 何长青,刘中民,杨立新等.三乙胺法合成磷硅铝分子筛SAPO-34的研究[J].天然气化工,1993,18(5):14-18.
    [41] Ivar M. Dahl,Helle Mostad, Duncan Akporiaye, et al. Structural and chemical influences on the MTO reaction: a comparison of chabazite and SAPO-34 as MTO catalysts [J].Microporous and Mesoporous Materials, 1999,29:185-190.
    [42] Hiroshi Oikawa,Yasunori Shibata, Koji Inazu, et al. Highly selective conversion of ethene to propene over SAPO-34 as a solid acid catalyst [J]. Applied Catalysis A: General, 2006,312:181-185.
    [59] J. M.O. Lewis,W.H.Henstock. Cyclic process for catalytically converting feedstock to produce product contg. light olefin(s) [P].US4973792. 1990,11,27.
    [60] T.Inui, M. Rang. Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion [J]. Applied Catalysis A:General, 1997,164(1-2):211-223.
    [61] M. Kang. Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals-(Ⅱ):catalytic performance under various reaction conditions [J].Journal of Molecular Catalysis A: Chemical, 1999,150(1-2):205-212.
    [62] M. Kang. Methanol conversion on metal-incorporated SAP0-34s (MeAPSO-34s) [J].Journal of Molecular Catalysis A: Chemical, 2000, 160(2):437-444.
    [63] M. Kang, M.H.Um, J. Y. Park. Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals-(Ⅰ):effect of preparation factors on the gel formation [J]. Journal of Molecular Catalysis A: Chemical, 1999, 150(1-2):195-203.
    [64] D. R. Dubois, D. L. Obrzut, J.Liu, et al.Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves [J]. Fuel Processing Technology, 2003, 83(1-3):203-218.
    [65] F. D. P. Mees, P. Van Der Voort, P. Cool, et al. Controlled reduction of the acid site density of SAPO-34 molecular sieve by means of silanation and disilanation [J].The Journal of Physical Chemistry B, 2003,107(14):3161-3167.
    [66] Kessler, H., J. Patarin, Schott-Darie, C. The Opportunities of the fluoride route in the synthesis of microporous materials [J]. Studies in Surface Science and Catalysis, 1994,85:75-113.
    [67] 关新新,刘克成,武光军等.SAPO-34分子筛的氮化及在甲醇制烯烃(MTO)中的应用[J].分子催化.2006,20(3):270-273.
    [68] 关新新,刘克成,武光军等.含N微孔SAPO-34分子筛的制备、表征及催化性能[J].石油学报(石油加工).2007,23(1):15-19.
    [69] Guan X X, Zhang F X,Wu G J, et al. Synthesis and characterization of a basic molecular sieve: Nitrogen-incorporated SAPO-34 [J]. Materials Letters,2006,60:3141-3144.
    [70] 白尔铮.甲醇制烯烃用SAPO-34催化剂新进展[J].工业催化.2001,9(4):3-8.
    [71] Kye Sang Yoo, Ji-Hyun Kim, Min-Jo Park, et al. Influence of solid acid catalyst on DME production directly from synthesis gas over the admixed catalyst of Cu/ZnO/Al_2O_3 and various SAPO catalysts [J]. Applied Catalysis A: General,2007,330:57-62.
    [72] M. Hartmann, L. Kevan. Transitional metal ions in aluminophosphate and silicoalum-inophosphate molecular sieves: Location, interaction with adsorbates and catalytic properties [J]. Chemical Reviews, 1999, 99(3):635-663.
    [73] B. M.Weckhuysen, R.R.Rao, J. A. Martens, et al.Transition metal ions in microporous crystalline aluminophosphates: Isomorphous substitution [J]. European Journal of Inorganic Chemistry, 1999, (4):565-577.
    [74] Xu L, Liu Z M, Du A P,et al. Synthesis, characterization and MTO performance of MeAPSO-34 molecular sieves [J]. Natural Gas Conversion Vii, 2004,147:445-450.
    [75] Misook Kang, Chul-Tae Lee. Synthesis of Ga-incorporated SAP0-34s (GaAPSO-34) and their catalytic performance on methanol conversion [J]. Journal of Molecular Catalysis A: Chemical, 1999,150,213-222.
    [76] 李金哲,齐越,刘中民等.SAPO-34催化剂上反应条件对乙烯转化制丙烯的影响[J].催化学报,2008,29(7):660.
