用户名: 密码: 验证码:
典型的铁磁、铁电氧化物薄膜界面分析与界面控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿结构的铁电氧化物薄膜和尖晶石结构的铁磁氧化物薄膜因其独特的电、磁学特性和宽广的应用前景受到了材料科学界的广泛关注,成为近年来介质氧化物薄膜研究的热点。在这类复杂结构的氧化物薄膜生长与应用中,存在着大量的表面、界面效应。由于理论研究和实验条件的制约,与界面相关的一些重要物理现象和机理仍不清楚,尤其是界面形成、界面动力学过程以及微结构控制等问题在一定程度上阻碍了介质氧化物薄膜器件的高速发展。本论文采用激光分子束外延生长技术,围绕几种典型的铁电、铁磁氧化物薄膜生长动力学原理以及界面控制方法,对氧化物薄膜的界面结构进行了较为系统的研究,并对界面应力、取向生长改善薄膜电、磁性能方面做了探索性的工作。
     首先,论文系统的研究了CoFe_2O_4(CFO)薄膜生长行为及其界面微结构特性。利用激光分子束外延技术(LMBE),通过对CFO薄膜生长的原位反射高能电子衍射(RHEED)监测发现生长温度和沉积速率共同决定了层状、层岛混合和岛状三种生长模式的转变。通过优化薄膜生长工艺参数实现对CFO铁磁氧化物薄膜生长模式的有效控制,并绘制出CoFe_2O_4/SrTiO_3(STO)体系生长模式相图。根据RHEED强度振荡曲线,利用Arrhenius理论模型分析了CFO/SrTiO_3(STO)异质外延生长中界面粒子弛豫过程,计算得到CFO表面和界面粒子迁移活化能分别为0.6eV和1.6eV,证明界面粒子需克服晶格失配造成的晶格扭结势垒Es而表现出更大的界面迁移活化能。通过透射电子显微镜(TEM)观察到不同生长模式下界面微结构的差异。在STO单晶基片上650℃,1.25(?)/sec岛状生长的CFO薄膜厚度超过临界厚度(5nm)将产生塑性形变形成失配位错,位错的Burgers矢量为a〈010〉,密度为1.25×10~8m~(-1)。实测位错密度值略小于理论计算值2×10~8m~(-1),这表明部分失配应力以弹性应变的方式残留于薄膜内;而在同样温度下,以0.5(?)/sec沉积速率层状外延生长的CFO薄膜通过弹性应变方式释放失配应力,厚度超过15nm仍未观察到明显的失配位错形成。研究表明CFO外延薄膜界面的微结构由弹性应变和塑性形变共同决定。
     在界面微结构特性研究的基础上,利用界面应力调制CFO异质外延薄膜的微结构并对其性能展开了深入的探讨。采用LMBE技术系统研究了正/负失配下CFO薄膜的应力释放行为以及应变CFO薄膜的磁化特性。研究表明不同界面应力导致CFO薄膜异质外延生长过程中产生非对称界面生长现象,即张应力通过弹性应变使薄膜晶胞畸变,逐层释放应变;压应力通过改变薄膜界面结构来释放应力。通过应力调制作用,首次在应变的CFO/STO体系中得到明显的磁晶各向异性。垂直方向([001])和水平方向([100]/[010])的剩余磁化强度(Mr)分别为190 emu/cm~3和150emu/cm~3,垂直与水平方向的矫顽场差异达到3倍以上。另一方面,利用界面应力调制BaTiO_3(BTO)/CFO/Nb-STO异质外延薄膜微结构,深入的研究了界面应力对复合异质薄膜铁电、铁磁性能的影响。首次通过X射线倒易空间扫描图精确获得BTO/CFO内晶格常数,并利用晶格常数方法计算得到随BTO厚度变化的残余应力分布状态,初步建立了多元氧化物异质外延薄膜有序结构中应力分布及弛豫模型。电性能测试表明BTO/CFO/STO异质外延体系中张应力的释放有利于铁电性的恢复。
     其次,采用激光脉冲沉积方法,从界面热力学角度系统研究了Pb(Zr_(1-x)Ti_x)O_3(PZT)铁电薄膜在不同氧化物基片上取向外延生长行为及其界面特性。利用界面双晶外延生长机理实现了PZT薄膜在MgO(100)基片以(110)面取向外延生长。另外,从晶化动力学角度系统研究了后退火工艺中界面反应对PZT多晶薄膜择优取向生长的影响。通过改变升温速率有效控制PZT薄膜在界面异质成核并以(111)面择优生长,绘制出择优取向生长相图,并研究了不同取向PZT薄膜的电性能差异。
     最后,采用LMBE技术,以STO缓冲层实现BTO铁电薄膜在GaAs基片上c向外延生长,并对这种大晶格失配体系的界面控制方法进行了深入研究。根据近重位点阵生长机理,STO晶格通过面内45°旋转以减小与GaAs晶格失配。TEM界面研究发现这种非共格界面生长关系造成STO出现高位错密度界面层,且位错延伸至BTO内导致性能退化。首次利用临界厚度效应生长低于临界厚度的STO弹性应变界面层,获得STO缓冲层最优生长厚度为12-16ML之间。此时BTO受到STO缓冲层面内压应力,在均匀应变的STO表面以层状模式外延生长形成应变异质结,从而在原子尺度改善了BTO/STO/GaAs异质结界面结构。电性能测试表明Pt/BTO/STO/GaAs应变异质结表现出良好的极化特性,2Pr为6.5μC/cm~2,±5V偏压下漏电流低于4×10~(-6)A/cm~2,较文献报道同类GaAs基异质结有显著提升,达到器件应用要求。
Owing to their versatile ferroelectric and magnetic function and wide application,the oxidethin films with peroviskite and spinel structure have attracted much attention,and became thekey point in the electronic material studies recently.In the growth and application of thecomplex oxide thin films,it is inevitable that the surface and interface affect the electronicsystems.Due to the limit of the theoretical and experimental condition,the related theory andmechanism of the interface is still lacking including the growth mechanism and dynamics ofinterface and the control of the interface microstructure.Especially when the thickness of thefilms reaches the nanometer level,the unclear problems has become noticeable,which hasstrongly prevented the development of these functional oxide films.In this dissertation,basedon the epitaxial growth mechanism and dynamic of oxide thin film and the method of theinterface control,the interface microstructure and its effect on the physical properties offerroelectric and ferromagnetic films has been systematically studied by experiments with theLaser Molecular Beam Epitaxy techniques (LMBE),including the interface strain modulation,growth orientation and their effects on the electric and magnetic properties.
