用户名: 密码: 验证码:
胆道闭锁致病基因的检测及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆道闭锁(biliary atresia, BA)是儿童最常见的严重肝脏疾病,病因至今未明,既往的研究多局限于某些炎症细胞或因子在发病中的作用,但是不同的细胞与细胞间,分子与分子间存在复杂的网络联系,这些细胞和因子哪些处于始动环节,哪些处于核心通路或是相应的下游环节,始终未能阐明。为进一步阐明该病的发病机制,本研究借助基因芯片及生物信息学技术在全基因组水平对基因表达谱及基因间的相互关系进行研究。对于所得到的关键基因对其在胆道闭锁肝脏中的表达及突变情况进行了验证。同时在体外细胞培养中对可能存在的关键调控基因的功能进行深入研究。
     目的利用基因芯片技术及生物信息学方法对胆道闭锁的基因表达谱进行研究,以进一步阐明该病的发病机制。
     方法Trizol一步法提取胆道闭锁组及胆总管囊肿组肝脏组织的总RNA,利用人全基因组基因表达芯片研究胆道闭锁及胆总管囊肿肝脏组织基因表达谱间的差异,并对所得差异基因进行表达趋势显著性及功能分析、信号传导通路显著性分析,并构建基因间相互作用网络,寻找在胆道闭锁发病过程中的显著性的基因表达趋势、信号通路及关键调控基因。
     结果胆道闭锁与胆总管囊肿相比存在1000余条差异基因;通过对表达谱芯片所得差异基因的分析,得到:
     (1)趋势21及23两个最具显著性的表达趋势。趋势21的基因功能主要涉及组织相容性抗原复合物Ⅱ介导的外源性抗原呈递作用以及由此导致的免疫反应。趋势23的基因功能主要涉及器官组织发育、细胞外基质形成,阴离子转运与磷酸基团转运。(2)趋势21涉及的显著性通路主要为细胞凋亡调控(与炎症及组织重构有关),细胞基质代谢以及细胞粘附、花生四烯酸类物质的合成(与炎症反应相关);趋势23主要涉及细胞基质代谢(参与组织重构)、炎症反应、花生四烯酸类物质的合成、增殖与迁移能力。
     (3)其中趋势21的关键基因包括ITGAM、ITGB2、TNFSFR21、RGS19,趋势23的关键基因包括LAMC1、LAMA5、MMP7、TIMP2、MMP11。
     (4)通过基因调控网络构建发现LDOC1基因可能在胆道闭锁发病中起关键调控作用。
     结论
     (1)胆道闭锁的发病与MHCⅡ类分子介导免疫炎症及组织重构密切相关。
     (2)其中ITGAM、ITGB2、TNFSFR21、RGS19和LAMC1、LAMA5、MMP7、TIMP2、MMP11分别在趋势21和趋势23中具有重要作用。
     (3)LDOC1基因可能在胆道闭锁发病过程中起着核心调控作用。
     目的:研究第一部分实验中发现的胆道闭锁中关键基因的表达及突变情况,以验证基因芯片结果并进一步揭示该病的发病机制。
     材料与方法:
     (1)22例胆道闭锁患儿和14例胆总管囊肿患儿手术活检肝脏标本,利用RT-PCR方法对趋势21和趋势23所发现的关键基因ITGAM、ITGB2、TNFRSF21、RSG19和LAMC1、LAMA5、MMP7、TIMP2、MMP11进行了半定量检测。同时以Real-time PCR的方法对LDOC1基因进行了定量检测。
     (2)抽取10例胆道闭锁患儿外周静脉血2ML,抽提基因组DNA,对目的基因ITGB2和LDOC1基因外显子进行扩增纯化并测序,了解其突变及SNP改变情况。
     结果:
     (1)胆道闭锁肝脏组织中ITGAM、ITGB2、TNFRSF21、RSG19、LAMC1、LAMA5、MMP7、TIMP2、MMP11及LDOC1均较胆总管囊肿明显升高(P<0.05)。
     (2)对ITGB2基因16个外显子进行PCR扩增、纯化、测序,测序结果与NCBI参考序列进行比对,发现:9例患儿(9/10)存在ITGB2基因单核苷酸多态性改变。这些改变包括3个突变和11个SNP改变。其中突变分别是N212Y(2/10),Y544H(1/10),P752S(4/10);SNP改变包括:-156T/C(5/10),117G/A(1/10),919G/A(5/10),1101C/A(4/10),1533C/T(1/10),3’-UTR+123C/T(4/10),3’-UTR+140G/A(4/10),3’-UTR+148C/A(6/10),3’-UTR+170C/T(8/10),3’-UTR+219T/C(1/10),3’-UTR+286C/T(3/10)。LDOC1基因仅有1个外显子,与参考序列相比,在3例患儿(3/10)存在单核苷酸多态性改变。共有1处SNP改变,为3’UTR+822C/T。
     结论
     (1)胆道闭锁中,ITGAM、ITGB2、TNFRSF21、RGS19、LAMC1、LAMA5、MMP7、TIMP2、MMP11、LDOC1等关键基因表达升高,这些基因的功能主要涉及免疫炎症及细胞外基质重建,说明它们可能参与胆道闭锁炎症及纤维化的进程。
     (2)胆道闭锁中ITGB2基因外显子区存在多处突变及单核苷酸改变。LDOC1基因外显子区存在1处SNP改变。这些突变可能导致相关蛋白结构及功能改变,从而参与胆道闭锁的发病。而SNP改变的存在,可能与胆道闭锁的疾病易感性相关。
     目的:体外研究LDOC1基因高表达对T淋巴细胞Thl类炎症因子表达的影响。
     方法:体外构建pIRES2-EGFP-LDOC1质粒,将pIRES2-EGFP-LDOC1和空白质粒pIRES2-EGFP重组并包装腺病毒,感染Jurkat细胞,利用westernblot的方法研究LDOC1蛋白的表达,利用Elisa的方法研究无转染组、pAD-LDOC1-IRES2-EGFP组和PAd-IRES2-EGFP组细胞在静息状态和PMA激活状态下Thl类炎症因子TNF-α、IL-2、IFN-γ的表达情况。
     结果:成功构建pIRES2-EGFP-LDOC1质粒,并利用腺病毒包装后转染Jurkat细胞。转染LDOC1组(pAD-LDOC1-IRES2-EGFP组)较阴性转染组(PAd-IRES2-EGFP组),LDOC1蛋白表达明显升高。转染LDOC1组(pAD-LDOC1-IRES2-EGFP组)较阴性转染组(PAd-IRES2-EGFP组),在静息状态下在炎症因子产生上并无明显差异,但在经PMA刺激后,LDOC1组(pAD-LDOC1-IRES2-EGFP组)较阴性转染组(PAd-IRES2-EGFP组)TNF-α、IL-2、IFN-γ的表达均明显升高,经统计学检验具有显著性差异(p值分别为0.0099、0.0043和0.0026)。
     结论:在Jurkat细胞中高表达LDOC1可以促进炎症因子TNF-α、IL-2、IFN-γ表达升高。而胆道闭锁中存在LDOC1基因表达升高,提示其可能对Thl类细胞因子表达具有促进作用,从而加剧胆道闭锁中持续而炎症的免疫损伤。
Biliary atresia (BA) is a progressive obliterative process involving the extrahepatic and intrahepatic bile ducts in the newborn. It is characterised by worsening cholestasis, hepatic fibrosis, and cirrhosis, which lead to portal hypertension and a decline in hepatic synthetic function. The etiology of BA remains unknown. It has recently been proposed that the perinatal/acquired form may be caused by a biliary trophicviral infection, leading to an initial bile duct epithelial injury that triggers a persistent immune-mediated sclerosing process resulting in obstruction of extrahepatic bile ducts. However, the relations between different