    [77] Wei Y X, Zhang D Z,Chang F X, et al. Direct observation of induction period of MTO process with consecutive pulse reaction system [J]. Catalysis Communications,2007,8(12):2248-2252
    [78] 刘红星,谢在库.CaO改性SAPO-34分子筛的表面酸性及其催化性能[J].石油化工,2005,34:343-344.
    [79] H. Sun, S.N.Vaughn. Conversion of oxygenate(s) to hydrocarbon(s) using small pore non-zeolitic molecular sieve catalysts-comprises using silico-alumino-phosphate molecular sieve catalysts containing alkaline earth metals: US6040264 [P].2000,3, 21.
    [80] 汪宏伟,邓雪琴,诸林等.天然气甲醇法制烯烃工艺进展天然气与石油[J].2007,25:29-32.
    [81] Zhang D zh,Wei Y X, Xu L, et al. MgAPSO-34 molecular sieves with various Mg stoichiometries:Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins [J]. Microporous and Mesoporous Materials, 2008,116(1-3):684-692.
    [82] Marie-Ange Djieugoue, A. M. Prakash, Larry Kevan. Catalytic Study of Methanol to Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves:Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration [J]. The Journal of Physical Chemistry B,2000, 104:6452-6461.
    [83] Inoue M, Khupatemiya P,Inui T, et al. Synthesis course of the Ni-SAPO-34 catalyst for methanol-to-olefin conversion [J]. Microporous and Mesoporous Materials, 1999,28:19-24.
    [84] 刘红星.复合模板剂合成SAPO-34分子筛的结构表征与MTO反应过程研究[D].上海:华东理工大学,2003.
    [85] Zhu Zh D, Martin Hartmann,Larry Kevan. Catalytic Conversion of Methanol to Olefins on SAPO-n (n =11, 34,and 35), CrAPSO-n, and Cr-SAPO-n Molecular Sieves [J].Chemistry of Materials, 2000,12:2781-2787.
    [86]Wei Y X,Zh D Zh, Xu L, et al.Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins[J]. Catalysis Today, 2008,131:262-269.
    [87] Ilona L. Franklin, Andrew M. Beale,Gopinathan Sankar.On the activity, longevity and recyclability of Mn(Ⅱ) and Co(Ⅱ) substituted A1PO-18 catalysts for the conversion of methanol to light olefins [J]. Catalysis Today, 2003,81:623-629.
    [88] T. Tsoncheva, R. Dimitrova, Chr.Minchev. Methanol conversion as a test for framework cobalt elucidation in CoAPSO molecular sieves [J]. Applied Catalysis A: General, 1998,171: 241-245.
    [89] 何长青,刘中民,杨立新等.CoAPSO-34分子筛的合成与性能催化学报[J].1996.17:291-295.
    [90] 张钺伟,沈美庆,吴晓东等.稀土对SAPO-11分子筛结构与性能的影响[J].物理化学学报,2006,22(12):1495-1500.
    [91] 黄瑞娟.ZSM-5系列催化剂改性及其用于MTP过程的工艺研究(M).西安:西北大学,2006.
    [92] Shun Chong Fung, Doron Levin,lose Santiesteban, et al. Conversion of oxygenates to olefins: US, 20060025644A1[P], 2006,4,2.
    [93] Shun Chong Fung, Doron Levin,lose Santiesteban, et al. Conversion of oxygenates to olefins: US,20060025645A1 [P],2006,4,2.
    [94] Shun Chong Fung, Doron Levin,lose Santiesteban, et al. Conversion of oxygenates to olefins: US, 20060025646A1 [P], 2006,4,2.
    [95] Takao Masuda, Tadashi Asanuma,Mitsuru Shouji, et al. Methanol to olefins using ZSM-5 zeolite catalyst membrane reactor [J]. Chemical Engineering Science,2003,58: 649-656.
    [96] G. F. Froment, W. J. Dehertog, A. J. Marchi. Zeolite catalysis in the conversion of methanol into olefins [J]. Applied Catalysis A: General, 1992,9:1-64.
    [97] Xianchun W,Michael G A, Rayford G A. Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor [J]. Applied Catalysis A: General, 2004,260:63-69.
    [98] Xianchun W, R G Anthony. Effect of feed composition on methanol conversion to light olefins over SAPO-34 [J]. Applied Catalysis A: General, 2001,218:241-250.
    [99] 柯丽,冯静,冯炎等.反应气氛对甲醇制低碳烯烃反应的影[J].石油化工,2006,35(6):439-542.
