用户名: 密码: 验证码:
交联型偶氮苯基超支化聚合物的合成及其非线性光学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近三十年来,有机聚合物非线性光学材料因具有非线性系数高、响应快、带宽大、结构可设计、易加工等优点,在信息领域显示出极大的应用潜力而得到广泛重视。为了达到制备电光设备的实用要求,非线性光学材料必须同时具备较大的光学非线性、优异的取向稳定性、较低的光学损耗和良好的可加工性能。如何使含高一阶超极化率的发色团的聚合物中具有优异的二阶非线性光学性能是人们在优化材料时遇到的主要问题之一。然而发色团偶极间的静电相互作用是影响聚合物非线性光学性能的主要因素之一。最近的理论研究发现,如果使用近似球形或压扁的椭球形分子,可以有效减少发色团之间的接近程度及其相互作用,从而获得更大的二阶非线性光学系数。超支化聚合物是一类高度支化的聚合物,具有不规则的三维准球形结构、大量的分子内孔隙、良好的溶解性、较低的黏度等特殊的物理化学性质,而且它易于合成,可通过一步法制备得到。这些特殊性能为超支化聚合物在非线性光学材料领域中的应用提供了可能。本论文以获得具有高宏观二阶非线性光学活性及热稳定性的聚合物材料为目的,制备了一系列可交联型超支化极化聚合物材料,并对其各项性能进行了研究。
     一、“A_2+B_3”缩聚法合成超支化聚苯甲酸酯及其二阶非线性光学研究
     以DR19为A_2单体,以1,3,5-苯三甲酰氯为B_3单体,以三乙胺为吸酸剂,采用“A_2+B_3”溶液缩聚的方法制备了超支化聚苯甲酸酯,并分别用甲醇和缩水甘油对超支化聚合物进行封端。通过核磁共振、红外光谱、凝胶渗透色谱、紫外可见吸收光谱等方法对所得聚合物进行了表征;采用差热分析、热重分析等方法研究聚合物的热性能;用二次谐波产生法研究聚合物的非线性光学性能,其二次谐波系数大于51pm/V,且二次谐波系数起始衰减温度高于130℃。研究表明,用环氧基团封端的超支化聚苯甲酯具有更好非线性光学热稳定性。
     二、“click”反应“A_2+B_3”缩聚法合成超支化聚三唑
     以4 4-{N,N'-二(3-叠氮基丙基)氨基}-4'-硝基偶氮苯为A_2单体,1,3,5-三(炔丙氧基)苯为B_3单体利用铜催化环加成反应通过“A_2+B_3”的聚合方式合成了可溶性超支化聚三唑。探讨了催化剂浓度、单体浓度及其投料方式、反应时间等对反应进程以及超支化聚三唑分子结构的影响;通过核磁共振、红外光谱、凝胶渗透色谱、紫外可见吸收光谱等方法对所得聚合物进行了表征,利用NMR法测定超支化聚三唑的支化度在0.45-0.58之间;采用差热分析、热重分析等方法研究超支化聚三唑的热性能。
     三、“click”反应合成超支化聚三唑及其二阶非线性光学研究
     利用“点击”反应,通过“A_2+B_3”缩聚法设计合成了外围带炔基的超支化聚三唑;为了比较,合成了对应的线性聚三唑。通过核磁共振、红外光谱、凝胶渗透色谱、紫外可见吸收光谱等方法对所得聚合物进行了表征;采用差热分析、热重分析等方法研究聚合物的热性能。采用二次谐波产生法研究了聚合物的非线性光学性能,超支化和线性聚三唑极化膜在1064nm波长处的二次谐波系数d_(33)分别为96.8和23.5pm/V,相应的二次谐波系数起始衰减温度分别为165和123℃,表明超支化聚三唑具有更优异的非线性光学性能及热稳定性。
Due to high nonlinear coefficient, short response time, large operational bandwidth, ease of processing, low dielectric constant, polymeric nonlinear-optical materials have received considerable attention in the past 30 years for their potential applications in photonics. One of the main challenges still facing in this field is how to effectively translate high molecular optical nonlinearities of chromophores into large macroscopic electro-optic (EO) coefficients and maintain good temporal stability. The involved problem is that the chromophoric aggregation resulted from strong intermolecular electrostatic interactions often quenches the EO activity. The recent theoretical analyses suggest that, due to the steric effect, the spherical molecular shape can minimize the intermolecular electrostatic interaction, resulting in maximum macroscopic nonlinearity. Hyperbranched polymers are globular macromolecules, can thus minimize the intermolecular electrostatic interactions with their site-isolation effect, and optical loss in the NLO process with their large void-containing highly branched structure. Moreover, hyperbranched polymers are easy to synthesize via "one-step" approach. Hyperbranched polymers, therefore, are promising candidates for NLO materials with good macroscopic EO activity. To develop NLO polymers with high macroscopic nonlinearity and thermal stability, in this thesis, a series of NLO hyperbranched polymers were designed and synthesized. Their NLO properties were investigated.