genes are complicated. Therefore, we undertook a large-scale gene-expression analysis to identify physiologically relevant genomic signatures of biliary atresia in the livers of affected infants. Meanwhile, bioinformatic analysis was applied to classify the different genes and find regulatory modules in the pathgenesis of BA. Furthermore reverse-transcription polymerase chain reaction (RT-PCR) was performed to confirm changes in gene expression. We also investigated the role of the most important regulatory modules by gene transfection in votro.
     Objective To investigate the gene expressing profile and find regulatory modules through large scale gene expression data analysis in BA (biliary atresia).
     Methods Using cDNA microarrays, we analyzed and compared gene expression profiles in the liver tissure of BA and CBD. Meanwhile, bioinformatic analysis including STC、STC-GO (Series Test Cluster of Gene Ontology)、pathway-finder and Dynamic-GeneNet construction was applied to classify the different genes and find regulatory modules in the pathgenesis of BA.
     Results There are more than 1000 different genes between BA and CBD. After STC, we find two significant profile(profile21 and 23); By STC-GO (Series Test Cluster of Gene Ontology), the different genes of profile21 and 23 mainly include immune response, antigen processing and presentation of exogenous peptide antigen via MHC classⅡand multicellular organismal development and extracellular matrix synthesis, retrospectively. By pathway-finder, integrin-mediated cell adhesion、matrix metalloproteinases、inflammatory response pathway were identified as the significant pathway. ITGAM ITGB2、TNFSFR21、RGS19 and LAMC1、LAMA5、MMP7、TIMP2、MMP11 were identified as the key genes in profile21 and 23 retrospectively. By construction of dynamic-genenet, LDOC1 was found as the most important regulatory modules.
     Conclusion 1.Biliary atresia was caused by immune inflammation conducted by MHC classⅡmolecules and extracellular matrix synthesis.
     2. ITGAM、ITGB2、TNFSFR21、RGS19 and LAMC1、LAMA5、MMP7、TIMP2、MMP11 have important role in the pathogenesis of immune inflammation and extracellular matrix synthesis in biliary atresia, respectively.
     3. LDOC1 may be the most important regulatory module in the pathogenesis of biliary atresia.
     Methods The liver biopsy tissures from 22 cases of biliary atresia and 14 cases of CBD were collected. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to confirm the gene expression changes of ITGAM、ITGB2、TNFSFR21、RGS19、LAMC1、LAMA5、MMP7、TIMP2、MMP11.Real-time PCR was used to investigate the expression of LDOC1.Meawhile, screening for mutations of the ITGB2 (CD18) gene and LDOC1gene were performed on DNA extracted from whole blood of 10 biliary atresia patients. Polymerase chain reaction amplification was performed, followed by bidirectional semi-automated DNA sequencing analysis.
     Results The levels of the expression of ITGAM、ITGB2、TNFSFR21、RGS19、LAMC1、LAMA5、MMP7、TIMP2、MMP11and LDOC1 mRNA were obviously higher in biliary atresia liver tissues than that in CBD liver tissues(p<0.05). After DNA sequencing analysis, ITGB2 gene showed variations in 9 bilary atresia patients (9/10), genetic variations include three mutation:N212Y(2/10), Y544H(1/10), P752S(4/10) and 11 polymorphisms:-156T/C(5/10),117G/A(1/10),919G/A(5/10),1101C/A(4/10),1533C/T(1/10), 3'-UTR+123C/T(4/10),3'-UTR+140G/A(4/10),3'-UTR+148C/A(6/10), 3'-UTR+170C/T(8/10),3'-UTR+219T/C(1/10),3'-UTR+286C/T(3/10). LDOC1 gene showed variations in 3 bilary atresia patients (3/10) including 1 polymorphisms: 3'-UTR+822C/T.
