用户名: 密码: 验证码:
耕作模式与施氮量对土壤理化性状及小麦玉米产量、品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2002~2005年在山东省龙口市中村镇中村村进行,选用小麦品种烟农15、济麦20和玉米品种郑单958为试验材料,以大田试验为主,15N微区试验、辅以土壤水肥渗漏试验、结合室内生理生化分析,系统研究了施氮量和秸秆还田及秸秆还田条件下常规土壤耕作、旋耕、耙耕和免耕4种土壤耕作模式对土壤主要物理化学性状、小麦、玉米生长发育、以及对作物产量、籽粒品质的影响,主要结果如下:
     1秸秆还田与施氮量对土壤理化性状影响及小麦、玉米产量、品质
     1.1秸秆还田对小麦玉米产量、品质及土壤理化性状的影响
     与秸秆不还田处理相比,秸秆还田处理提高了0~40cm土层全氮、碱解氮、速效钾、速效磷以及有机质的含量,能将更多的硝态氮截留在0~60cm层次,有利于作物的吸收,减少氮肥淋失。在高产条件下(0~20cm土层土壤有机质含量为1.712%、碱解氮含量88.73 mg·kg -1、速效磷含量43.27 mg·kg -1、速效钾含量88.33 mg·kg–1),短期(2年)秸秆还田对小麦、玉米增产效果不显著,但可以提高小麦蛋白质含量和延长面团稳定时间。
     1.2秸秆还田条件下的适宜氮肥用量
     麦季240 kg·hm~(-2) (N2)施氮量和减氮处理168 kg·hm-2(N1)对小麦的产量无显著影响,麦季氮肥后效对玉米季产量无显著影响。试验第一年N1、N2处理对作物籽粒品质无显著影响,试验第二年小麦籽粒湿面筋含量及淀粉含量N1处理显著高于N2处理,N2处理玉米籽粒的淀粉含量显著高于N1,改变了玉米籽粒直链淀粉/支链淀粉比例。综合比较认为在秸秆还田条件下,麦季氮肥用量采用168 kg·hm-2较适宜。
     2耕作模式对土壤理化性状的影响
     2.1耕作模式对耕层构造的影响
     0-10cm土层,旋耕、耙耕和常规土壤耕作模式土壤容重、孔隙度无显著差异。在10-20cm,旋耕和耙耕模式容重明显高于常规耕作模式。免耕模式土壤容重在0~20cm均逐渐增高,最终显著高于常规耕作模式。2.2耕作模式对土壤水分的影响
     0~20cm土层旋耕、耙耕和免耕模式土壤贮水量与同期降雨量显著正相关,相关系数皆大于常规耕作模式,耙耕相关系数为0.70**,达到极显著水平,土壤保水性好于常规耕作模式。在0~60cm土壤层次,旋耕、耙耕和免耕模式尤其是耙耕模式在0~60cm土壤表层,较常规耕作能够涵养更多的水分,减少水分的下渗与蒸发。在作物不同生育时期,尤其是作物开花期,旋耕、耙耕和免耕模式的土壤贮水量高于常规耕作处理,这说明这三种模式可抑制作物开花前土壤无效蒸发,有利于促进籽粒灌浆。模式之间比较,旋耕和耙耕模式土壤贮水量差异不显著,免耕模式小于旋耕和耙耕模式,表明在灌溉条件下,免耕模式由于地表秸秆覆盖加之土壤表层容重变大,不利于土壤水分的下渗。
     土壤耕作影响土壤水分的渗漏,50cm处土壤灌溉水渗漏量常规耕作>旋耕>耙耕>免耕,与土壤耕作深度成正比,这表明土壤耕作深度对灌溉水的渗漏有显著影响。2.3耕作模式对土壤0~40cm养分状况的影响
     随定位试验时间延长,0~20cm土层旋耕和耙耕模式土壤全氮含量和速效氮、磷、钾含量逐渐高于常规耕作模式,免耕模式速效氮、钾高于常规耕作模式,全氮和速效磷含量低于常规耕作模式,这与免耕模式的氮肥表施方式有关。土壤20~40cm层次,常规耕作处理土壤全氮含量和速效氮、磷、钾含量显著高于旋耕、耙耕和免耕模式。2.4对土壤有机物质及离子交换性能的影响
     三年试验后,0~20cm土壤旋耕、耙耕和免耕模式土壤表层土壤有机无机复合程度高,重组有机碳含量也明显高于常规耕作模式,其对土壤0~20cm层次的培肥能力显著高于常规耕作模式,耙耕模式在该层次的阳离子交换量最高,说明耙耕模式土壤表层供肥特性最好。在20~40cm土壤层次,土壤重组有机碳含量、土壤的复合量、阳离子交换量皆为常规耕作模式显著高于旋耕、耙耕和免耕模式,常规耕作模式土壤有机无机复合程度比少免耕模式的高,土壤肥力好。2.5对脲酶、蔗糖酶活性的影响
     0~10cm土层土壤脲酶和蔗糖酶活性免耕、耙耕和旋耕模式显著高于常规耕作模式,免耕模式最高;10~20cm土层酶活性则相反。旋耕、耙耕和免耕模式两层次酶活性差异大,常规耕作模式两个层次之间酶活性差异较小,这说明常规耕作模式有利于保持0~20cm土壤肥力的均匀性,少免耕模式易造成土壤层次间肥力的显著差异,对作物生长发育不利。
     2.6对秸秆腐解及土壤呼吸的影响
     秸秆腐解一年后,常规耕作、旋耕和耙耕模式的秸秆腐解率差异不显著,免耕显著低于常规耕作、旋耕和耙耕模式。麦季旋耕、耙耕土壤呼吸速率与常规耕作模式无显著差异,免耕模式呼吸速率显著低于常规耕作模式,玉米大口期常规耕作土壤呼吸大于少免耕模式,玉米收获期少免耕模式土壤呼吸速率高于常规耕作。
     2.7耕作模式与施氮量对土壤硝态氮含量的影响
     2.7.1耕作模式对土壤硝态氮含量的影响
     旋耕、耙耕土壤硝态氮移动速度显著低于常规土壤耕作,在0~60cm土层硝态氮含量高,积累量高,而60cm以下土层含量较常规耕作低。免耕模式土壤硝态氮含量显著低于常规耕作模式、旋耕和耙耕模式。
     土壤耕作影响硝态氮的淋失,施肥后N1处理土壤50cm处渗漏水中硝态氮含量常规耕作模式>旋耕>耙耕>免耕,灌溉水氮肥合计表观淋失率常规耕作模式最高。免耕模式灌溉水氮肥表观淋失率低,其土壤硝态氮含量也低,肥料氮的挥发损失较其它耕作模式多。
     2.7.2施氮量对土壤硝态氮含量的影响
     麦季N2处理的硝态氮积累量在0~60cm根区、60~100cm淋失危险区及100~200cm淋失发生区皆显著高于N1处理,N2处理100~200cm层次硝态氮积累量显著高于N1处理是其0~200cm土层硝态氮积累量比N1处理高的主要原因,这部分硝态氮几乎不能被作物利用,易发生淋失。麦季土壤残留硝态氮含量尤其是0~60cm层次硝态氮积累量对玉米季0~200cm土壤硝态氮的积累影响显著,麦季该层次硝态氮积累量多,则玉米季土壤0~200cm土壤积累量多。
     3耕作模式与施氮量对小麦、玉米生长发育及产量的影响
     3.1耕作模式与施氮量对小麦生长发育的影响
     在试验第二年,旋耕和耙耕模式在旗叶光合速率、旗叶衰老特性和光合产物转移量和转移率,以及干物质积累量上与常规耕作模式无显著差异。在试验第三年,旋耕和耙耕模式光合产物转移、植株干物质积累量都明显低于常规耕作模式。免耕模式在生育后期具有较高的光合特性和生理活性,而旗叶光合产物转移量和转移率显著低于其它模式,说明在本试验条件下,免耕模式栽培的小麦贪青晚熟,进而抑制了植株营养器官中的碳水化合物向籽粒中转移,其干物质积累量也显著低于其它模式。