     Firstly,the growth behavior and interface microstrucutre of CFO thin film grown byLMBE with an in-situ reflective high energy electron diffraction (RHEED) were systematicallystudied.It was found that the layer-by-layer,island and Strnaski-Krastanov (layer-by-layer plusisland) growth modes were determined by the growth temperature and deposition rate.Therefore,the growth modes of CFO could be precisely controlled by varying the depositionparameters and hence the growth mode map of the CFO/STO was obtained as a function of thesubstrate temperature for various laser repetition rates.On the other hand,the process ofinterface relaxation was analysised according to the RHEED oscillation and the activity energyfor the particle migration both at surface and interface of the CFO films were calculated to be0.6 eV and 1.6 eV by the Arrhenius theory,respectively.It proves that the particles at interfaceneed more activity energy for migration than these at surface due to the high lattice distortionbarrier (Es) induced by the lattice mismatch.In order to reveal the difference of interfacestructure between the films with island or layer-by-layer growth mode,the TEM technique wasemployed to investigate the cross-sectional characteristic of the CFO films.It was found that theCFO epitaxially grown on STO substrate at the temperature of 650℃and deposition rate of1.25(?)/sec exhibited island growth mode.The misfit dislocations with Burgers vector a<010> occured when the CFO thickness exceeded the critical thickness about 5nm.The misfit densityof the dislocation could be measured to be 1.25×10~8m~(-1),which was less than the value of2×10~8m~(-1) by theoretical calculation.Actually,part of lattice mismatch stress was released bylattice strain;while the CFO grown on STO substrate at the same temperature and depositionrate of 0.5(?)/sec exhibited layer-by-layer growth mode.It was noted that any misfit dislocationcould be observed even in the CFO film with thickness beyond 15nm,which suggested that thelattice mismatch stress in CFO film was released by lattice strain.Therefore,the interfacemicrostructure of CFO film was mainly determined by the lattice strain and dislocation energy.
     Based on the study of the interface microstructure,we extensively studied the influence ofthe interface-stress modulation on the microstructure and physical properties of theseheteroepitaxial CFO thin films.First,the stress relaxation and its effects on the magnetism ofthe CFO were systematically studied in the CFO thin films epitaxially grown under the tensileand compressive stress induced by substrates.An asymmetrical growth behavior due to interfacestress was found during the heteroepitaxial growth of the CFO,which could be described thatthe tensile stress was relaxed by changing the lattice constant,while the compressive stress wasrelaxed by changing the interface structure.By stress modulation,a strong magnetic anisotropywas obtained in the compressive strained CFO heteroepitaxial film.The remanent magnetism(Mr) in the vertical ([001]) and parallel ([100]/[010]) direction of compressive strained CFOfilm was measured to be 190 emu/cm~3 and 150 emu/cm~3,respectively.Besides,the coercivemagnetic field (Hc) in the vertical direction was three times that in parallel direction.Furthermore,we systematically studied the influence of stress modulation on the microstructureand the physical properties including ferroelectric and magnetic properties in heteroeptaxiallygrown BaTiO_3(BTO)/CFO/Nb-STO films.The lattice parameters were precisely obtained byX-ray Reciprocal Space Mapping and the residual stress was calculated using the latticeparameter method.A residual stress theoretical model about the relaxation mechanisms of stressin complex oxide heteroepitaxial films with ordered structure was put forward for bettercomprehension of the dependence between thickness and stress.Furthermore,the electricalmeasurement results show that the ferroelectric properties were enhanced with the relaxation ofthe tensile stress in BTO/CFO/STO heteroepitaxial system.
     Secondly,based on the principle of interface thermodynamics,the oriented growthbehavior of the Pb(Zr_(1-x)Ti_x)O_3 (PZT) films epitaxially grown by pulsed laser depositiontechnique were systematically studied.According to bicrystalline epitaxial growth mechanism atinterface,the (110)-oriented PZT ferroelectric films were epitaxially grown on MgO(100) substrates.On the other hand,the hetero-nuclear PZT polycrystalline film with (111)-texturecould be obtained by precisely controlling the heating rate.Therefore,the textured growth mapof the polycrystalline PZT was obtained as a function of the substrate temperature for vaviousheating rates.The electrical properties of the texture PZT films were also measured.
     Finally,the c-oriented BTO ferroelectric thin films were successfully epitaxially grown onGaAs substrate by using LMBE technique via STO as buffer layer.The interface control methodwas extensively studied in the large lattice mismatch system.According to the NearlyCoincidence Site Lattice (NSCL) theory,the lattice mismatch was reduced by the 45°rotation ofthe STO lattice.The interface was investigated by TEM technique.It was found that theinterface with high density of misfit dislocation in noncoincidence-site growth caused thedegradation of the electrical properties.By inserting a strained interfacial buffer layer of STObelow the critical thickness,a well ordered interface at atomic scale could be obtained in thestrained BTO/STO/GaAs heterostructure.The favor thickness of STO buffer should becontrolled between 12-16 monolayers.The BTO was grown on STO buffer in layer-by-layergrowth mode with an in-plane compressive strain induced by the STO.Compared with thesimilar heterostructure grown on GaAs,The strained Pt/BTO/STO/GaAs heterostructre exhibitsexcellent electrical performance with a 2Pr of 6.5μC/cm~2 and leakage current below4×10~(-6)A/cm~2 at the voltage bias of±5V,which is suitable for device application.