     Conclusion 1.The expression of ITGAM、ITGB2、TNFSFR21、RGS19、LAMC1、LAMA5、MMP7、TIMP2、MMP11and LDOC1 elevated obviously in biliary atresia. These genes may have important role in the inflammation and liver fibrosis in biliary atresia. 2.The exons of ITGB2 gene have 3 mutations and 11 SNP variations and LDOC1 gene have 1 SNP variations in biliary atresia. The mutations may cause the constructional and functional changes of the ITGB2 protein that involved in the pathogenesis of biliary atresia. The SNP variations of LDOC1 and ITGB2 can probably be linked to a genetic predisposition to biliary atresia.
     Methods We constructed plasmid pIRES2-EGFP-LDOC1 carrying a full-length LDOC1 cDNA and transfected into Jurkat cell by adenovirus. We divided into three groups including empty、pAD-LDOC1-IRES2-EGFP and PAd-IRES2-EGFP. The westernblot method was used to detect the expression of LDOC1 protein between the groups. The TNF-α、IL-2、IFN-γlevel of resting and activated Jurkat cell in each group were detected by elisa.
     Results After transfection, the LDOC1 protein elevated remarkably in pAD-LDOC1-IRES2-EGFP than that of PAd-IRES2-EGFP. The expression of TNF-α、IL-2、IFN-γlevel of resting Jurkat cell were of no statistically difference between pAD-LDOCl-IRES2-EGFP and PAd-IRES2-EGFP,but when Jurkat cell was activated by PMA, the expression of TNF-α、IL-2、IFN-γlevel increased more obviously in pAD-LDOCl-IRES2-EGFP than that of PAd-IRES2-EGFP(p<0.05).
     Conclusion Overexpression LDOC1 could enhance the production of TNF-α、IL-2、IFN-γ, and it indicated that LDOC1 may promote the inflammation reaction in biliary atresia which aggravate the injury of biliary epithelium.
引文
1. Hung PY, Chen CC, Chen WJ, et al. Long-term prognosis of patients with biliary atresia:a 25 year summary[J]. J Pediatr Gastroenterol Nutr,2006, 42(2):190-195.
    2.王中林,郑珊,王晓红.儿童肝移植术后随访和治疗[J].中华儿科杂志,2007,45:428-431.
    3. 马亚贞,汤绍涛,童强松,等.轮状病毒致胆道闭锁动物模型的建立[J].中华小儿外科杂志,2007,12(28):659-662.
    4. Mack CL. The pathogenesis of biliary atresia:evidence for a virus-induced autoimmune disease[J]. Seminars in Liver Disease,2007, 27(3):233-42.
    5. Erickson N, Mohanty SK, Shivakumar P, et al. Temporal-spatial activation of apoptosis and epithelial injury in murine experimental biliary atresia[J]. Hepatology,2008,47(5):1567-77.
    6. Barnes BH, Tucker RM, Wehrmann F, et al. Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia[J]. Liver Int, 2008 Nov 25. [Epub ahead of print]
    7.周李,金龙,李桂生,等.胆小管增生诱导胆道闭锁早期肝纤维化[J].中华小儿外科杂志,2005,6(26):281-284.
    8. Mack CL, Tucker RM, Sokol RJ, et al. Biliary Atresia Is Associated with CD4+ Th1 Cell-Mediated Portal Tract inflammation [J]. Pediatr Res,2004, 56(1):79-87.
    9. Shivakumar P, Sabla G, Mohanty S,et al. Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia[J]. Gastroenterology,2007,133(1): 268-277.
    10. Demetris AJ, Lunz JG, Specht S, et al. Biliary wound healing, ductular reactions, and IL-6/gp130 signaling in the development of liver disease[J]. World J Gastroenterol,2006,12(22):3512-22.
    11. GO-EBI, EMBL-EBI. The Gene Ontology (GO) project in 2006[J]. Nucleic Acids Research,2006,34:322-326.
    12. Sorin D, Purvesh K, Adi LT, et al. A systems biology approach for pathway level analysis[J]. Genome Res,2007,17:1537-1545
    13. Albert LB, Zoltan NO. Network biology:Understanding the cell's functional organization[J]. Genetics,2004,5:101-113.
    1. Davenport M. Biliary atresia[J]. Semin Pediatr Surg,2005, 14(1):42-8.
    2. Mack CL. The pathogenesis of biliary atresia:evidence for a virus-induced autoimmune disease[J]. Seminars in Liver Disease,2007,27(3):233-42.
    3. Prieto C, Risueno A, Fontanillo C, et al. Human Gene Coexpression Landscape:Confident Network Derived from Tissue Transcriptomic Profiles[J]. PLoS ONE,2008,3(12):e3911.
    4. Bezerra JA, Tao G, Ryckman FC, et al. Genetic induetion of proinflammatory immunity in children with biliary atresia[J]. Lancet,2002,23 (360):1653-1659.
    5. Mack CL, Tucker RM, Sokol RJ, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation[J]. Pediatric Research,2004,56(1):79-87.
    6. Mack CL, Tucker RM, Sokol RJ, et al. Armed CD4+ Th1 effector cells and activated macrophages participate in bile duct injury in murine biliary atresia[J]. Clinical Immunology,2005,115 (2):200-209.
    7. Bullard DC, Hu XZ, Schoeb TR, et al. Critical Requirement of CDllb (Mac-1) on T Cells and Accessory Cells for Development of Experimental Autoimmune Encephalomyelitis[J]. J Immunology, 2005,175:6327-6333.
    8. L Zecchinon, T Fett, P Vanden Bergh, et al. Key roles of LFA-1 in leukocyte migration and immune response Clinical and Applied Immunology Reviews[J],2006,6 (19):191-200.