     N1和N2处理在试验第二年对小麦旗叶光合、衰老特性和光合产物转移情况没有显著影响,在试验第三年,旗叶光合产物转移量和转移率N2显著高于N1。3.2耕作模式与施氮量对作物产量的影响
     短期(2年)土壤旋耕和耙耕,小麦产量与常规耕作无显著差异,第三年产量显著低于常规耕作模式,免耕模式三年产量皆显著低于常规耕作、旋耕和耙耕模式。试验前两年N1、N2处理对小麦产量无显著影响,第三年N1产量低于N2,在N2处理下,常规耕作显著高于旋耕耙耕和免耕模式,在N1处理下,耙耕显著高于常规耕作,旋耕与常规耕作无显著差异。
     麦季氮肥后效对玉米产量有显著影响,N2>N1,试验第二、第三年差异达到显著水平。在N2处理下,旋耕和耙耕模式高于常规耕作模式,N1处理下,旋耕和耙耕模式产量不如常规耕作模式。免耕模式两氮肥处理下皆低于常规耕作模式。
     麦季氮肥用量对全年产量有显著影响,N2>N1,差异显著。在N2处理下,旋耕和耙耕模式尤其是旋耕模式产量高于常规耕作模式,在N1处理下,旋耕和耙耕模式产量相当,免耕模式在两个氮肥处理下均显著低于常规耕作模式。
     4耕作模式与施氮量对小麦、玉米品质的影响
     4.1耕作模式对小麦、玉米品质的影响
     耕作模式对小麦蛋白质含量、湿面筋含量和面筋指数无显著影响,蛋白质组分中球蛋白受耕作模式影响最显著,清蛋白次之。耙耕和旋耕模式的沉降值含量、面团稳定时间大于常规耕作模。小麦籽粒直链淀粉受耕作因素的影响比支链淀粉敏感,旋耕模式小麦籽粒淀粉含量的高于常规耕作,免耕和耙耕模式淀粉含量低于常规模式,免耕模式的淀粉含量最低。玉米籽粒淀粉和蛋白质含量,旋耕和耙耕式与常规耕作无显著差异。免耕模式玉米籽粒淀粉含量年度间变化幅度大,蛋白质含量随试验时间延长逐渐较常规耕作模式变少。
     4.2氮肥用量对小麦、玉米品质的影响
     小麦籽粒蛋白质含量N2、N1处理之间差异不显著。免耕在试验第二、第三年度,耙耕在试验第三年度,蛋白质含量N1处理显著低于N2处理。蛋白质组分中,球蛋白受氮肥用量影响最显著,清蛋白次之。小麦籽粒沉降值N2>N1,N1、N2处理对湿面筋含量、面筋指数和粉质仪参数无显著影响,说明N1、N2处理对小麦蛋白质品质无显著影响。籽粒直链淀粉和支链淀粉N1、N2处理含量不同,总淀粉含量N1>N2。麦季氮肥后效对玉米籽粒淀粉含量和蛋白质含量影响不显著。说明在本试验条件下,和N2相比N1处理对作物品质无显著影响。
     5长期耕作和施氮量对小麦、玉米氮素吸收利用的影响
     2005年15N测定结果表明,耙耕模式小麦的氮肥利用率最高,免耕模式氮肥利用率最低,但其显著提高了对土壤来源氮素的吸收。耙耕模式还显著提高小麦氮肥表观利用率和氮肥生产效率。N1处理下旋耕、耙耕和免耕模式氮素生理效率、氮肥生产效率表观氮肥利用率处理显著高于N2处理,常规耕作模式氮素生理利用率、氮素生产效率N2显著大于N1,这说明旋耕、耙耕和免耕模式种植的冬小麦比常规耕作模式种植的冬小麦更能有效的利用氮肥,以耙耕模式最佳。麦季氮肥对玉米季的氮肥利用效率有显著影响,旋耕和耙耕模式的氮肥利用率高于免耕模式和常规耕作模式。全年氮肥利用效率,耙耕模式优于其它三种耕作模式,常规耕作模式最差。两种氮肥处理,常规耕作和旋耕氮肥利用效率N2>N1,耙耕和免耕模式N1>N2处理。
     6耕作模式的适应性及合理氮肥用量
     初步认为在旋耕和耙耕模式可以在高产及有灌溉条件下短期(1~2年)应用,免耕模式不适宜。麦季氮肥用量在168kg·hm-2可保证小麦高产优质。
The field experiment was carried out in Zhongcun villages, Longkou City, Shandong Province China, in order to study the effects of nitrogen applied amount, straw returning and four soil tillage systems (including the conventional tillage (C), rotary tillage (R), serrated disk harrow tillage (H), zero-tillage (Z)) on soil physical and chemical characters, crop yield and kernel quality from 2002 to 2005. In this experiment two wheat cultivars Yangnong15, Jimai20 and maize cultivars Zhengdan958 were used. Meanwhile, 15N isotope tracing was adopted. soil fertilizer & water leakage test were the aided experiment, and physiological & biochemical was also studied. The results were as follows:
     1 Effects of straw returning and nitrogen applied amount on soil physical and chemical characters, yield and quality of wheat and maize
     1.1 Effects of straw returning on soil physical and chemical characters, yield and quality of wheat and maize