     1. Synthesis and nonlinear optical properties of NLO hyperbranched poly(aryl ester)s
     Two hyperbranched poly(aryl ester)s with methyl ester (P1) and epoxy (P2) terminal groups containing pendant azobenzene chromophores were prepared through an "A_2 + B_3" approach used for second-order nonlinear optical materials. Their chemical structures were characterized by NMR and GPC analysis. The polymers have good solubility in common organic solvents and film-forming ability. The pure films were fabricated successively without doping into other matrices. The poled films exhibit high second-harmonic-generation coefficients (> 50 pm/V) due to the three-dimensional spatial isolation effect resulting from their highly branched structures. The optical nonlinearity of the poled P2 film is more thermally stable than that of P1 due to the cross-linking of epoxy groups with carboxylic acid groups in the former during poling. The onset decay temperature of SHG intensity of P2 was determined to be around 155℃, which was 20℃higher than that of P1.
     2. Synthesis and Characterization of Hyperbranched Polytriazole via an "A_2 + B_3" Approach Based on Click Reaction
     The hyperbranched polytriazole (hb-PTA) was synthesized through "A_2 + B_3" approach using "click reaction". 4-N,N'-dis(2-azidoethyl)amino-4'-nitro-azobenzene and 1,3,5-tris(alynyloxy)benzene were synthesized to be used as A_2 and B_3 monomer, respectively. The polymerization was carried out via "one-pot" and "slow-addition" methods. The obtained hb-PTA was soluble in common organic solvents. The molecular structure was characterized by ~1H NMR, FTIR, and GPC. The degree of branching of hb-PTA was determined to be around 0.50. The obtained hb-?TA exhibits high thermal stability.
     3. Synthesis and nonlinear optical properties of hyperbranched polytriazole containing second-order nonlinear optical chromophore
     The hyperbranched polytriazole (hb-PTA) containing second-order nonlinear optical chromophore was synthesized through "A_2 + B_3" approach based on "click reaction". Its corresponding linear analogue (l-PTA) was prepared for comparison. The hb-PTA has better solubility in common organic solvents than the l-PTA. Both the polymers exhibit good thermal stability with 5% weight loss temperatures over 260℃. The poled film of hb-PTA exhibits much higher second-harmonic coefficient (96.8 pm/V) than that of l-PTA (23.5 pm/V). The onset decay temperature of SHG intensity of hb-PTA was determined to be around 165℃, which was 42℃higher than that of l-PTA. The three-dimensional spatial isolation effect resulting from the highly branched structure and the cross-linking of the terminal acetylene groups at moderate temperature play important roles in the enhancement of optical nonlinearity.
引文
[1]Smith PW.1993.All-optical devices:materials requirements.Proc SPIE 1852:2-9
    [2]Service R.1995.Nonlinear competition heats up.Science,267:1918-1921
    [3]Burland DM,Miller RD,Walsh CA.1994.Second-order nonlinearity in poled-polymer systems.Chem.Rev.94:31-75
    [4]Prasad PN,Williams DJ.1991.Introduction to nonlinear optical effects in molecules and polymers,John Wiley and Sons,New York.