引文
[1] Tanaka H and Misono M. Advances in designing perovskite catalysts. Curr. Opin. Solid State Mater. Sci., 2001, Vol.5: 381-387.
    
    [2] Voorhoeve R J H. Advanced materials in catalysis: Academic Press 1977.
    
    [3] Kobayashi D, Kumigashira H, Oshima M, et al. High-resolution synchrotron-radiation photoemission characterization for atomically-controlled SrTiO_3(001) substrate surfaces subjected to various surface treatments. J. Appl. Phys., 2004, Vol.96: 7183-7188.
    [4] Thomas N W. A new global parameterization of perovskite structures Acta. Cryst, 1998,Vol.B54: 585-599.
    [5] Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys., 2006, Vol.100:051606-46.
    [6] Dawber M, Rabe K M and Scott J F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys., 2005, Vol.77:1083-48.
    [7] Kingon A I and Streiffer S K. Ferroelectric films and devices. Curr. Opin. Solid State Mater. Sci., 1999, Vol. 4:39-44.
    [8] Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998, Vol. 61:1267-1324.
    [9] Shrout T R and Swartz. S L, Processing of ferroelectric and related materials: a review. Applications of Ferroelectrics, ISAF '92., Proceedings of the Eighth IEEE International Symposium, 1992, p. 80-88.
    [10] Buchanan D A. Scaling the gate dielectric: Materials, integration, and reliability. IBM J. Res. Dev., 1999, Vol.43:245.
    
    [11] Hallmark J, Yu Z, Droopad R, et al. Epitaxial BaTiO_3 films on silicon for MFSFET applications. Integrated Ferroelectrics, 1999, Vol. 27:41-50.
    
    [12] Sébastien L D, Christophe D and Jaeho O. Correlation between the lattice parameter and the dielectric tenability in nonepitaxial Ba_(0.5)Sr_(0.5)TiO_3 thin films. Appl. Phys. Lett. 2007, Vol.91,261101-261103.
    
    [13] Gim Y, Hudson T, Fan Y, et al. Microstructure and dielectric properties of Ba_(1-x)Sr_xTiO_3 films grown on LaAlO_3 substrates, Appl. Phys. Lett., 2000, Vol.76(8): 1200-1202.
    
    [14] Kingdon A I, Maria J P and Streiffer S K. Alternative dielectrics to silicon dioxide for memory and logic devices.Nature,2000,Vol.406:1032.
    [15]Das J and Kalinikos B A Multifunctional dual-tunable low loss ferrite-ferroelctric heterostructures for microwave devices.Appl Phys Lett,2007,Vol.91:172516-172518.
    [16]Lugo C and Wang G Papapolymerou.Frequency and bandwidth agile millimeter-wave filter using ferroelectric capacitors and MEMS cantilevers.IEEE Trans.Microwave Theory Tech.,2007,Vol.55:376-386.
    [17]Kim D,Choi Y and Allen M.Wide bandwidth monolithic BST reflection-typephaseshifter using a coplanar waveguide Lange coupler.IEEE MTT S Int Microwave Symp Dig.,2002,Vol.3:1471-1474.
    [18]Noren B.Thin film barium strontium titanate(BST)for a new class of tunable RF components.Microwave J,2004,Vol.47:210-220.
    [19]Barker N S and Rebriel G M.Distributed MSMS true-time delay phase shifter and wide-band switchers.IEEE Trans.on MTT,1998,Vol.46:1881-1889.
    [20]Borgioli A,Liu Yu,Nagra A S,et al.Low-loss distributed MEMS phase shifter.IEEE MW and Guided Wave Lett.,2000,Vol.10:7-9.
    [21]Liu Y,Amit S N,Erich G E,et al.BaSrTiO_3 interdigitated capacitors for distributed phase shifter applications.IEEE MW and Guided Wave Lett.,2000.Vol.10(11):448-450.
    [22]Ali T,Francisco T A,Jon P M,et al.Tunable RF filters using thin film barium strontium titanate based capacitors.IEEE MTT S Int Microwave Symp Dig,2001,Vol.1:1453-1456.
    [23]Liang X P and Zhu Y.Hybrid resonator microstrip line electrically tunable filter.IEEE MTT S Int Microwave Symp Dig,2001,Vol.1:1457-1460.
    [24]Xu J,Liang X P and Khosro S.Full wave analysis and design of RF tunable filters.IEEE MTT S Int Microwave Symp Dig,2001,Vol.1:1449-1452.
    [25]刘梅冬,陈实,李元昕等,铁电薄膜热释电非致冷红外传感器研究.仪表技术与传感器,2004,2:3-4.
    [26]Subramanyam G,Riehl B and Ahamed F.New research directions in tunable microwave dielectrics.Integr Ferroelectr.,2004,Vol.66:139-151.
    [27]Kingdon A I,Maria J P and Streiffer S K.Alternative dielectrics to silicon dioxide for memory and logic devices.Nature,2000,Vol.406:1032.
    [28]Clemer K,Stesmans A,Afanas'ev V V,et al.Paramagnetic point defects in(100)Si/LaAlO_3 structures:Nature and stability of the interface.J.Appl.Phys.,2007,Vol.102:034516-7.