     Compared with no straw returning treatment, straw returning treatment improved soil total nitrogen content, alkali-hydrolysable nitrogen content, available potassium content, available phosphorus and organic matter content in 0-40cm soil layer, also it could keep more nitrate in 0-60cm soil layer, reduce its leaching.In high-yield farmland (organic matter content, 1.712%; alkali-hydrolysable nitrogen content, 88.73mg·kg-1; available phosphorus content , 43.27 mg·kg -1; available potassium content, 88.33 mg·kg–1;in 0~20cm soil layer), short-term (2 years) straw returning had no significant effect on crop yield, but it could increase wheat protein content and dough stability time.
     1.2 Suitable nitrogen applied amount under straw returning condition
     In wheat season, nitrogen applied amount of 240 kg·hm-2 (N2) and 168 kg·hm-2 had no notable effect on wheat yield and maize yield. Meanwhile in the first year N1 and N2 had no significant impact on kernel quality. In the second year, wheat kernel wet gluten content and starch content under N1 treatment were significantly higher than that of N2 treatment, but maize kernel starch content under N2 treatment was noticeably higher than that of N1 treatment, and N2 treatment also changed the ratio of amylase content to amylopectin of maize. So in this experiment, the result showed that under straw returning conditions, 168 kg·hm-2 of nitrogen applied was more suitable.
     2 Effects of tillage systems on soil physical and chemical characters
     2.1 Effects of tillage systems on structure of tilth
     There was no significant difference in soil bulk density and porosity among R, H and C treatments in 0~10cm soil layer. But in 10~20cm layer, soil bulk density of R and H treatment were noticeably higher than that of C treatment. Soil bulk density of Z treatment was gradually increased in three years, which was significantly higher than that of C treatment in 0~20cm soil layer.
     2.2 Effects of tillage systems on soil moisture content
     There was significantly positive correlation between soil pondage and rainfall of the same period in R, H and Z treatments, and the correlation coefficient was higher than C, especially the H treatment, its correlation coefficient was 0.70**, which reached a highly significant level, and its soil water retention was better than C. In 0~60cm soil layer, R, H and Z treatments could conserve more water than C and reduce water infiltration and evaporation, especially the H treatment. In different growth stage, the soil pondage of R, H and Z treatments was larger than C, especially in anthesis stage, which indicated that R, H and Z could inhibit the useless evaporation of soil water before anthesis and promote grain filling. Different tillage systems had different Effects on soil pondage. In this experiment, there was no significant difference between R and H treatment. The soil pondage of Z treatment was less than that of R and H, which indicated that Z treatment was disadvantageous to soil water infiltration under irrigation conditions because Z was covered by straw and had high density.