    [100] 沈师孔.天然气转化利用技术的研究进展[J].石油化工,2006,35(9):799-809.
    [101] Frerich J. Keil.Methanol-to-hydrocarbons: process technology [J].Microporous and Mesoporous Materials, 1999,29:49-66.
    [102] 徐斌.甲醇制取低碳烯烃的研究开发与应用[J].西部煤化工,2007,1:16-23.
    [103] Voorhies J rA. Carbon formation in catalytic cracking[J]. Industrial Engineering Chemistry Research, 1945, 37(4):318-322.
    [104] Chen D, Rebo H P, Gronvold A, et al.Methanol conversion to light olefins over SAPO-34:Kineticmodeling of coke formation [J]. Microporous and Mesoporous Materials, 2000, 35-36:121-135.
    [105] 齐国祯,谢在库,杨为民等.甲醇制烯烃反应过程中SAPO-34催化剂积炭动力学研究[J].燃料化学学报,2006,34(2):205-208.
    [106] Qi G Zh, Xie Z K, Yang W M, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins [J].Fuel Processing Technology,2007,88:437-441.
    [107] 齐国祯,谢在库,钟思青等.甲醇制低碳烯烃(MTO)反应热力学研究[J].石油与天然气化工,2005,34(5):349-353.
    [108] A G Gayubo, Andre's T A, Martin Olazar, et al. Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process[J]. Chemical Engineering Science, 2003, 58:5239-5249.
    [109] H Schulz, Ming W. Deactivation and thermal regeneration of zeolite HZSM-5 for methanol conversion at low temperature [J]. Microporous and Mesoporous Materials,1999,29:205-218.
    [110] James F. haw, Weiguo Song, David M. Marcus, The Mechanism of Methanol to Hydrocarbon Catalysis [J]. Ace.Chem.Res. 2003, 36:317-326.
    [111] Zhimin C, Qiang L, Shaowei B, et al. The Role of Methoxy Groups in Methanol to Olefin Conversion [J]. Journal of Physical Chemistry C, 2008,112:2685-2688.
    [112] Forester T R, Howe R F. In situ FTIR Studies of Methanol and Dimethyl Ether in ZSM-5 [J]. Journal of the American Chemical Society, 1987,109:5076-5082.
    [113] Kupelkova L,Novakova J. Reactivity of Surface species on Zeolites in Methanol Conversion [J]. Journal of Catalysis, 1990,124:441-450.
    [114] Philippou A, Salehirad F. Investigation of Surface Methoxy Groups on SAPO-34:a Combined M agic-Angle Tunring MR Experimental Apporach with Theoretical Studies [J]. Journal of the Chemical Society, Faraday Transactions, 1998,94:2851-2856.
    [115] Salehirad F,Anderson M W. Solid-State NMR Studies of Adsorption Complexed and Surface Methoxy Groups on Methanol-Sorbed Microporous Materials [J]. Journal of Catalysis, 1998,177:189-207.
    [116] Kazansky V B,Senchenya I N. Quantum Chemical Study of the Electronic Structure and Geometry of Surface Alkoxy Groups as Probable Active Intermediates of Heterogeneous Acidic Catalysts: What Are the Adsorbed Carbenium Ions? [J].Journal of Catalysis, 1989,119:108-120.
    [117] Jia C J, Patricia Beaunier, Pascale Massiani. Comparison of conventional and solid-state ion exchange procedures for the incorporation of lanthanum in H-beta zeolite [J].Microporous and Mesoporous Materials, 1998,24:69-82.
    [118] Mourad Mhamdi, Sihem Khaddar-Zine, Abdelhamid Ghorbel.Influence of the Co/Al ratio and the temperature of thermal treatment on cobalt speciation and catalytic properties of Co-ZSM-5 prepared by solid-state ion exchange [J]. Applied Catalysis A: General, 2008,337:39-47.
    [119] M. A. Zanjanchi, A. Ghanadzadeh, F. K. Nahvi. Incorporation of Silicon into AlPO-5 Framework Sites: Higher Thermal Stability and Lower Extra-Framework Aluminum Concentration[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002,42:295-299.
    [120] 谢有畅,杨乃芳,唐有祺.某些催化剂活性组分在载体表面分散的自发倾向[J].中国科学,B辑,1982,3:673.
    [121] 齐国祯.甲醇制烯烃(MTO)反应过程研究[D].上海:华东理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700