    [29]Mi Y Y,Wang S J,Chai J W,et al.Energy-band alignments at LaAlO_3 and Ge interfaces.Appl.Phys.Lett.,2006,Vol.89:202107-3.
    [30] Dong Y F, Mi Y Y, Feng Y P, et al. Ab initio studies on Schottky barrier heights at metal gate/LaAlO_3 (001) interfaces. Appl. Phys. Lett., 2006, Vol.89:122115-3.
    [31 ] Goto R, Takahashi Y, Tezuka N, et al. Structural, magnetic and barrier properties for Co-ferrite thin films fabricated by plasma oxidization. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, Vol.71 (2): 258-262.
    [32] Yu D L and Du Y W. Fabrication of CoFe_2O_4 nanowire arrays and its magnetic properties. Gongneng Cailiao/Journal of Functional Materials, 2006, Vol.37 (8): 1210-1212.
    [33] Viart N, Hassan R S, Ulhaq-Bouillet C, et al. Oxidation processes at the metal/oxide interface in CoFe_2/CoFe_2O_4 bilayers deposited by pulsed laser deposition. Acta Materialia, 2006, Vol.54(1): 191-196.
    [34] Liu J, Girgis E, Bach P, et al. Tunneling magnetoresistance in devices based on epitaxial NiMnSb with uniaxial anisotropy. Journal of Applied Physics, 2006, Vol.99 (3): 036110.
    [35] Montemayor S M, Garcia-Cerda L A, Torres-Lubian J R, et al. Comparative study of the synthesis of CoFe2O4 and NiFe2O4 in silica through the polymerized complex route of the sol-gel method. Journal of Sol-Gel Science and Technology, 2007, Vol.42 (2): 181-186.
    [36] Chen S Y, Yao Y D, Wu J M. Magnetoresistance study and interlayer coupling of CoFe/Os/CoFe thin films. Journal of Magnetism and Magnetic Materials, 2006, Vol.304 (1):37-40.
    [37] Khedr M H, Omar A A and Abdel-Moaty S A. Magnetic nanocomposites: Preparation and characterization of Co-ferrite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, Vol.281 (1-3): 8-14.
    [38] Bahgat M, Farghaly F E, Basir S M A, et al. Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries. Journal of Materials Processing Technology, 2007, Vol.183 (1): 117-121.
    [39] Singh R N, Singh N K, Singh J P, et al. Effect of partial substitution of Cr on electrocatalytic properties of CoFe_2O_4 towards O_2-evolution in alkaline medium. International Journal of Hydrogen Energy, 2006, Vol.31 (6): 701-707.
    [40] Eerenstein W, Mathur N D and Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, Vol.442 (7104): 759-765.
    [41] Bibes M and Barthelemy A. Multiferroics: Towards a magnetoelectric memory. Nature Materials, 2008, Vol.7 (6): 425-426.
    [42] Shrout T R and Swartz S L. Processing of ferroelectric and related materials: a review. Applications of Ferroelectrics, 1992. ISAF '92., Proceedings of the Eighth IEEE International Symposium, 1992.: 80-88.
    [43] Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998, Vol. 61:1267-1324.
    [44] Neaton J B and Rabe K M. Theory of polarization enhancement in epitaxial BaTiO_3/SrTiO_3 superlattices. Appl. Phys. Lett., 2003, Vol. 82:1586-1588.
    [45] Li Y, Hao L Z , Deng H, et al. Ferroelectric properties of LaAlO_3/BaTiO_3 superlattices prepared by laser molecular-beam epitaxy. J. Appl. Phys., 2005, Vol. 97: 094103-1-094103-3
    [46] Liang Y C, Wu T B, Lee H Y, et al. Structural characteristics of epitaxial BaTiO_3/LaNiO_3 superlattice. J. Appl. Phys., 2004, Vol. 96:584-589.
    [47] Tsurumi T, Harigai T, Tanaka D, et al. Artificial ferroelectricity in perovskite superlattices. Appl. Phys. Lett., 2004, Vol. 85, No. 21:5016-5019.
    [48] Ishiwara H. Recent progress of fet-type ferroelectric memories. Integrated Ferroelectrics, 2001, Vol.34: 1451-1460.
    [49] Kohlstedt H, Mustafa Y, Gerber A, et al. Current status and challenges of ferroelectric memory devices. Microelectronic engineering, 2005, Vol. 80:296-304.
    [50] Brewer R T, Atwater, H A, Groves J R, et al. Reflection high-energy electron diffraction experimental analysis of polycrystalline MgO films with grain size and orientation distributions. J. Appl. Phys., 2003, Vol. 93, No. 1:205-210.
    [51] Wang D Y, Wang Y, Zhou X Y, et al. Enhanced in-plane ferroelectricity in Ba_(0.7)Sr_(0.3)TiO_3 thin films grown on MgO (001) single-crystal substrate. Appl. Phys. Lett., 2005, Vol. 86:212904-1-212904-3.
    [52] Miyazawa H, Natori E, Shimoda T, et al. Relationship between Lattice Deformation and Polarization in BaTiO_3. Jpn. J. Appl. Phys., 2001, Vol. 40: 5809-5811.
    [53] Wang B, Woo C H. Curie temperature and critical thickness of ferroelectric thin films. J. Appl. Phys., 2005, Vol. 97: 084109-1-084109-10.
    [54] Nakao R, Ishizumi K, Takahashi I, et al. Critical thickness for ferroelectricity of BaTiO_3 by first-principles calculations. Appl. Phys. Lett., 2005, Vol. 86: 222901-1-222901-3.
    [55] Kim Y S, Kim D H, Kim J D, et al. Critical thickness of ultrathin ferroelectric BaTiO_3 films. Appl. Phys. Lett., 2005, Vol. 86: 102907-1-102907-3.