     The results also showed that soil tillage could affect soil water leakage. Irrigation water leakage volume in 50cm soil layer showed that C>R>H>Z. And the leakage was in the direct ratio to the depth of plowing, which showed the depth of plowing had noticeable Effects on irrigation water leakage.
     2.3 Effects of tillage systems on nutrient status in 0-40cm soil layer
     With the extend of location experiment time, alkali-hydrolysable nitrogen content, available P and available K content of R and H treatments were gradually higher than those of C, total nitrogen content and available P of Z treatment was lower than that of C in 0-20cm soil layer. That was because of topdressing nitrogen fertilizer in Z treatment. But in 20~40cm soil layer, total nitrogen content, alkali-hydrolysable nitrogen content, available P and available K content of C treatment were the highest among all treatments.
     2.4 Effects of tillage systems on soil organic matter properties and cation exchange capacity (CEC)
     After three years, the compound degree of soil organo-mineral and the organic carbon in heavy fraction of R, H, Z treatments were higher than those of C treatment in 0-20cm soil layer. Meanwhile, R, H, and Z treatments significantly improved the soil fertility. CEC of H is the highest in 0~20cm soil layer, which indicated that H had the best effects on supplying fertility. But in 20-40cm layer, the results were reversed. So the C treatment had better soil fertility.
     2.5 Effects of tillage systems on activity of urease and sucrase
     The activity of urease and sucrose of Z, H and R were significant higher than C in 0-10cm soil layer, and Z was the highest. But in 10-20cm soil layer, the result showed the reverse trend. The activity of enzymes under R, H and Z treatments had great difference in different layer, but the difference of C was little. That showed C treatment was conducive to maintain the uniformity of soil fertility in 0-20cm soil layer, but Z was unfavorable to crop growth.
     2.6 Effects of tillage systems on straw decomposition and soil respiration
     After a crop year, straw decomposition of C was remarkably lower than that of R, H and Z treatments, but there was no difference among three treatments. In wheat season, there was no significant difference of soil respiration rate among R, H and C treatments, but the soil respiration rate of Z was lower than that of C. In maize season, the soil respiration rate of C was higher than that of R, H, Z at maize pre-tasselling stage, but at maize maturity stage, the soil respiration rate of C was the lowest.
     2.7 Effects of tillage systems and nitrogen applied amount on nitrate content in soil
     2.7.1 Effects of tillage systems and nitrogen amount on content of nitrate in soil
     The nitrate movement of H and R was significantly lower than C treatment. The results also showed soil nitrate content of R and H treatments was higher than that of C treatment in conglomeration zone of the root system (0-60cm), while under 60cm soil layer, C was higher than other treatments. Soil nitrate content of Z treatment was the lowest among all treatments.
     Soil tillage systems had effect on nitrate leaching. After applying fertilizer, soil nitrate content of water leakage under N1 treatment, C was the highest, R was the next, and Z was the last. Apparent nitrogen leaching rate of C was the highest, while that of Z was the lowest. Soil nitrate content of Z was lower than other treatments, and the loss of fertilizer nitrogen volatilization was more than other treatments.
     2.7.2 Effects of fertilizer application on soil nitrate content
     In wheat season, the nitrate accumulation of N2 was significantly higher than that of N1 in 0-60cm layer (root zone), in 60-100cm layer (danger zone in which leaching always easily occurred) and in 100-200cm layer(the zone leaching easily occurred). Nitrate accumulation of N2 treatment was notably higher than that of N1 treatment, which was the major reason why the nitrate accumulation of N2 was higher than N1. But the nitrate couldn’t be used by crop and was easy to leaching. The residual soil nitrate content in wheat season had significant influence on soil nitrate accumulation of maize field, especially the soil nitrate accumulation in 0-60 soil layer. So more soil nitrate accumulation in wheat season, more soil nitrate accumulation in maize season.
     3 Effects of tillage systems and nitrogen applied amount on wheat growth and development and yield of wheat and maize
     3.1 Effects of tillage systems and nitrogen applied amount on wheat growth and development
     In the second year of experiment, there was no significant difference in the wheat flag leaf photosynthesis rate, flag leaf senescence characteristics, photosynthate transferring amount, photosynthate transferring ratio and dry matter accumulation of between R, H and C. In the third year, the photosynthate transfering amount and dry matter accumulation amount of R and H were significantly lower than that of C.
     Wheat flag leaf under Z treatment had better photosynthesis characteristics and physiological characteristics in the later growth stage. but the flag leaf photosynthate transferring amount and transferring ratio were lower than that of other tillage treatments. This showed that wheat of Z matured later, and inhibited the transfer of photosynthate from nutrient organs to kernels, whose dry matter accumulation was significantly lower than other tillage systems.
     In the second year, there was no significant effect on the photosynthesis characteristics, senescence characteristics and photosynthate transfer of flag leaf between N1 and N2 treatment. While in the third year the photosynthate transfering amount and transferring ratio of flag leaf under N2 level was higher thant that of N1.
     3.2 Effects of tillage systems and nitrogen applied amount on yield of wheat and maize
     There was no significant difference of yield among three treatments (R, H and C) after two years experiment, but in the third year, crop yield of C treatment was higher than that of R and H. In this experiment, crop yield of Z was remarkably the lowest. Nitrogen fertilizer had different influence on crop yield in different years. There was no significant effect on crop yield under N1 and N2 level in the first and second year, but in the third year, crop yield of N1 was lower than that of N2. Meanwhile, under N2 level, yield of C treatment was higher than that of H and Z, while under N1 level, crop yield of H was notably higher than that of C treatment, but there was no difference between the yield of R and C treatments.