    [5]Marder SR,Perry JW.1994.Nonlinear optical polymers:discovery to market in 10 years?Science,263:1706-1707
    [6]Moerner WE,Silence SM.1994.Polymeric photorefractive materials,94:127-155
    [7]钱士雄,王恭明.2001.非线性光学:原理与进展,复旦大学出版社.
    [8]叶成,Zyss J.1996.分子非线性光学的理论与实践.北京化学工业出版社.
    [9]Bloembergen N.1965.Nonlinear optics.Benjamin,New York.
    [10]Bloembergen N.1994.Polymers in nonlinear optics:fundamentals and applications.Int J Nonlinear opt Phys,3:439-446.
    [11]Oudar JL.Chemla DS.1977.Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment.J.Chem.Phys.66:2664-2668
    [12]Chemla DS,Oudar JL,Jerphagnon J.1975.Origin of the second-order optical susceptibilities of crystalline substituted benzene.Phys.Rev.B 12:4534-4546.
    [13]Marder SR,Beratan DN,Cheng LT.1991.Approaches for optimizing the 1st electronic hyperpolarizability of conjugated organic molecules.252:103-106.
    [14]Meredith GR.;Van Dusen JG..;Williams DJ.1983.Nonlinear Optical Properties of Organic and Polymer Materials,D.Williams Ed.,Acs Symp.Series,233,109.
    [15]Begrman JG,McFee JH,GrnaeGR.1971.Pyroeletricity and optical second harmonic generation in polyvinyl-lidene fluoride films.Appl Phys Lett.18(5):203-205.
    [16]Nomura S,Kawai H.1970.General description of orientation factors in terms of expansion of orientation distribution function in a series of spherical harmonics.J Polym Sci Part A-2:Polym Phys.8:384-400.
    [17]Gorman CB,Marder SR.1993.An Investigation of the Interrelationships Between Linear and Nonlinear Polarizabilities and Bond-Length Alternation in Conjugated Organic Molecules.PNAS,90:11297-11301.
    [18]Meyers F,Marder SR,Pierce BM,et al.1994.Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation. J Am Chem Soc. 116:10703-10714.
    [19] Dalton L, Harper A, Ren A, et al. 1999. Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics. Ind Eng Chem Res. 38:8-33.
    [20] Shi YQ, Zhang C, Zhang H, et al. 2000. Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288:119-122.
    [21] Gopalan P, Katz HE, McGee DJ, et al. 2004. Star-shaped azo-based dipolar chromophores: Design, synthesis, matrix compatibility, and electro-optic activity. J Am Chem Soc. 126:1741-1747.
    [22] Dalton LR. 2000. Polymeric electro-optic materials: optimization of electro-optic activity, minimization of optical loss, and fine-tuning of device performance. Opt Eng. 39:589-595.
    [23] Singer KD, Sohn JE, Lalama SJ. 1986. Second harmonic generation in poled polymer films. Appl Phys Lett 49:248-250.
    [24] Kuzyk MG, Paek UC, Dirk CW. 1991. Guest-host polymer fibers for nonlinear optics. Appl Phys Lett 1991:902-904.
    [25] Stahelin M, Walsh CA, Burland DM, et al. 1993. Orientational decay in poled 2nd-order nonlinear-optical guest-host polymers - temperature-dependence and effects of poling geometry. 73:8471-8479.
    [26] Goodson T, Wang CH. 1996. Quadratic electro-absorption and electro-optic effects in a guest/host nonlinear optical polymeric system. J Appl Phys 79:1267-1274.
    [27] Jeng RJ, Chen YM, Jain AK, et al. 1992. A new guest-host system: towards stable second-order optical nonlinearity. Opt Commun 89:212-216.
    [28] Singer KD, Kuzyk M, Holland W, et al. 1988. Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl Phys Lett 53:1800-1802.
    [29] Shi YQ, Ranon PM, Steier WH, et al. 1993. Improving the thermal-stability by anchoring both ends of chromophores in the side-chain nonlinear-optical polymers. Appl Phys Lett 63:2168-2170.