    [56] Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, Vol. 422: 506-509.
    [57] Bruchhaus R, Wersing W. Integrated ferroelectric thin films for electronic devices of the future. Proc. SPIE Int. Soc. Opt. Eng., 1998, Vol. 3175:316-321.
    [58] Tian W, Jiang J C, Pan X Q, et al. Structural evidence for enhanced polarization in a commensurate short-period BaTiO_3/SrTiO_3 superlattice. Applied Physics Letters, 2006, Vol.89(9): 092905.
    [59] Lisfi A and Williams C M. Magnetic anisotropy and domain structure in epitaxial CoFe_2O_4 thin films. Journal of Applied Physics, 2003, Vol.93 (103): 8143-8145.
    [60] Roldan J, Sanchez F, Trtik V, et al. Epitaxial SrRuO_3 thin films on LaAlO_3(100) and Si(100). Applied Surface Science, 2000, Vol.154:159-164.
    [61] Jia C L, Rodriguez Contreras J, Schubert J, et al. Introduction and characterization of interfacial defects in SrRuO_3/BaTiO_3/SrRuO_3 multilayer films. Journal of Crystal Growth,2003, Vol.247 (3-4): 381-386.
    [62] Cui D F, Chen Z H, Zhao T, et al. Growth and surface analysis of BaTiO_3 ultrathin film fabricated by laser molecular beam epitaxy. Microelectronic Engineering, 2000, Vol.51:601-604.
    [63] MacManus-Driscoll J L, Zerrer P, Wang H, et al. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nature Materials, 2008, Vol.7(4): 314-320.
    [64] Clark A M, Hao J H, Si W, et al. Properties of interfaces between SrTiO_3 thin films and electrodes. Integr. Ferroelectr., 2000, Vol.29:309-53.
    [65] Yoneda Y, Sakaue K, Terauchi H. RHEED observation of BaTiO_3 thin films grown by MBE. Surface science, 2003, Vol. 529:283-287.
    [66] Vaithyanathan V, Lettieri J, Tian W, et al. C-axis oriented epitaxial BaTiO_3 films on (001) Si. Journal of Applied Physics, 2006, Vol.100 (2): 024108.
    [67] Reyren N, Thiel S, Caviglia A D, et al. Superconducting interfaces between insulating oxides. science, 2007, Vol.317 (5842): 1196-1199.
    [68] Chang W, Kirchoefer S W, Pond J M, et al. Room temperature tunable microwave properties of strained SrTiO_3 films. Journal of Applied Physics, 2004, Vol.96 (11): 6629-6633.
    [69] Petrov P K, Alford N M, Astafiev K F, et al. Structural investigation of thin SrTiO_3 films grown on MgO and LaAlO3 substrates. Integrated Ferroelectrics, 2003, Vol.53:465-473.
    [70] Guo H Z, Chen Z H, Cheng B L, et al. Structure dynamics of strongly reduced epitaxial BaTiO_(3-x) studied by Raman scattering. Journal of the European Ceramic Society, 2005, Vol.25(12 SPEC ISS): 2347-2352.
    [71] Haeni J H, Irwin P, Chang W, et al. Room-temperature ferroelectricity in strained SrTiO_3.Nature, 2004, Vol. 430: 758-761.
    [72] Choi K J, Biegalski M, Li Y L, et al. Enhancement of Ferroelectricity in Strained BaTiO_3 Thin Films. Science, 2004, Vol.306 (5698): 1005-1009.
    [73] Viehland D and Li J F. Stress-induced phase transformations in PbTiO_3 crystals: Bilinear coupling of ferroelastic strain and ferroelectric polarization. Journal of Applied Physics, 2005,Vol.96 (11): 6729-6733.
    [74] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO_3-CoFe_2O_4 Nanostructures. Science,2004, Vol.303 (5658): 661-663.
    [75] Schaadt D M, Yu E T, Vaithyanathan V, et al. Nanoscale current transport in epitaxial SrTiO_3 on n +-Si investigated with conductive atomic force microscopy. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2004, Vol.22 (4): 2030-2034.
    [76] Niu F, Meier A, Wessels BW. Integration of MgO on Si(001) using SrO and SrTiO_3 buffer layers by molecular beam epitaxy. Journal of Electroceramics, 2004, Vol.13 (1-3): 149-154.
    [77] Goncharova LV, Starodub DG, Garfunkel E, et al. Interface structure and thermal stability of epitaxial SrTiO_3 thin films on Si (001). Journal of Applied Physics, 2006, Vol.100 (1): 014912.
    [78] Nam S H, Lee W J, Kim H G. Oriented growth of SrTiO_3 thin films on Si substrate by radio frequency magnetron sputtering. J. Phys. D: Appl. Phys., 1994, Vol. 27: 866-870.
    [79] Konofaos N, Evangelou E K, Wang Z, et al. Electrical characterisation of SrTiO_3/Si interfaces. Journal of Non-Crystalline Solids, 2002, Vol. 303:185-189.
    [80] Droopad R, Yu Z, Li H, et al. Development of integrated heterostructures on silicon by MBE. J Crystal Growth, 2003, Vol. 251:638-644.
    [81] Konofaos N, Evangelou E K, Wang Z, et al. Electrical characterisation of SrTiO_3/Si interfaces. Journal of Non-Crystalline Solids, 2002, Vol. 303:185-189.
    [82] Evangelou E K, Konofaos N, Aslanoglou X, et al. Characterization of BaTiO_3 thin films on p-Si. Materials science in semiconductor processing, 2001, Vol. 4:305-307.
    [83] Liang Y, Kulik J, Wei Y, et al. Hetero-epitaxy of crystalline perovskite oxides on GaAs(001). Boston, MA., United States: Materials Research Society, 2003:379-384.