    9. Benschop R, Wei T, Na S. Tumor Necrosis Factor Receptor Superfamily Member 21:TNFR-Related Death Receptor-6, DR6[J]. Adv Exp Med Biol. 2009,647:186-94.
    10.Katoh M. GIPC gene family[J]. Int J Mol Med.2002,9(6):585-9.
    11. Wang Y, Shibuya K, Yamashita Y, et al. LFA-1 decreases the antigen dose for T cell activation in vivo[J].Int Immunol. 2008,20(9):1119-27.
    12. Hsieh CS, Chuang JH, Huang CC, et al. Evaluation of matrix metalloproteinases and their endogenous tissue inhibitors in biliary atresia associated liver fibrosis[J]. Journal of Pediatric Surgery,2005,40 (10):1568-1573.
    13. Sasaki F, Hata Y, Hamada H, et al. Laminin and procollagen Ⅲ peptide as a serum marker for hepatic fibrosis in congenital biliary atresia[J]. Journal of Pediatric Surgery,1992,27 (6):700-703
    14. Ross MT, Gragham DV, Coffey AJ, et al. The DNA sequence of the human X chromosome [J]. Nature,2005,434(7031):325-337
    15. Nagasaki K, Schem C, Von Kaisenberg C, et al. Leucine-zipper protein, LDOC1, inhibits NF-kappaB activation and sensitizes pancreatic cancer cells to apoptosis[J]. Int J Cancer,2003,105(4):454-458.
    16. Inoue M, Takahashi K, Niide 0, et al. LD0C1, a novel MZF-1-interacting protein, induces apoptosis[J]. FEBS Lett, 2005,579(3):604-608.
    17. Jin-Wei Lu, Hua Wang, Ji Yan-Li, et al. Differential effects of pyrrolidine dithiocarbamate on TNF-a mediated liver injury in two different models of fulminant hepatitis[J]. Journal of Hepatology,2008,48(3):442-452.
    18. Watson MR, Karen WK, Gieling RG, et al. NF-κB is a critical regulator of the survival of rodent and human hepatic myofibroblasts[J]. Journal of Hepato logy,2008,48 (4):589-97
    19. Jiexiong Feng, Minju Li, Ting Cai, et al. Rotavirus-induced murine biliary atresia is mediated by nuclear factor-κ B[J]. Journal of Pediatric Surgery,2005,40 (4):630-636.
    20.冯杰雄,李民驹,蔡挺,等.胆道闭锁肝内胆管Bcl-2与Bax基因表达的变化及其意义[J].中华普通外科杂志,2004,19(6):377-379.
    21. Shawn SC. Specificity and versatility of SH3 and other proline-recognition domains:structural basis and implications for cellular signal transduction[J]. Biochem J,2005,390:641-653.
    1. Mack CL. The pathogenesis of biliary atresia:evidence for a virus-induced autoimmune disease[J]. Seminars in Liver Disease,2007,27(3):233-42.
    2. Bezerra JA, Tao G, Ryckman FC, et al. Genetic induetion of proinflammatory immunity in children with biliary atresia[J]. Lancet,2002,23:1653-1659.
    3. Mack CL, Tucker RM, Sokol RJ, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation [J]. Pediatric Research,2004,56:79-87.
    4. Mack CL, Tucker RM, Sokol RJ, et al. Armed CD4+ Th1 effecter cells and activated macrophages participate in bile duct injury in murine biliary atresia[J]. Clinical Immunology,2005,115:200-209.
    5. Wang Y, Shibuya K, Yamashita Y, et al. LFA-1 decreases the antigen dose for T cell activation in vivo[J].Int Immunol, 2008,20(9):1119-27.
    6.王轶楠,王世瑶,柳忠辉,等.LFA-1基因敲除鼠胶原诱导风湿性关节炎发病率及程度的降低[J].中国生物工程杂志,2006,26(2):34-38.
    7.王轶楠,常非,陈芳芳,等.LFA-1基因对胶原诱导小鼠关节炎关节局部引流淋巴结T细胞活性的影响[J]. 中国生物制品学杂志,2007,20(12):34-38.
    8. Moser KL, Kelly JA, Lessard CJ, et al. Recent insights into the genetic basis of systemic lupus erythematosus[J]. Genes Immun, 2009,10 (5):373-9.
    9. Li H, Zhang GX, Chen Y, et al. CDllc+CDllb+ dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis[J]. J Immunol,2008, 181 (4):2483-93.
    10. Bullard DC, Hu X, Schoeb TR, et al. Critical requirement of CDllb (Mac-1) on T cells and accessory cells for development of experimental autoimmune encephalomyelitis[J]. J Immunol.2005, 175(10):6327-33.
    11. Benschop R, Wei T, Na S. Tumor Necrosis Factor Receptor Superfamily Member 21:TNFR-Related Death Receptor-6, DR6 [J]. Adv Exp Med Biol, 2009,647:186-94.
    12. Fas SC, Fritzsching B, Suri-Payer E, et al. Death receptor signaling and its function in the immune system[J]. Curr Dir Autoimmun,2006, 9:1-17.
    13. Schmidt CS, Zhao J, Chain J, et al. Resistance to myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis by death receptor 6-deficient mice[J]. J Immunol, 2005,175(4):2286-92.
    14.Katoh M. GIPC gene family [J]. Int J Mol Med,2002,9(6):585-9.
    15. Sasaki F, Hata Y, Hamada H, et al. Laminin and procollagen Ⅲ peptide as a serum marker for hepatic fibrosis in congenital biliary atresia[J]. Journal of Pediatric Surgery,1992,27:700-703.
    16. Hsieh CS, Chuang JH, Huang CC,et al. Evaluation of matrix metalloproteinases and their endogenous tissue inhibitors in biliary atresia associated liver fibrosis [J]. Journal of Pediatric Surgery,2005,40:1568-1573.