    [30] Hayden LM, Sauter GF, Ore FR, et al. 1990. Second-order nonlinear optical measurements in guest-host and side-chain polymers. J Appl Phys, 68:456-465.
    [31] Chittibabu KG, Li L, Kamath M, et al. 1994. Synthesis and properties of a novel polythiophene edrivative with a side-chain NLO chromophore. Chem Mater, 6:475-480.
    [32] Zhu XL, You XZ. 2000. A novel approach to prediction in the second-order nonlinear optical susceptibility of polymers. J Mol Struct, 523:197-204.
    [33] Park KH, Yeon KM, Lee MY, et al. 1997. Synthesis and nonlinear optical properties of PMMA Copolymers having novel benzoxazole chromophores attached with various electron-withdrawing groups. Polymer, 39:7061-7066.
    [34] Leng WN, Zhou YM, Xu QH, et al. 2001. Synthesis and characterization of nonlinear optical side-chain polyimides containing the benzothiazole chromophores. Macromolecules, 34:47744779.
    [35] Miller RD, Burland DM, Jurich M, et al. 1995. Donor-embedded nonlinear-optical side-chain polyimides containing no flexible tether - materials of exceptional thermal-stability for electrooptic applications. Macromolecules, 28:4970-4974.
    [36] Kaatz P, Pretre P, Meier U, et al. 1996. Relaxation processes in nonlinear optical polyimide side-chain polymers. Macromolecules, 29:1666-1678.
    [37] Chen TA, Jen AKY, Cai YM. 1996. A novel class of nonlinear optical side-chain polymer: Polyquinolines with large second-order nonlinearity and thermal stability. Chem mater, 8:607-609.
    [38] Ma H, Wang XJ, Wu XM, et al. 1998. Versatile synthetic approach to nonlinear optical side-chain aromatic polyquinolines with large second-order nonlinearity and thermal stability. Macromolecules, 31:4049-4052.
    [39] Rojo G, Martin G, Agullo-Lopez F, et al. 2000. Second-harmonic response and relaxation behavior off high glass-transition temperature polyphosphazene films. Chem Mater, 12:3603-3610.
    [40] Li Z, Huang C, Hua JL, et al. 2004. A new postfunctional approach to prepare second-order nonlinear optical polyphophazenes containing sulfonyl-based chromophore. Macromolecules, 37:371-376.
    [41] Jacquemin D, Quinet O, Champagne B, et al. 2004. Second-order nonlinear optical coefficient of polyphosphazene-based materials: A theoretical study. J Chem Phys, 120:9401-9409.
    [42] Verbiest T, Burland DM, Jurch MC, et al. 1995. Exceptionally Thermally Stable Polyimides for Second-Order Nonlinear Optical Applications. Science, 268:1604-1606.
    [43] Miller RD, Burland DM, Jurich M, et al. 1997. High-temperature nonlinear optical chromophores and polymers. Photo Opt Polym, 672:100-122.
    [44] Moon KJ, Shim HK, Lee KS, et al. 1996. Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye. Macromolecules, 29:861-867.
    [45] Woo HY, Shim HK, Lee KS. 1999. A new NLO polyurethane with a tricyanovinyl group. Synthetic Met, 101:136-137.
    [46] Woo HY, Shim HK, Lee KS. 2000. A nonlinear optical polyurethane functionalized with a heteroaromatic thiophene ring having a tricyanovinyl group. Polym J, 32:8-14.
    [47] Li SJ, Yang Z, Wang P, et al. 2002. Contribution of the multiple charge-transfer chromophore to the orientation stability of the poled polymer film. Macromolecules, 35:4314-4316.
    [48] Yang Z, Li SJ, Ye C. 2002. Thermally stable nonlinear optical polyurea functionalized by multiple charge-transfer chromophore. J Polym Sci Part A: Polym Chem, 40:4297-4301.
    [49] Yang Z, Qin AJ, Zhang S, et al. 2004. Synthesis and characterization of second-order nonlinear optical polyurethane with high thermal stability. Euro Polym J, 40:1981-1986.