     The residual nitrogen fertilizer of wheat season had significant effect on maize yield, and the influence of N2 was greater than N1. The effect became remarkable in the second year and in the third year. The crop yield of R and H treatments was higher than that of C treatment under N2 level, but under N1 level, the crop yield of R and H was lower than that of C treatment, meanwhile, crop yield of Z treatment was lower than that of C treatment.
     There was significant effect of nitrogen applied amount in wheat season on crop yield, and the yield of N2 treatment was obviously higher than that of N1. The yield of R and H was higher than that of C under N2 level, especially the R treatment. Under N1 level, the yield of R was equal to that of R, while the crop yield of Z was significantly lower than that of C treatment under both N1 and N2 level.
     4 Effects of tillage systems and nitrogen applied amount on the quality of wheat and maize kernel
     4.1 Effects of tillage systems on the quality of wheat and maize kernel
     There was no significant effect of tillage systems on protein content, wet gluten content and gluten index. While the effect of tillage systems on globulin content in protein fractions was the most obvious and on albumins was less obvious. The sedimentation volume and dough stability time of R and H were higher than that of C. The wheat amylose starch was easier to be affected by tillage systems than amylopectin starch. The wheat kernel starch content of R was higher than that of C, while that of Z and H was lower than that of C. And the wheat kernel starch content of Z was the lowest. There was no significant effect on maize protein content and starch content between C, R and H. The maize starch content of Z varied most among different years. Compared with C, the maize kernel protein content of Z became less as time went.
     4.2 Effects of nitrogen fertilizer amount on the quality of wheat and maize kernel
     There was no significant difference between N1and N2 in wheat kernel protein content in the first year. The wheat kernel protein content of N1 was significantly lower than that of N2 in the second year and third year of Z and in the third year of H. Among protein components, globuln content was affected most significantly, while albumins content was affected less. The sedimentation volume of N2 was higher than that of N1. There was no significant difference between N1 and N2 in wet gluten content, gluten index and farimograph index, which showed that N1and N2 had no significant effects on wheat kernel protein quality. The grain amylose and amylopectin content of N1 and N2 of wheat kernel were different. And the total starch content of wheat kernel of N1 was higher that of N2. There was no significant aftereffect on maize kernel starch and protein content of N-fertilizer in wheat season. This showed that compared with N2, N1 had no significant effect on crop quality.
     5 Effects of long-term tillage and nitrogen fertilizer on crop nitrogen absorption and utilization
     The results of 15N in 2005 showed that the N-fertilizer utilized efficiency of H was the highest, while that of Z was the lowest. But Z increased absorption of nitrogen from soil significantly. H increased N-fertilizer apparent use efficiency and N-productive efficiency significantly of wheat. The N-physiological use efficiency, N-productive efficiency and N-fertilizer apparent use efficiency of wheat of R, H and Z in N1 level were significantly higher than that of N2 level. While the N-physiological use efficiency, N-productive efficiency and N-fertilizer apparent use efficiency of C of wheat in N2 level were significantly higher than that of N1 level. This showed that R, H and Z could use N fertilizer more efficiently than C in wheat season, among which H was the best.
     There were some significant effects of nitrogen fertilizer in wheat season on the N-fertilizer utilized efficiency in maize season. The N-fertilizer utilized efficiency in maize season of R and H was higher than that of N and C. Considering the N-fertilizer utilized efficiency in a whole year, H was better than other three tillage systems, while C was the worst. The N-fertilizer utilized efficiency in a whole year of N2 was higher than that of N1 in C and R, and N1 was higher than that of N2 in H and Z.
     6 Tillage systems adaptability and suitable amount of nitrogen
     Preliminary conclusion could got that R and H were suitable for short time (1~2 years) in high-yield and irrigation conditions, while Z was not suitable. Nitrogen applied amount of 168kg·hm-2 was enough to maintain a higher yield and better kernel wheat quality.
引文
1. 边秀举, 王维进, 杨福存等. 冀北高原草甸栗钙土春小麦中化肥 N 去向的研究. 土壤学报, 1997,34(4):60-66.
    2. 蔡大同, 茆泽圣, 杨桂芬等. 氮肥不同时期施用对优质小麦产量和加工品质的影响. 土壤肥料, 1994,(2):19-21
    3. 陈同斌. 2000 年农用化肥氮磷钾消费比例的研究. 中国科学院地理研究所研究报告, 1994
    4. 程励励, 文启孝, 李洪. 稻草还田对土壤氮累及水稻产量的影响. 土壤, 1992, 24 (5): 234-238
    5. 党萍莉, 肖俊璋. 土壤质地对玉米氮肥利用率的影响. 陕西农业科学, 1992(2):9-11
    6. 党廷辉, 蔡贵信, 郭胜利等. 黄土旱塬黑垆土—冬小麦系统中尿素氮的去向及增产效果. 土壤学报, 2002, 39(2):199-205
    7. 丁庆堂. 不同耕法对草甸黑土肥力的影响. 土壤通报, 1986,17(7):61-64
    8. 董竹蔚. 旱地玉米及高梁免耕整株秸秆覆盖蓄水肥田增产效应.中国少耕免耕与覆盖技术研究.北京:北京科学技术出版社,1991,66-70
    9. 樊修武, 池宝亮, 焦晓燕等. 盐碱地秸秆覆盖改土增产措施的研究. 干旱地区农业研究, 1993,11(4):13-18
    10. 樊永言, 饶本华, 叶惠民等. 少耕覆盖耕作法的研究和应用. 土壤肥料, 1984(1):7-10
    11. 范丙全, 胡春芳, 平建立. 灌溉施肥对壤质潮土硝态氮淋溶的影响. 植物营养与肥料学报, 1998,4(1)16-21
    12. 范丙全. 旱地棉田秸秆覆盖的增产效果及其机理的研究. 土壤通报,1996.27(2):73-75
    13. 冯利平, 段桂荣. 不同覆盖处理对旱作玉米生育与产量效应的研究. 干旱地区农业研究, 1995,13(l):50-54
    14. 冯绍元, 黄冠华. 试论水环境中的氮污染行为. 灌溉排水, 1997,16(2)34-36.