    17. Chatter jee S, Pal JK. Role of 5'-and 3'-untranslated regions of mRNAs in human diseases[J]. Biol Cell,2009,101(5):251-62.
    1. Mack CL. The pathogenesis of biliary atresia:evidence for a virus-induced autoimmune disease[J]. Seminars in Liver Disease,2007,27(3):233-42.
    2. Erickson N, Mohanty SK, Shivakumar P, et al. Temporal-spatial activation of apoptosis and epithelial injury in murine experimental biliary atresia[J]. Hepatology,2008,47(5): 1567-77.
    3. Barnes BH, Tucker RM, Wehrmann F, et al. Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia[J]. Liver Int,2008 Nov 25. [Epub ahead of print]
    4.周李,金龙,李桂生,等.胆小管增生诱导胆道闭锁早期肝纤维化.中华小儿外科杂志[J],2005,6(26):281-284.
    5. Mack CL, Tucker RM, Sokol RJ,et al. Biliary Atresia Is Associated with CD4+ Th1 Cell-Mediated Portal Tract inflammation[J]. Pediatr Res,2004,56(1):79-87
    6. Shivakumar P, Sabla G, Mohanty S, et al. Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia[J]. Gastroenterology,2007,133(1):268-277.
    7. Demetris AJ, Lunz JG, Specht S, et al. Biliary wound healing, ductular reactions, and IL-6/gp130 signaling in the development of liver disease[J]. World J Gastroenterology,2006,12 (22):3512-22.
    8.赵瑞,郑珊,李昊,等.胆道闭锁基因表达谱特点及生物信息学分析.中华小儿外科杂志[J],2009,30(7):447-451.
    9. Ross MT, Gragham DV, Coffey AJ, et al. The DNA sequence of the human X chromosome[J]. Nature,2005,434(7031):325-37.
    10. Nagasaki K, Schem C, Von Kaisenberg C, et al. Leucine-zipper protein, LD0C1, inhibits NF-kappaB activation and sensitizes pancreatic cancer cells to apoptosis[J].Int J Cancer,2003,105(4):454-8.
    11. Chih DY, Park DJ, Gross M, et al. Protein partners of C/EBP epsilon[J]. Exp Hematol,2004,32(12):1173-81.
    12. Inoue M,Takahashi K.Niide 0, et al. LDOC1, a novel MZF-1-interacting protein, induces apoptosis[J]. FEBS Lett, 2005,579(3):604-8.
    13. Williams, SC, Du Y, Schwartz RC, et al. C/EBPe is a myeloid-specific activator of cytokine, chemokine, and macrophage-colony-stimulating factor receptor genes[J]. J Biol Chem,1998,273:13493-13501.
    14. Lekstrom-Himes J, Xanthopoulos KG. CCAAT/enhancer binding-protein e is critical for effective neutrophil-mediated response to inflammatory challenge[J]. Blood,1999,93:3096-3105
    15. Tavor S, Vuong PT, Park DJ, et al. Macrophage functional maturation and cytokine production are impaired in C/EBP e-deficient mice[J]. Blood,2002,99:1794-1801
    16. Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis[J]. Developmental & Comparative Immunology,2001,25 (8-9):763-789.
    17. Shawn SC. Specificity and versatility of SH3 and other proline-recognition domains:structural basis and implications for cellular signal transduction[J]. Biochem J,2005,390: 641-653.
    18. Zellefrow CD, Griffiths JS, Saha S, et al. Encodable activators of SRC family kinases[J]. J Am Chem Soc,2006,128(51):16506-7.
    19. Page TH, Smolinska M, Gillespie J, et al. Tyrosine kinases and inflammatory signalling[J]. Curr Mol Med,2009,9(1):69-85.
    20. Demoulin JB, Renauld JC. Signalling by cytokines interacting with the interleukin-2 receptor gamma chain[J]. Cytokines Cell Mol Ther,1998,4(4):243-56
    21. Kukhtina NB, Arefieva TI, Krasnikova TL. Intracellular signal cascade in CD4+ T-lymphocyte migration stimulated by interferon-gamma-inducibleprotein-10[J]. Biochemistry,2005,70 (6):652-6.
    22. Yu CC, Mamchak AA, DeFranco AL. Signaling mutations and autoimmunity[J]. Curr Dir Autoimmun.2003,6:61-88.
    1. Lewis N, Millar A. Biliary atresia[M]. Oxford:Surgery,2007, 25:291-294.
    2. Leonhardt J, Kuebler JF, Turowski C, et al. Susceptibility to experimental biliary atresia linked to different hepatic gene expression profiles in two mouse strains[J]. Hepatol Res,2009 Sep 25. [Epub ahead of print]
    3. Lee HC, Chang TY, Yeung CY, et al. Genetic Variation in the Vascular Endothelial Growth Factor Gene is Associated With Biliary Atresia[J]. J Clin Gastroenterol,2009 Aug 25. [Epub ahead of print]
    4. Arikan C, Berdeli A, Kilic M, et al. Polymorphisms of the ICAM-1 gene are associated with biliary atresia[J]. Dig Dis Sci,2008, 53(7):2000-4.
    5. Arikan C, Berdeli A, Ozgenc F, et al. Positive association of macrophage migration inhibitory factor gene-173G/C polymorphism with biliary atresia[J]. J Pediatr Gastroenterol Nutr,2006,42(1):77-82.
    6. Shih HH, Lin TM, Chuang JH, et al. Promoter polymorphism of the CD14 endotoxin receptor gene is associated with biliary atresia and idiopathic neonatal cholestasis[J]. Pediatrics,2005,116(2):437-41.