    [50] Mao SS, Ra YS, Guo L, et al. 1998. Progress toward device-quality second-order nonlinear optical materials. 1. Influence of composition and processing conditions on nonlinearity, temporal stability, and optical loss. Chem Mater, 10:146-155.
    [51] Zhang C, Wang CG, Dalton LR, et al. 2001. Progress toward device-quality second-order nonlinear optical materials. 4. A trilink high mu beta NLO chromophore in thermoset polyurethane: A "guest-host" approach to larger electrooptic coefficients. Macromolecules, 34:253-261.
    [52] Zhang C, Wang CG, Yang JL, et al. 2001. Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity. Macromolecules, 34:235-243.
    [53] Zhao YX, Li Z, Qiu L, et al. 2001. Synthesis and characterization of a novel nonlinear optical polyurethane polymer. Euro Polym J, 37:445-449.
    [54] Park CK, Zieba J, Zhao CF, et al. 1995. Highly Cross-Linked Polyurethane with Enhanced Stability of Second-Order Nonlinear Optical Properties. Macromolecules, 28: 3713-3717.
    [55] Bosc D, Foll F, Boutevin B, et al. 1999. Synthesis of a novel difunctional NLO azo-dye chromophore and characterizations of crosslinkable Copolymers with stable electrooptic properties. JAppl Polym Sci, 74:974-982.
    [56] Bewsher JD, Mitchell GR. 1997. Influence of cross-linking functionality on the nonlinear optical properties of poled and cross-linked polymer films. Appl Opt, 36:7760-7765.
    [57] Xie HQ, Liu ZH, Liu H, et al. 1998. Nonlinear optical crosslinked polymers and interpenetrating polymer networks containing azo-benzothiazole chromophore groups. Polymer, 39:2393-2398.
    [58] Masse CE, Conroy JL, Cazeca M, et al. 1996. Second-order nonlinear optical properties of a photocrosslinkable epoxy-based polymer. J Appl Polym Sci 60:513-518.
    [59] Trollsas M, Orrenius C, Sahlen F, et al. Preparation of a novel cross-linked polymer for second-order nonlinear optics. J Am Chem Soc, 118:8542-8548.
    [60] Trollsas M, Sahlen F, Gedde UW, et al. 1996. Novel thermally stable polymer materials for second-order nonlinear optics. 29:2590-2598.
    [61] Wright ME, Mcfarland IE, Hayden LM, et al. 1995. Organic Nonlinear Optical (NLO) Polymers. A Study of in-Situ Poling and Quaternization/Crosslinking of Polymers by a NLO-Tweezer. Macromolecules, 28:8129-8135.
    [62] Crumpler ET, Reznichenko JL, Li DQ, et al. 1995. Modular High-Tg Second-Order Polymeric Nonlinear Optical Materials. Polyfunctional Epoxide and Diisocyanate Cross-Linked Chromophoric Polyhydroxystyrenes. Chem Mater, 7:596-598.
    [63] Chen M, Yu LP, Dalton LR, et al. 1991. New polymers with large and stable second-order nonlinear optical effects. Macromolecules, 24:5421-5428.
    [64] Mandal BK, Kumar J, Huang JC, et al. 1991. Novel photo-cross-linked nonlinear optical polymers. Makromol Chem-Rapid Comm 12:63-68.
    [65] Innocenzi P, Lebeau B. 2005. Organic-inorganic hybrid materials for non-linear optics. J mater Chem, 15:3821-3831.
    [66] Cui YJ, Qian GD, Chen LJ, et al. 2007. Hybrid Nonlinear optical materials containing imidazole chromophore through the sol-gel process. Macromol Rapid Comm, 28:2019-2023.
    [67] Hou ZJ, Liu LY, Xu L, et al. 1999. Improved second harmonic generation from organic-dye-doped polymer/silica hybrid materials. Chem Mater, 11:3177-3180.
    [68] Brusatin G, Abbotto A, Beverina L, et al. 2004. Poled sol-gel materials with heterocycle push-pull chromophores that confer enhanced second-order optical nonlinearity. Adv Funct Mater, 14:1160-1166.