    [84] Gila B P, Thaler G T, Onstine A H, et al. New dielectrics for gate oxides and surface passivation on GaN. Bethesda, MD, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005:130-131.
    [85] Ye P D, Wilk G D, Yang B, et al. GaAs-based metal-oxide semiconductor field-effect transistors with Al_2O_3 gate dielectrics grown by atomic layer deposition. Journal of Electronic Materials, 2004, Vol.33 (8): 912-915.
    [86] Ye P D, Wilk G D, Yang B, et al. Improvement of GaAs metal-semiconductor field-effect transistor drain-source breakdown voltage by oxide surface passivation grown by atomic layer deposition. Solid-State Electronics, 2005, Vol.49 (5): 790-794.
    [87] Ye P D, Wilk G D, Yang B, et al. GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition. Applied Physics Letters, 2003,Vol.83 (1): 180-182.
    [88] Liang Y, Kulik J, Eschrich T C, et al. Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy. Applied Physics Letters, 2004, Vol.85 (7): 1217-1219.
    [89] Murphy T E, Chen D, Phillips J D. Electronic properties of ferroelectric BaTiO_3/MgO capacitors on GaAs. Applied Physics Letters, 2004, Vol.85 (15): 3208-3210.
    [90] Kotomin E A, Eglitis R I, Maier J, et al., Calculations of the atomic and electronic structure for SrTiO_3 perovskite thin films, Strasbourg, Elsevier Science B.V., 2001, p. 76-80.
    [91] Bottin F, Finocchi F and Noguera C. Stability and electronic structure of the (1x1) SrTiO_3(110) polar surfaces by first-principles calculations. Phys. Rev. B, 2003, Vol.68: 035418.
    [92] Wang Y X, Arai M, Sasaki T, et al. First-principles study of the (001) surface of cubic CaTiO_3. Phys. Rev. B, 2006, Vol.73:035411-7.
    [93] Carrasco J, Illas F, Lopez N, et al. First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO_3. Phys. Rev. B, 2006, Vol.73: 064106-11.
    [94] Shimojo F. Ab initio study of proton dynamics on perovskite oxide surfaces. Science and Technology of Advanced Materials, 2007, Vol.8:504-510.
    [95] Li L. The influence of gradient stress on the dielectric properties of perovskite ferroelectric films. Integr. Ferroelectr., 2006, Vol.78: 135-140.
    [96] Li Y L and Chen L Q. Temperature-strain phase diagram for BaTiO_3 thin films. Appl. Phys.Lett., 2006, Vol.88: 072905.
    [97] Ban Z G, Alpay S P, He F, et al. Multiple relaxation mechanisms in SiTiO_3/SrRuO_3 heterostructures. Appl. Phys. Lett., 2004, Vol.84:4848-4850.
    [98] Casek P, Bouette-Russo S, Finocchi F, et al. SrTiO_3(001) thin films on MgO(001): A theoretical study. Phys. Rev. B, 2004, Vol.69:085411-11.
    [99] Albina J M, Mrovec M, Meyer B, et al. Structure, stability, and electronic properties of SrTiO_3/LaAlO_3 and SrTiO_3/SrRuO_3 interfaces. Phys. Rev. B, 2007, Vol.76:165103-12.
    [100] Turban P, Hennet L and Andrieu S. In-plane lattice spacing oscillatory behaviour during thetwo-dimensional hetero- and homoepitaxy of metals. Surface Science, 2000, Vol. 446:241-253.
    [101]路胜博,铁电薄膜应力的X射线衍射表征与研究:[工学硕士论文],成都:电子科技大学,2006.
    [102]Kitamura S and Iwatsuki M.High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope.Appl.Phys.Lett.,1998,Vol.72,No.24:3154-3156.
    [103]Eng L.Nanoscale domain engineering and characterization of ferroelectric domains.Nanotechnology,1999,Vol.10,No.4:405-411.
    [104]Lisfi A,Williams CM,Johnson A,et al.Spin reorientation in single-crystal CoFe2O4 thin films.Journal of Physics Condensed Matter,2005,Vol.17(8):1399-1404.
    [105]Zhu J,Wei X H,Zhang Y,et al.Study on interfacial strain behavior of functional oxide heterostructures.J.Appl.Phys.,2006,Vol.100:104106.
    [106]Zhu J,Liang Z,Li Y R,et al.Epitaxial growth of BaTiO_3 thin films at a low temperature under 300℃ with temperature-controlled BaTiO_3 buffer layer.J.Cryst.Growth,2006,Vol.294:236-242.
    [107]Tambo T,Nakamura T,Maeda K,et al.Molecular beam epitaxy of SrTiO_3 films on Si(100)-2×1 with SrO buffer layer.Jpn J Appl Phys,1998,Vol.37:4454-4459.
    [108]Kawasaki M,Takahashi K,Maeda T,et al.Atomic control of the SrTiO_3 crystal surface.Science,1994,Vol.226:1540-1542.
    [109]Song J and Jeong Y.SrTiO_3 homoepitaxy by the pulsed laser deposition method:island,layer-by-layer,and step-flow growth.Solid state communications,2003,Vol.125:563-566
    [110]Yang M and Flynn C.Growth of alkali halides by molecular-beam epitaxy.Phys.Rev.B,1990,Vol.41:8500-8508.
    [111]Blank D,Koster G,Rijnders G,et al.Epitaxial growth of oxides with pulsed interval deposition.J.Crystal growth,2000,Vol.211:98-105.
    [112]Lee J,Juang J,Wu K,et al.Annealing characteristics of pulsed laser deposited homoepitaxial SrTiO_3 thin films.Surface Science,2001,Vol.488:277-285.