    7. Davit-Spraul A, Baussan C, Hermeziu B, et al. CFC1 gene involvement in biliary atresia with polysplenia syndrome[J]. J Pediatr Gastroenterol Nutr,2008,46(1):111-2.
    8. Gyorffy A, Baranyai Z, Cseh A, et al. Promoter analysis suggests the implication of NFkappaB/C-Rel transcription factors in biliary atresia[J]. Hepatogastroenterology,2008,55(85):1189-92.
    9. Lee HC, Chang TY, Yeung CY, et al. Association of Interferon-Gamma Gene Polymorphisms in Taiwanese Children with Biliary Atresia[J]. J Clin Immunol,2009 Sep 10. [Epub ahead of print]
    10. Sa-nguanmoo P, Vejchapipat P, Chongsrisawat V, et al. Analysis of connective tissue growth factor promoter polymorphism in Thai children with biliary atresia[J]. J Med Assoc Thai,2007,90(2):251-7.
    11. Donaldson PT, Clare M, Constantini PK, et al. HLA and cytokine gene polymorphisms in biliary atresia[J]. Liver,2002,22(3):213-9.
    12. Bondoc AJ, Jafri MA, Donnelly B, et al. Prevention of the murine model of biliary atresia after live rotavirus vaccination of dams[J]. J Pediatr Surg,2009,44(8):1479-90.
    13. Allen SR, Jafri M, Donnelly B, et al. Effect of rotavirus strain on the murine model of biliary atresia [J]. J Virol,2007,81(4):1671-9.
    14. Szavay P0, Leonhardt J, Czech-Schmidt G,et al. The role of reovirus type 3 infection in an established murine model for biliary atresia[J]. Eur J Pediatr Surg,2002,12(4):248-50.
    15. Shen C, Zheng S, Wang W, et al. Relationship between prognosis of biliary atresia and infection of cytomegalovirus[J]. World J Pediatr, 2008,4(2):123-6.
    16. Fischler B, Svensson JF, Nemeth A. Early cytomegalovirus infection and the long-term outcome of biliary atresia [J]. Acta Paediatr,2009, 98(10):1600-2.
    17. Rauschenfels S, Krassmann M, Al-Masri AN, et al. Incidence of hepatotropic viruses in biliary atresia[J]. Eur J Pediatr, 2009,168(4):469-76.
    18. Mark Davenport. A challenge on the use of the words embryonic and perinatal in the context of biliary atresia[J]. Hepatology,2005, 41(2):403-404.
    19. Vi jayan V, Tan CE. Computer-generated three-dimensional porphology of the hepatic hilar bile ducts in biliary atresia[J].J Pediate Surg, 2000,35(8):1230-1235
    20. Awasthi A, Das A, Strinivasan R, et al. Morphological and immunohistochenical analysis of ductal plate malformation:correlation with fetal liver [J]. Histopatholgy,2004, 45:260-267.
    21. Shinichi Shimadera, Naomi Iwai, Eiichi Deguchi,et al. Significance of ductal plate malformation in the postoperative clinical course of biliary atresia[J]. Journal of Pediatric Surgery,2008,2(43): 304-307.
    22. Ellen K. Biliary Atresia Revisited[J]. Pediatric and Developmental. Pathology,2004,7:109-124.
    23. Mack CL, Tucker RM, Sokol RJ, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation[J]. Pediatr Res,2004,56(1):79-87.
    24. Ahmed AF, Ohtani H, Nio M, et al. CD8+ T cells infiltrating into bile ducts in biliary atresia do not appear to function as cytotoxic T cells: a clinicopathological analysis[J]. J Pathol,2001,193 (3):383-389.
    25. Mack CL, Tucker RM,Sokol RJ, et al. Armed CD4+ Th1 effector cells and activated macrophages participate in bile duct injury in murine biliary atresia[J]. Clinical Immunology,2005,115:200-209
    26. Shivakumar P, Sabla G, Mohanty S, et al. Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia[J]. Gastroenterology,2007,133(1): 268-277.
    27. Mack CL, Faltma MT, Sullivan AK, et al. Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia[J]. Gastroenterology,2007,133(1):278-287
    28. Kabayashi H, Li Z, Yamataka A, et al. Role of immunologic costimulatory factors in the pathogenesis of biliary atresia[J]. J Pediatr Surg,2003,38 (6):892-896.
    29. Davenport M, Gonde C, Redkar R, et al. Immunohistochemistry of the liverand biliary tree in extrahepatic biliary atresia [J]. J Pediatr Surg,2001,36(7):1017-1025.
    30. Kumar Mohanty S, Ivantes CA, Mourya R, et al. Macrophages are targeted by rotavirus in experimental biliary atresia and induce neutrophil chemotaxis via Mip2/Cxcl2[J]. Pediatr Res,2010 Jan 6. [Epub ahead of print]
    31. Nattee P, Honsawek S, Chongsrisawat V, et al. Elevated serum macrophage migration inhibitory factor levels in post-operative biliary atresia[J]. Asian J Surg,2009,32(3):187.
    32. Wu L, Van Kaer L. Natural killer T cells and autoimmune disease[J]. Curr Mol Med,2009,9(1):4-14.
    33. Shivakumar P, Sabla GE, Whitington P, et al. Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia[J]. J Clin Invest,2009, 119(8):2281-90.
    34. Barnes BH, Tucker RM, Wehrmann F, et al. Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia[J]. Liver Int,2009,29(8):1253-61.
    35. Harada K, Sato Y, Ikeda H, et al. Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresi[J]. J Pathol,2009,217(5):654-64.
    36. Hayashida M, Nishimoto Y, Matsuura T, et al. The evidence of maternal microchimerism in biliary atresia using fluorescent in situ hybridization[J]. J Pediatr Surg,2007,42(12):2097-101.