    [69] Zhang HX, Lu D, Fallahi M. 2004. Active organic-inorganic sol gel with high thermal stability for nonlinear optical applications. Appl Phys Lett, 84:1064-1066.
    [70] Sung PH, Hsu TF, Ding YH, et al. 1998. Novel thermally stable cross-linked nonlinear optical silica films prepared by a sol-gel process. Chem Mater, 10:1642-1646.
    [71] Riehl D, Chaput F, Lwvy Y, et al. 1995. 2nd-order optical nonlinearities of azo chromophores covalently attached to a sol-gel matrix. Chem Phys Lett, 245:36-40.
    [72] Jiang HW, Kakkar AK. 1999. An alternative route based on acid-base hydrolytic chemistry to NLO active organic-inorganic hybrid materials for second-order nonlinear optics. J Am Chem Soc, 121:3657-3665.
    [73] Kim HK, Kang SJ, Choi SK, et al. 1999. Highly efficient organic/inorganic hybrid nonlinear optic materials via sol-gel process: Synthesis, optical properties, and photobleaching for channel waveguides. Chem Mater, 11:779-788.
    [74] Chaumel F, Jiang HW, Kakkar A. 2001. Sol-gel materials for second-order nonlinear optics. Chem Mater, 13:3389-3395.
    [75] Innocenzi P, Miorin E, Brusatin G, et al. 2002. Incorporation of zwitterionic push-pull chromophores into hybrid organic - Inorganic matrixes. Chem Mater, 14:3758-3766.
    [76] Cui YJ, Qian GD, Gao JK, et al. 2005. Preparation and nonlinear optical properties of inorganic-organic hybrid films with various substituents on chromophores. J Phys Chem B, 109:23295-23299.
    [77] Sainudeen Z, Ray PC. 2005. Nonlinear optical properties of zwitterionic merocyanine aggregates: Role of intermolecular interaction and solvent polarity. J Phys Chem A, 109:9095-9103.
    [78] Robinson BH, Dalton LR. 2000. Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials. 104:4785-4795.
    [79] Dalton LR, Steier WH, Robinson BH, et al. 1999. From molecules to opto-chips: organic electro-optic materials. J Mater Chem, 9:1905-1920.
    [80] Ma H, Chen BQ, Sassa T, et al. 2001. Highly efficient and thermally stable nonlinear optical dendrimer for electrooptics. J Am Chem Soc, 123:986-987.
    [81] Ma H, Jen AKY. 2001. Functional dendrimers for nonlinear optics. Adv Mater, 13:1021-1025.
    [82] Ma H, Liu S, Luo JD, et al. 2002. Highly efficient and thermally stable electro-optical dendrimers for photonics. Adv Funct Mater, 12:565-574.
    [83] Tai OYH, Wang CH, Ma H, et al. 2004. Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution. J Chem Phys, 121:6086-8092.
    [84] Ma H, Luo JD, Kang SH, et al. 2004. Highly fluorinated and crosslinkable dendritic polymer for photonic applications. Macromol Rapid Comm, 25:1667-1673.
    [85] Sullivan PA, Rommel H, Liao Y, et al. 2007. Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect. J Am Chem Soc, 129:7523-7530.
    [86] Luo JD, Ma H, Haller M, et al. 2002. Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore. Chem Comm,
    [87] Luo JD, Liu S, Haller M, et al. 2002. Design, synthesis, and properties of highly efficient side-chain dendronized nonlinear optical polymers for electro-optics. Adv Mater, 14:1763-1768.
    [88] Luo JD, Haller M, Ma H, et al. 2004. Nanoscale architectural control and macromolecular engineering of nonlinear optical dendrimers and polymers for electro-optics. J Phys Chem B, 108:8523-8530.
    [89] Ma H, Luo JD, Kang SH, et al. 2004. Highly fluorinated and crosslinkable dendritic polymer for photonic applications. Macromol Rapid Comm, 25:1667-1673.
    [90] Sullivan PA, Akelaitis AJP, Lee SK, et al. 2006. Novel dendritic chromophores for electro-optics: Influence of binding mode and attachment flexibility on electro-optic behavior. Chem Mater, 18:344-351.