    [113]Lee J,Juang J,Wu K,et al.Temperature dependence of RHEED oscillation in homoepitaxial growth of SrTiO_3(100)films on stepped substrates.Surface science,2000,Voi.499:L235-L242.
    [114]Strikovski M and Miller J.Pulsed laser deposition of oxides:Why the optimum rate is about 1 per pulse.Appl.Phys.Lett.,1998,Vol.73,No.12:1733-1735.
    [115]Matthews J W and Blakeslee A.Defects in epitaxial multillayers.J.Crystal Growth.,1974,27:118-125.
    [116]Tsao J,Dodson B,Picraux S,et al.Critical stresses for Si_xGe_(1-x)strained-layer plasticity.Phys.Rev.Lett.,1987,59:2455-2458.
    [117]Hull R,Bean J,Buescher C.A phenomenological description of strain relaxation in Ge_xSi_(1-x)/Si(100)heterostructures.J.Appl.Phys.,1989,66:5837-5843.
    [118]Suzuki T,Nishi Y and Fujimoto M.Analysis of misfit relaxation in heteroepitaxial BaTiO_3 thin films.Philos.Mag.A,1999,Vol.79,No.10:2461-2483.
    [119]Sun H,Tian W,Pan X Q,et al.Evolution of dislocation arrays in epitaxial BaTiO_3 thin films grown on(100)SrTiO_3.Appl.Phys.Lett.,2004,Vol.84,No.17:3298-3300.
    [120]Lee G,Shin B,Kim I.Critical thickness of BaTiO_3 film on SrTiO_3(001)evaluated by reflection high-energy electron diffraction.Materials letters,2001,Vol.50:134-137.
    [121]Filimonov S and Hervieu Y.Statistics of second layer nucleation in heteroepitaxial growth.Surf.Sci.,2002,507:270-275.
    [122]Kawasaki M,Takahashi K,Maeda T,et al.Atomic control of the SrTiO_3 crystal surface.Science,1994,Vol.226:1540-1542.
    [123]Li Y R,Jiang S W,Zhang Y,et al.Surface diffusion during layer growth of SrTiO_3 films with pulsed laser molecular beam epitaxy.J.Crystal Growth,2005,Vol.278:629-632.
    [124]Neave J,Dobson P and Joyce B,et al.Reflection high-energy electron diffraction oscillations from vicinal surfaces-a new approach to surface diffusion measurements.Appl.Phys.Lett.,Vol.47,No.2:100-102.
    [125]Ishibashi,Y.Okada,M.Kawabe.Surface diffusion of Bi_2Sr_2CuO_(6+x)thin films grown by molecular beam epitaxy.Jpn.J.Appl.Phys.,1994,Vol.33:L763-L765.
    [126]Koster,G.A.J.H.M.Rijnders,D.H.A.Blank,et al.Imposed layer-by-layer growth by pulsed laser interval deposition.Appl.Phys.Lett.,1999,Vol.74,No.24:3729-3731.
    [127]Nakagawa N,Hwang H Y and Muller D A.Why Some Interfaces Cannot be Sharp.Nature Mater.,2006,Vol.5:204.
    [128]Grizzi O,Shi M,Bu H,et al.Time-of-flight scattering and recoiling spectrometer(TOF-SARS)for surface analysis.Rev.Sei.Instrum.,1990,Vol.61:740-752.
    [129]Van der Heide P A W and Rabalals J W.Photoelectron spectroscopic study of the temperature-dependent termination of the LaAlO_3(100)surface.Chem.Phys.Lett.,1998,Vol.297:350-356.
    [130]Balcells L,Bibes M,Casanove MJ,et al.Magnetotransport properties of fully strained epitaxial thin films of La_(2/3)Ca_(1/3)MnO_3 grown on SrTiO_3.Applied Surface Science,2002,Vol.188(1-2):202-208.
    [131] Pan H C, Sheng , Chou C, et al. Electrical properties of PbSrTiO_3 films on stainless steel substrates with LaSrMnO_3 buffer layers. Integrated Ferroelectrics, 2002, Vol.46: 175-184.
    [132] Fortin J Y, Ziman T. Frequency mixing of magnetic oscillations: beyond Falicov-Stachowiak theory. Physical Review Letters, 1998, Vol.80 (14): 3117.
    
    [133] Ramesh R, Spaldin NA. Multiferroics: Progress and prospects in thin films. Nature Materials,2007, Vol.6(1):21-29.
    [134] Geprags S, Opel M, Goennenwein STB, et al. Multiferroic materials based on artificial thin film heterostructures. Philosophical Magazine Letters, 2007, Vol.87 (3-4): 141-154.
    [135] Nan C W, Bichurin M I, Dong S, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 2008, Vol.103 (3):031101.
    [136] Lee B W and Auh K H. Effect of grain size and mechanical processing on the dielectric properties of BaTiO3. Journal of Materials Research, 1995, Vol.10 (6): 1418-1423.
    [137] Feizhou H and Wells B O. Lattice strain in epitaxial BaTiO_3 thin films. Appl. Phys. Lett.,2006, Vol.88:152908.
    [138] Zheng X, Li J, Zhou Y. X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition. Acta Materialia, 2004, Vol.52 (11): 3313-3322.
    [139] Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys., 2001, Vol.73: 515.
    [140] Lin R, Liao J H, Hung L J, et al. Effect of the CoFe_2O_4 thin film thickness on multiferroic property of (001)-oriented Pb(Zr_(0.5)Ti_(0.5))O_3/CoFe_2O_4Pb(Zr_(0.5)Ti_(0.5))O_3 trilayer structure.Journal of Applied Physics, 2008, Vol.103 (7): 07-320.