    37. Kobayashi H, Tamatani T, Tamura T, et al. Maternal microchimerism in biliary atresia[J]. J Pediatr Surg,2007,42(6):987-91;
    38. Suskind DL, Rosenthal P, Heyman MB, et al. Maternal microchimerism in the livers of patients with biliary atresia[J]. BMC Gastroenterol,2004,31 (4):14.
    39. Muraji T, Hosaka N, Irie N, et al. Maternal microchimerism in underlying pathogenesis of biliary atresia:quantification and phenotypes of maternal cells in the liver[J]. Pediatrics, 2008,121(3):517-21.
    40. Bezerra JA, Tao G, Ryckman FC, et al. Genetic induetion of proinflammatory immunity in children with biliary atresia[J]. Lancet,2002,23:1653-1659.
    41. Narayanaswamy B, Gonde C, Tredger JM, et al. Serial circulating markers of inflammation in biliary atresia--evolution of the post-operative inflammatory process[J]. Hepatology, 2007,46(1):180-7.
    42. Shinkai M, Shinkai T, Puri P, et al. Elevated expression of IL2 is associated with increased infiltration of CD8+ T cells in biliary atresia[J]. J Pediatr Surg,2006,41(2):300-5.
    43. Shivakumar P, Campbell KM, Sabla GE, et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN2gamma in experimental biliary atresia[J]. J Clin Investigat,2004,114 (3):322-329.
    44. Tucker RM, Hendrickson RJ, Mukaida N, et al. Progressive biliary destruction is independent of a functional tumor necrosis factor-alpha pathway in a rhesus rotavirus-induced murine model of biliary atresia[J]. Viral Immunol,2007,20(1):34-43.
    45. Huang L, Wei MF, Feng JX. Abnormal activation of OPN inflammation pathway in livers of children with biliary atresia and relationship to hepatic fibrosis[J]. Eur J Pediatr Surg,2008,18(4):224-9.
    46. Whitington PF, Malladi P, Melin-Aldana H, et al. Expression of osteopontin correlates with portal biliary proliferation and fibrosis in biliary atresia[J]. Pediatr Res,2005,57(6):837-44.
    1.裴雪涛主编 《干细胞生物学》北京:科学出版社2003年
    2. Burns CE. Traver D. Mayhall E, et al. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes & Development,2005, 19(19):2331-42.
    3. Suzuki T, Chiba S. Notch signaling in hematopoietic stem cells. International Journal of Hematology,2005,82(4):285-94
    4. Teo R, Mohrlen F, Plickert G, et al. An evolutionary conserved role of Wnt signaling in stem cell fate decision. Developmental Biology. 2006,289(1):91-9.
    5. Pinto D. Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Experimental Cell Research,2005, 306(2):357-63
    6. Zhang J. Li L. BMP signaling and stem cell regulation. Developmental Biology.2005,284(1):1-11
    7. Varga AC. Wrana JL. The disparate role of BMP in stem cell biology. Oncogene,2005,24(37):5713-21
    8. Ahn S. Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature,2005,437(7060):894-7
    9. Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development,2005 Jan,132(2):335-44
    10. Sakakibara S. Nakamura Y. Yoshida T, et al. RNA-binding protein Musashi family:roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proceedings of the National Academy of Sciences of the United States of America.2002,99(23):15194-9
    11. Okano H. Kawahara H. Toriya M, et al. Function of RNA-binding protein Musashi-1 in stem cells. Experimental Cell Research. 2005,306 (2):349-56.
    12. Hennessy B. Korbling M. Estrov Z. Circulating stem cells and tissue repair. Panminerva Medica.2004,46(1):1-11
    13. Forbes S, Vig p, Poulsem R, et al. Hepatic stem cells. Am J Pathol, 2002,197(4):510
    14. Cordon GJ, Butz GM, Grisham JW, et al. Isolation, short-term culture. and transplantation of small hepatocyte-like progenitor cells from retrorsine-exposed rats. Transplantation,2002,70(3): 441
    15. Lowes KM, Croager EJ. Oval cell-mediated liver regeneration:Role of cytokines and growth factors. Journal of Gastroenterology and Hepatology 2003,18:4-12
    16. Shan YF. Zhou WP. Fu XY,et al. The role of p28GANK in rat oval cells activation and proliferation. Liver International,2006, 26(2):240-7.
    17.17Couchie D. Lafdil F. Martin-Garcia N, et al. Expression and role of Gas6 protein and of its receptor Axl in hepatic regeneration from oval cells in the rat. Gastroenterology,2005,129(5):1633-42.
    18.18. Dabeva MD, Petkov PM, Sandhu J, et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol,2000,156(10): 2017
    19. Suzuki A, Zheng Y W, Kondo R, et al. Flow-cytometric separation and enrichment of hepatic progenitor ceils in the developing mouse liver. Hepatology,2000,32(6):1230.
    20. Petersen B E, Bowen W C, Patrene K D, et al. Bone marrow as a potential source of hepatic oval cells. Science,1999,284:1168
    21. Lagasse E, Connors H, Aldhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med,2000,6: 1229-1234
    22. Wagers AJ. Sherwood RI. Christensen JL, et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science. 2002,297(5590):2256-9
    23. Cantz T,Sharma AD. Reevaluation of bone marrow-derived cells as a source for hepatocyte regeneration. Cell Transplantation,2004 13(6):659-66
    24. Daley GQ. Alchemy in the liver:fact or fusion? Nat Med,2004,10(7): 671-2
    25. Yannaki E, Athanasiou E, Xagorari A, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol,2005,33(1):108-19
    26. Piscaglia AC. Zocco MA. Di Campli C, et al How does human stem cell therapy influence gene expression after liver injury? Microarray evaluation on a rat model. Digestive & Liver Disease.2005,37(12):, 952-63.