    [91] Li Z, Qin AJ, Lam JWY, et al. 2006. Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores. Macromolecules, 39:1436-1442.
    [92] Zhu ZC, Li ZA, Tan Y, et al. 2006. New hyperbranched polymers containing second-order nonlinear optical chromophores: Synthesis and nonlinear optical characterization. Polymer 47:7881-7888.
    [93] Bai YW, Song NH, Gao JP, et al. 2005. New approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant. J Am Chem Soc, 127:2060-2061.
    [94] Kim YH, Webster OW. Hyperbranched polyphenylenes. Polym Prepr 1988;29(2):310-311.
    [95] Kim YH, Webster OW. Water-soluble hyperbranched polyphenylene: a unimolecular micelle? J Am Chem Soc 1990; 112:4592-1593.
    [96] Kim YH, Webster OW. Hyperbranched polyphenylenes. Macromolecules 1992;25:5561-5572.
    [97] Kim YH, Beckerbauer R. Role of end groups on the glass transition of hyperbranched polyphenylene and triphenylbenzene derivatives. Macromolecules 1994;27:1968—1971.
    [98] Uhrich KE, Hawker C, Fre'chet JMJ, Turner SR. One-pot synthesis of hyperbranched polyethers. Macromolecules 1992;25:4583-4587.
    [99] Percec V, Kawasumi M. Synthesis and characterization of a thermotropic nematic liquid crystalline dendrimeric polymer. Macromolecules 1992;25:3843—3850.
    [100] Hawker CJ, Lee R, Fre'chet JMJ. One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 1991; 113:4583-4588.
    [101] Malmstrom E, Johansson M, Hult A. Hyperbranched aliphatic polyesters. Macromolecules 1995;28:1698-1703.
    [102] Malmstrom E, Hult A. Kinetics of formation of hyperbranched polyesters based on 2,2-bis(methylol)propionic acid. Macromolecules 1996;29:1222-1228.
    [103] Jikei M, Chon SH, Kakimoto M, Kawauchi S, Imase T, Watanabe J. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid. Macromolecules 1999;32:2061-2064.
    [104] Emrick T, Chang HT, Fre'chet JMJ. An A_2 + B_3 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents. Macromolecules 1999;32:6380—6382.
    [105] Dai L, Winkler B, Dong L, Tong L, Mau AWH. Conjugated polymers for light-emitting applications. Adv Mater 2001; 13:915-925.
    [106] Tanaka S, Takeuchi K, Asai M, Iso T, Ueda M. Preparation of hyperbranched Copolymers constituted of triphenylamine and phenylene units. Synthetic Metals 2001;119:139-140.
    [107] Frechet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc M, Grubbs RB. Self-condensing vinyl polymerization: an approach to dendritic materials. Science 1995;269: 1080-1083.
    [108] Gayor SG, Edelman S, Matyjaszewski K. Synthesis of branched and hyperbranched polystyrenes. Macromolecules 1996;29:1079—1081.
    [109] Hawker CJ, Fre'chet JMJ, Grubbs RB, Dao J. Preparation of hyperbranched and star polymers by a living, self-condensing free radical polymerization. J Am Chem Soc 1995;117: 10763-10764.
    [110] Ishizu K, Mori A. Synthesis of hyperbranched polymers by self-addition free radical vinyl polymerization of photo functional styrene. Macromol Rapid Commun 2000;21: 665-668.
    [111] Sunder A, Hanselmann R, Frey H, Mu¨lhaupt R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 1999;32: 4240-4246.
    [112] Liu M, Vladimirov N, Fre'chet JMJ. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(2-hydroxyethyl)-epsiIon-caprolactone. Macromolecules 1999;32:6881-6684.
    [113] Yan D, Gao C. Hyperbranched polymers made from A_2 and BB'_2 type monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to divinyl sulfone. Macromolecules 2000;33: 7693-7699:
    [114] Morgenroth, F.; Mullen, K.Dendritic and Hyperbranched Polyphenylenes via a Simple Diels-Alder Route. Tegrahedron 1997,53,15349
    [115] Kolb HC, Finn MG, Sharpless KB. 2001. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed. 40:2004-2021.