    [141] Wei Z W, Feng W L, Qing Z Y, et al. The study on the electric field effect in the la_(0.8)Ca_(0.2)MnO_3/PbZr_(0.2)Ti_(0.8)O_3/Si heterostructure. Surface Review and Letters, 2007, Vol.14 (4):617-621.
    [142] Tang J L, Zhu J, Qin W F Xiong et al. Structure and dielectric characteristics of epitaxially strained BaTiO_3 thin films, J Mater Sci: Mater Electron. 2008, Vol. 19:466-470.
    [143] Niwa K, Kotaka Y, Tomotani M, et al. Interface between electrode and PZT memory device. Acta Materialia, 2000, Vol.48 (18-19): 4755-4762.
    [144] Velu G, Remiens D. Electrical properties of sputtered PZT films on stabilized platinum electrode. Journal of the European Ceramic Society, 1999, Vol.19 (11): 2005-2013.
    [145] Lashgari K, Westin G. Preparation of PZT film and powder by sol-gel technique using Ti- and Zr-Alkoxides and a novel Pb-precursor. Journal of Sol-Gel Science and Technology, 1999, Vol.13 (1-3): 865-868.
    [ 146] Iijima T, Wang Z, He G, et al. Displacement property of PZT films prepared by CSD method. Honolulu, HI: Institute of Electrical and Electronics Engineers Inc., 2000:945-948.
    [147] Turtle B A, Schwartz R W. Solution deposition of ferroelectric thin films. MRS Bulletin, 1996, Vol.21 (6): 49-54.
    [148] Zhu J, Zheng L, Zhang Y, et al. Fabrication of epitaxial conductive LaNiO_3 films on different substrates by pulsed laser ablation. Materials Chemistry and Physics, 2006, Vol.100 (2-3):451-456.
    [149] Mickevicius S, Grebinskij S, Bondarenka V, et al. Investigation of epitaxial LaNiO_(3-x) thin films by high-energy XPS. Journal of Alloys and Compounds, 2006, Vol.423 (1-2 SPECISS): 107-111.
    [150] Li J, Yao X, Zhang L. The preparation of the single-phase perovskite conductive LaNiO_3 films on different substrates. Shanghai, China: International Society for Optical Engineering, Bellingham, WA 98227-0010, United States, 2005:184-187.
    [151] Huang S S, Liu J L, Wu T B. Thickness dependent characteristics in the growth of Pb(Zr_(0.4)Ti_(0.6))O_3 thin films on LaNiO_3 electrode by MOCVD. Integrated Ferroelectrics, 2004,Vol.68: 53-62.
    [152] Huang Z, Zhang Q, Whatmore R W. Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films. Journal of Applied Physics, 1999,Vol.86 (3): 1662.
    [153] Gruverman A, Kalinin SV. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. Journal of Materials Science, 2006, Vol.41 (1): 107-116.
    [154] Gruverman A, Rodriguez BJ, Dehoff C, et al. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Applied Physics Letters, 2005, Vol.87 (8): 082902.
    [155] Ramesh R. Process integration of PZT thin films with oxide electrodes for high density nonvolatile memories. Integrated Ferroelectrics, 1998, Vol.20 (1-4): 69.
    [156] Anderson J, Conner J, Raj R. In situ study of MgO on GaAs (001) for integrating thin film ferroelectrics with semiconductors. Ferroelectrics, 1994, Vol.157 (1-4 pt 7): 353-358.
    [157] Cui D F, Li C L, Zhou Y L, et al. Influence of the oxygen stoichiometry on the structures and ferroelectric properties of BaTiO_3 thin films. Ferroelectrics, 2002, Vol.271:93-98.
    [158] Langjahr P, Wagner T, Lange F, et al. Epitaxial growth and structure of highly mismatched oxides with rock-salt structure on MgO. J. Crystal Growth, 2003, Vol. 256: 162-173.
    [159] Lamberti M, Tokranov V, Moore R, et al. Formation of defects in MBE re-grown GaAs films on GaAs/AlGaAs heterostructures.Boston MA,United States:Materials Research Society,2002:369-374.
    [160]Takeda K,Miyamoto T,Kondo T,et al.Wavelength extension effect on lasing characteristics of highly-strained GalnAs/GaAs vertical-cavity surface-emitting lasers with cavity detuning.Japanese Journal of Applied Physics,Part 1:Regular Papers and Short Notes and Review Papers,2006,Vol.45(8B):6691-6696.
    [161]Agronin A,Molotskii M,Rosenwaks Y,et al.Dynamics of ferroelectric domain growth in the field of atomic force microscope.Journal of Applied Physics,2006,Vol.99(10):104102.
    [162]Yang H,Tao K,Chen B,et al.Leakage mechanism of Ba_(0.7)Sr_(0.3)TiO_3 thin films in the low-temperature range.Appl.Phys.Lett.,2002,Vol.81(25):4817-4819.
    [163]Chang S and Lee J.Electrical conduction mechanism in high dielectric constant(Ba_(0.5)Sr_(0.5))TiO_3 thin films.Appl.Phys.Lett.,2002,Vol.80(4):655-657.
    [164]Riad S.Infuence of dioxygen and annealing process on the transport properties of nickel phthalocyanine Schottky-barrier devices.Physica B 1999,Vol.270:148-156.
    [165]Wang Y and Tseng T.Electronic defect and trap-related current of(Ba_(0.4)Sr_(0.6))TiO_3 thin films.J.Appl.Phys.1997,Vol.81(10):6762-6766.
    [166]Lee Y,Kim Y,Kim D,et al.Conduction Mechanisms in Barium Tantalates Films and Modification of Interfacial Barrier Height.IEEE Trans.Electron Devices,2000,Vol.47(1):71-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700