    27. Aggarwal S,Pittenger MF. Human mesenchymal stem sells modulate allogeneic immune cell response. Blood,2005,105(4):1815-1822
    28. Togel F, Hu Z, Weiss K, et al.Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J physiol renal physiol,2005,289(1):31-42
    29. Yamada T, Yoshikawa M, Kanda S, et al. In Vitro differentiation of embryonic stem cells into hepatocyte-like cells identified cellular uptake of indocyanine green.Stem Cells,2002,20(2):146-15
    30. Yamamoto H, Quinn G, Asari A, et al. Diferentiation of embryonic stem cells into hepatocytes; biological functions and therapeutic application. Hepatology,2003,37(5):983-993
    31. Imamura T. Cui L. Teng R. et al. Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo. Tissue Engineering,2004,10(11-12):1716-24.
    32. Kumar KS. Lefkowitch J. Russo MW, et al.Successful sequential liver and stem cell transplantation for hepatic failure due to primary AL amyloidosis. Gastroenterology.2002,122(7):2026-31
    33. Schuchart AD,Agati V, Larsson BL. Defects in the kidney and enteric nervous system of mice lacking of tyrosine kinase receptor Ret. Nature, 1994,367:380-383
    34. Kusafuka T, Wang Y, Puri P. Mutation analysis of the RET, the endothelin-B receptor and the endothelin-3 genes in sporadic cases of Hirschsprung's disease. J Pedia Surg,1997,32:501-504
    35. Christian, Paratore. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combination signaling. Development,2001,128:3949-3961
    36. Gollemot F, Lo LC, Johnson JE, et al. Mammalian achaetescute homolog 1 is requirement of the early development Of olfactory and autonomic neurons.Cell 1993,75:463-476
    37. Nadege Bondurand, Dipa Natarajan, Nikhil Thapar, et al. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development,2003, vol 130:6387-6400
    38. Iwashita, Toshihide, Kruger, et al. Hirschsprung Disease Is Linked to defects in Neural Crest Stem Cell Function. Science,2003, Vol.301: 5635
    39. Fernadez FX, Azpiroz F, Malagelada JR. Singnificance of pelvic floor muscles in anal incontinence.Gastroenterology,2002,123:1441-50
    40. Shigeyoshi A, Takashi S, Tomoki T, et al. Impaired expression of myogenic regulatory molecules in the pelvic floor muscles of murine embryos with anorectsl malformation. J Pediatric surgery,2005,40:805-809
    41. Levison SW, Rothstein RP, Roanko MJ. Hypoxia/ischemia depletes the rat perinatal subventricular zoon of oligodendrocyte progenitors and neural stem cells. Dev Neurosci,2001,23(3):234-247
    42. Gray JA, Grigoryan G, Virlery D, et al. Cell Transplant,2000,9: 153-155
    43. Walsh DS, Adzick NS, Sutton LN, et al. The Rationale for in utero repair of myelomeningocele. Fetal Diagn Ther,2001,16:312-322.
    44.朱伟杰, 费舟.脊髓脊膜膨出胎儿外科研究治疗进展.中华小儿外科杂志.2003,Vol.24,No.1:74-76
    45. Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells forcardiovascular tissue engineering. Artif Organs, 2001,25(3):187-193
    46. Perry TE, Kaushal S, Sutherland FW et nI. Bone marrow as a cell source for tissue engineering heart valves.Ann Thorae Surg,2003,75(3): 761-76747.
    47. Christian J, Harald B, Peter W. Experimental ASD closure using autologous cell-seeded interventional closure devices. Cardiovascular Research,2002,53:181-191
    48. Knight RL. Booth C. Wilcox HE, et al. Tissue engineering of cardiac valves:re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. Journal of Heart Valve Disease, 2005,14(6):806-13,
    49. Mol A. Driessen NJ. Rutten MC, et al Tissue engineering of human heart valve leaflets:a novel bioreactor for a strain-based conditioning approach. Annals of Biomedical Engineering.2005,33(12):1778-88
    50. Pannek J, Brands FH, Senge T. Particle migration after transurethral injection of carbon coated beads for stress urinary incontinence. J Urol,2001,166:1350-1353
    51. Chancellor MB, Yokoyama T, Timey S,et al. Preliminary results of myoblast injection into the urethra and bladder wall:a possible method for the treatment of stress urinary incontinence and impaired detrusorcontractility. Neurourol Uredyn,2000,19(3):279-287
    52. Yokoyama T, Huard J, Chancellor MB. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J Urol,2000,18 (10):56-61
    53. Lee YJ, Cannon TW, Chancellor MB, et al. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int Urogynecol J 2003; 14:31-37
    54. Tracy W, Cannon, LEE JY, et al. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology,2003,62 (5):958-963
    55. Strasser H, Marksteiner R, Margreiter E, et al. Stem cell therapy for urinary incontinence. Urology,2004,43(10):1237-41
    56. Nixon AJ, Brower-Toland BD, Bent SJ, et al. Insulinlike growth factor-I gene therapy applications for cartilage repair. Clin Orthop,2000, 379(Suppl):201-213.
    57. Chang SC. Wei FC. Chuang H, et al. Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration. Plastic & Reconstructive Surgery,2003,112(7):1841-50
    58. Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects by autologous human bone marrow stromal cells. N Engl J Med, 2001,344(5):385-386.
    59. Tsuchida H, Hashimoto J, Crawford E, et al. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res,2003,21(1):44-53
    60. De Kok IJ. Drapeau SJ. Young R, et al. Evaluation of mesenchymal stem cells following implantation in alveolar sockets:a canine safety study. International Journal of Oral & Maxillofacial Implants.2005, 20 (4):511-8.
    61. Kuroda R. Usas A. Kubo S. et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis & Rheumatism,2006,54(2):433-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700