    [116] Craig TW, Harvey GR, Berchtold GA. 1967. Cis-and trans-1,4-Cyclohexadiene dioxide. J. Org. Chem., 32:3743-3749.
    [117] Tanner D. 1994. Chiral Aziridines - Their Synthesis and Use in Stereoselective Transformations. Angew. Chem. Int. Ed. Engl. 33:599-619
    [118] Dell CP. 1997. Cycloadditions in synthesis. Cont Org Synth 4:87-117.
    [119] Gothelf KV, Jorgensen KA. 1998. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev. 98:863-909.
    [120] Huisgen R, Guenter S, Leander M. 1967. 1,3-Dipolar cycloadditions. XXXII. Kinetics of the addition of organic azides to carbon-carbon multiple bonds. Chem Ber 100:2494-2507.
    [121] Torn0e CW, Christensen C, Meldal M. 2002. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057-3064.
    [122] Rostovtsev VV, Green LG, Fokin VV, et. al. 2002. A stepwise Huisgen cycloaddition process:Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed 41:2596-2599.
    [123] Binder WH, Sachsenhofer R. 2007. Macromol. Rapid Commun. 28:15-54.
    [124] B. A. Laurent, S. M. Grayson. 2006. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization. J. Am. Chem. Soc. 128:4238-4239.
    [125] B. S. Sumerlin, N. V. Tsarevsky, G. Louche, R. Y. Lee, K. Matyjaszewski, 2005. Highly Efficient "Click" Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules 38:7540-7545.
    [126] Horne WS, Yadav MK, Stout CD, et al. 2004. Heterocyclic Peptide Backbone Modifications in an -Helical Coiled Coil. J. Am. Chem. Soc. 126:15366-15367.
    [127] Li H, Cheng F, Duft AM, Adronov A. 2005. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by "Click" Coupling. J. Am. Chem. Soc. 127:14518-14524.
    [128] Malkoch M; Schleicher K; Drockenmuller E. et al. 2005. Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules 38:3663-3678.
    [129] Wu P, Malkoch M, Hunt JN, et al. 2005 Multivalent, bifunctional dendrimers prepared by click chemistry. Chem. Commun 46:5775-5777.
    [130] Helms B; Mynar JL; Hawker CJ. et al. 2004. Dendronized Linear Polymers via "Click Chemistry". J. Am. Chem. Soc. 126:15020-15021..
    [131] Scheel AJ, Komber H, Voit BI. 2004. Novel hyperbranched poly([1,2,3]-triazole)s derived from AB(2) monomers by a 1,3-dipolar cycloaddition. Macromol. Rapid Commun. 25:1175-1180.
    [132] Smet M, Metten K, Dehaen W. 2004. Synthesis of new AB(2) monomers for polymerization to hyperbranched polymers by 1,3-dipolar cycloaddition. Coll. Czech. Chem. Commun. 69:1097-1108.
    [133] Diaz DD, Punna S, Holzer P, et al. 2004. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J. Polym. Sci., Part A: Polym. Chem. 42:4392-4403.
    [134] Liu Y, Diaz DD, Accurso AA, et al. 2007. Click chemistry in materials synthesis. HI. Metal-adhesive polymers from Cu(I)-catalyzed azide-alkyne cycloaddition. J. Polym. Sci., Part A: Polym. Chem. 45:5182-5189.
    [135] Li CM, Finn MG. 2006. Click chemistry in materials synthesis. II. Acid-swellable crosslinked polymers made by copper-catalyzed azide-alkyne cycloaddition. J. Polym. Sci., Part A: Polym. Chem. 44:5513-5518.
    [136] Johnson JA, Lewis DR, Az DDDU, et al. 2006. Synthesis of degradable model networks via ATRP and click chemistry. 128:6564-6565.
    [137] Malkoch M, Vestberg R, Gupta N, et al. 2006. Synthesis of well-defined hydrogel networks using Click chemistry. Chem. Commun. 26:2774-2776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700