    15. 逢焕成. 渭北旱塬秸秆覆盖耕作法研究.中国少耕免耕与覆盖技术研究. 北京:北京科学技术出版社,1991:113-117
    16. 高安. 沙地秸杆覆盖蓄水保墒试验研究. 中国沙漠, 1995, 15(3):261-265.
    17. 高焕文, 李洪文, 陈君达. 可持续机械化旱作农业研究. 干旱地区农业研究, 1999, 17 (1): 57-62
    18. 高焕文,李问盈,李洪文. 中国特色保护性耕作技术,农业工程学报,2003,19(5):1~4
    19. 高惠民主编. 《农业土壤管理》 北京:中国农业科技出版社, 1988.12,172
    20. 高克昌. 旱地玉米(高粱)整秸秆覆盖免耕试验. 山西农业科学, 1992(12):4-6
    21. 高绪科, 王文清. 旱地麦田蓄水保墒耕作措施的研究. 干旱地区农业研究, 1991 (4), 1-9
    22. 高绪科. 半湿润旱区春作农田土壤耕作研究. 土壤肥料, 1990(3):1-4
    23. 高绪科. 少雨年一熟麦田不同耕法蓄水保墒效应. 山西农业科学, 1989(3):5-8
    24. 高绪科. 土壤紧实度与作物生长. 土壤肥料, 1987(3):7-19
    25. 贡伯兴等. 稻茬免拼麦田冬春水热状况及其农艺效应(单行本). 1984
    26. 关松荫. 土壤酶及其研究法. 北京:农业出版社, 1986,274-276,294-297
    27. 郭跃. 试论农业耕作对土壤侵蚀的影响. 水土保持学报,1995(4):94-98
    28. 韩思明, 史俊通, 杨春峰等. 渭北旱源抗旱耕作法研究. 耕作与栽培, 1988,4:11-17
    29. 何照范编著. 粮油籽粒品质及其分析技术. 北京:中国农业科学出版社, 1985:31-41,
    57-59.
    30. 贺明荣, 王振林. 土壤紧实度变化对小麦籽粒产量和品质的影响. 西北植物学报, 2004,
    24(4):649-654
    31. 侯雪坤, 翟瑞常. 轮作、连作及不同耕法对氮磷肥料利用率的影响. 黑龙江八一农垦大学学报, 1995,8(2):44-52
    32. 胡国臣, 张清敏, 王忠等. 地下水硝酸盐氮污染防治研究. 农业环境保护, 1999, 18 (5): 228-230.
    33. 黄东迈. 免耕少耕条件下土壤肥力与培肥. 土壤通报, 198l,19(2):93-97
    34. 黄国勤, 钟树福. 少,免耕及其在中国的实践. 农牧情报研究, 1993(3):26-30
    35. 黄绍敏. 1983:有机肥料在养分供应和保持土壤有机质含量方面的作用, 中国土壤的合理利用和培肥,下册, 中国土壤学会编
    36. 黄生斌, 陈新平, 张福锁. 冬小麦施氮对下茬夏玉米的后效. 中国农业大学学报, 2002, 7(1),54-58
    37. 黄细喜, 刘世平. 不同耕法对土壤紧实度和小麦根系生长的影响. 上海农业学报, 1989, 5(1):61-66
    38. 黄细喜, 邵达三, 刘世平等. 江苏沿江砂壤土耕作配套模式的研究. 扬州大学学报(农业科学与生命版), 1990,11(2):1-9
    39. 黄细喜, 邵达三. 不同耕法对土壤肥力的影响. 江苏农学院学报, 1984,5(4):12-16
    40. 黄细喜. 江苏麦稻复种新型轮耕制及其研究. 中国少免耕与覆盖技术研究, 北京:科学出版社, 1991:85-90
    41. 黄细喜. 土壤自调性与少免耕法. 土壤通报, 1987,18(3):111-114.
    42. 贾树龙, 任图生. 保护耕作研究进展及前景展望. 中国生态学报, 2003 ,11(3):152-154
    43. 姜东, 戴廷波, 荆奇等. 有机无机肥长期配合施用对冬小麦籽粒品质的影响. 生态学报, 2004, 24(7):1548-1555.
    44. 蒋剑敏, 熊毅. 土壤有机无机复合体.土壤胶体第一册-土壤胶体的物质基础(熊毅等主编). 北京:科学出版社,1983,326-440
    45. 介晓磊, 韩燕来, 谭金芳等. 不同肥力和土壤质地条件下麦田氮肥利用率的研究. 作物学报, 1998, 24(6):884-888
    46. 巨晓棠, 潘家荣, 刘学军等. 高肥力土壤冬小麦生长季肥料氮的去向研究. 冬小麦生长季肥料氮的去向. 核农学报, 2002,16(6):397-402.
    47. 李凤超, 薛坚, 李增嘉等. 耙秸还田的研究Ⅰ. 耙秸还田对作物生育及土壤肥力的影响. 山东农业大学学报, 1986,17(3):9~22
    48. 李贵桐, 赵紫娟, 黄元仿等. 秸秆还田对土壤氮素转化的影响. 植物营养与肥料学报. 2002, 8 (2):162~167
    49. 李合生主编. 植物生理生化实验原理和技术. 北京:高等教育出版社, 2000.
    50. 李洪文, 陈君达, 邓键等. 旱地玉米机械化保护性耕作技术及机具研究. 中国农业大学学报, 2000,5(4):68-72
    51. 李洪文,陈君达,高焕文等.旱地表土耕作效应研究.干早地区农业研究, 2000 18(2): 13-18
    52. 李驾仁, 蓝瑞祥. 马尔采夫耕作法在我国华北地区试验的初步结果. 土壤学报, 1959, 6: 35-37
    53. 李庆逵, 朱兆良, 于天仁. 中国农业持续发展中的肥料问题. 南昌: 江西科学技术出版社.1998.
    54. 李少昆, 王克如, 冯聚凯等. 玉米秸秆还田与不同耕作方式下影响小麦出苗的因素. 作物学报, 2006, 32(3):463-465
    55. 李世娟, 李建民. 氮肥损失研究进展. 农业环境保护, 2001,20(5):377-379.
    56. 李新举, 张志国, 邓基先等. 免耕对土壤生态环境的影响. 山东农业大学学报, 1998, 29(4) :520-526
    57. 李新举, 张志国, 赵美兰等. 免耕对土壤养分的影响. 土壤通报, 2000,31(6):267-270
    58. 李振高, 俞慎. 土壤硝化—反硝化作用研究进展. 土壤, 1997(6):281-286
    59. 蔺海明,陈垣,李有忠等. 半干旱地区少免耕对土壤水分动态的影响. 甘肃农业大学学报, 1996,31(1):32-35
    60. 刘光菘主编. 土壤理化分析与剖面描述. 北京:中国标准出版社, 1996, 24-29.
    61. 刘经荣. 中国土壤的合理利用和培肥. 中国土壤学会, 1983,59-60.
    62. 刘鹏程, 丘华晶. 秸秆覆盖还田与土壤有机无机复合. 土壤通报. 1993, 24(6): 276 -277, 255
    63. 刘荣乐, 金继运. 我国北方土壤-作物系统内钾素循环特征及秸秆还田与施钾肥的影响. 植物营养与肥料学报. 2000,6(2):123-132
    64. 刘世平, 沈新平, 黄细喜. 长期少免耕土壤供肥特征与水稻吸肥规律的研究. 江苏农业研究, 1995,16(2):77-80
    65. 刘世平, 张洪程, 戴其根. 免耕套种与秸秆还田对农田生态环境及小麦生长的影响. 应用生态学报, 2005,16(2),393-396
    66. 刘巽浩, 王爱玲, 高旺盛等. 实行作物秸秆还田 促进农业可持续发展. 作物杂志, 1998 (5),1-5
    67. 刘巽浩主编. 耕作学. 北京:中国农业出版社,1994,210-230
    68. 卢彦群. 农田翻耕与旋耕对比试验及分析. 农业与技术 1996,94(5)28-31
    69. 吕殿青, 同延安, 孙本华等. 氮肥施用对环境污染影响的研究. 植物营养与肥料学报. 1998, 4(1):8-15
    70. 马立珊. 农田氮素管理与环境质量和作物品质. 中国土壤氮素, 江苏科技出版社, 1992,267-28l
    71. 马毅杰,马立珊. 化肥与生态环境.现代农业中的植物营养与肥料. 北京: 中国农业科技出版社. 1995,1-7.
    72. 马永良, 崔四平. 玉米秸秆整株原位翻压还田技术研究. 河北农业科学, 2000, 4(1):1-8
    73. 牟正国. 免耕对土壤松紧状况的影响. 中国少耕免耕与覆盖技术研究. 北京:北京科学技术出版社, 1991.34-40
    74. 牛灵安, 郝晋珉. 曲周试区秸秆还田配施氮磷肥的效应研究. 土壤肥料, 1998(6):32-35
    75. 逄焕成. 渭北旱塬秸秆覆盖耕作法研究. 中国少耕免耕与覆盖技术研究, 北京:北京科学技术出版社, 1991:113-117
    76. 彭永欣, 郭文善, 居春霞等. 氮肥对小麦籽粒营养品质调节效应的研究. 江苏农业科学, 1987(2) :9 – 11
    77. 彭祖厚. 少耕免耕研究的进展与展望.陕西农业科学. 1998(2):9-12
    78. 山西省农业科学院旱作农业耕作栽培体系及增产机理课题组, 旱地玉米(高梁)少免耕整秸秆半覆盖节水增产技术. 山西农业科学,1991(4):1-4
    79. 邵达三, 黄细喜, 陶嘉与等. 南方水田少(免)耕法研究报告. 土壤学报, 1985, 22(4): 305-318
    80. 沈德中. 农业环境保护与环境科学研究.国家科学技术委员会编, 中国农业科技政策背景资料. 北京: 中国农业出版社.1997,237-242.
    81. 沈佳音,张司民. 稻秆深施与面施对养分释放的影响及其增产效果. 土壤肥料, 1999(3):42-43
    82. 苏正义, 韩晓日, 李春全等. 氮肥深施对作物产量和氮肥利用率的影响. 沈阳农业大学学报. 1997,28(4):292-296
    83. 孙辉, 姚大年, 李宝云. 普通小麦谷蛋白大聚合体的含量与烘焙品质相关分析. 中国粮油学报, 1998,13(6):13-16
    84. 孙维纶, 金继生. 秸秆直接还田对苏州地区潴育型水稻土腐殖质组成的影响. 土壤通报, 1994,25(4): 172-174,177
    85. 汤树德. 秸秆还田原理及其应用. 北京:北京农业科学出版社,1993
    86. 王爱国, 罗广华, 邵从本. 大豆种子超氧物歧化酶的研究. 植物生理学报,1983, 9(1): 77-84.
    87. 王殿武, 褚达华. 少、免耕对旱地土壤物理性质的影响. 河北农业大学学报, 1992, 21 (2):28-33
    88. 王家玉, 王胜佳, 陈义等. 稻田土壤中氮素淋失的研究. 土壤学报, 1996,33(1):28-35.
    89. 王淑平,江源. 秸秆还田对玉米高产、稳产、优质效的研究. 吉林农业大学学报, 1997, 19(4):56-59
    90. 王维敏. 麦秸、氮肥和土壤混合培养时氮素的固定矿化与麦秸的分解. 土壤学报, 1986,23(2):97-105
    91. 王小彬, Bail.,LD. 保持耕作土壤体系下肥料氮素的行为及氮的有效管理的探讨. 土壤学进展. 1995,23(2):1-11
    92. 王小彬, 蔡典雄, 张镜清等. 旱地玉米秸秆还田对土壤肥力的影响. 中国农业科学, 2000, 33(4):54-61
    93. 王晓燕, 高焕文, 李洪文等. 保护性耕作对农田地表径流与土壤水蚀影响的试验研究. 农业工程学报, 2000,16(3):66-69
    94. 王旭清, 王法宏. 栽培措施和环境条件对小麦籽粒品质的影响. 山东农业科学, 1999, 1:52-55.
    95. 王英,王鹤桥. 不同状态秸秆还田对土壤酶活性影响的研究. 黑龙江农业科学. 1991(1):21-24
    96. 王月福, 陈建华, 曲健磊等. 土壤水分对小麦籽粒品质和产量的影响. 莱阳农学院学报, 2002,19(1):7-9.
    97. 王月福, 于振文, 李尚霞等. 土壤肥力对小麦籽粒蛋白质组分含量及加工品质的影响. 西北植物学报, 2002,22 (6) : 1318-1324
    98. 王兆荣, 孙聪姝. 黑土培肥效果的定位研究:Ⅱ土壤养分的变化. 东北农学院学报. 1993,24(3):214-218
    99. 王兆荣, 吴秀清. 黑土培肥效果的定位研究Ⅲ . 不同培肥途径对作物产量和品质的影响. 东北农业大学学报, 1994,25(3):209-213
    100.王兆荣, 徐文平. 黑土培肥效果的定位研究:I 土壤有机质及有机无机复合胶体的变化. 东北农学院学报, 1992,23(3):215-219
    101.王志明, 朱培立, 黄迈东. 14C,15N 双标记秸秆对土壤微生物量碳、氮动态变化的影响. 江苏农业学报, 1999,15(3):173-176
    102.武志杰,张海军等. 玉米秸秆还田培肥土壤的效果. 应用生态学报, 2002, 13(5):539-542
    103.夏叔芳, 于新建, 张振清. 叶片光合产物输出的抑制与淀粉和蔗糖的积累. 植物生理与分子生物学报,1981,7(2):135-141;
    104.肖祖荫, 陈振武, 陆欣来等. 坡地棕黄土翻、松、耙耕作方法的试验研究. 耕作与栽培, 1984,1:17-23
    105.谢民泽. 耙茬耕作的实践意义及其机理.耕作制度研究论文集. 农业出版社, 1981, 230-240
    106.徐凤花. 秸秆还田的增磷作用及对植株全磷含量干物质积累的影响. 黑龙江八一农垦大学学报, 1997,9(3):1-5
    107.徐恒永, 赵君实. 高产冬小麦的冠层光合能力及不同器官的贡献. 作物学报, 1995, 21(2): 204-209.
    108.徐新宇, 张玉梅, 胡济生等. 少耕法在潮土上应用效果的研究. 土壤肥料, 1985,1: 12-16
    109.许迪, Schmid R, Mermoud A. 夏玉米耕作方式对耕层土壤特性时间变异性的影响. 水土保持学报, 2000, 14 (1):64-70,87
    110.许剑平, 徐涛, 谢宇峰. 国外少免耕法的发展研究. 农机化研究, 2005,1:25-27
    111.薛坚,李凤超,李增嘉等. 秸秆还田的研究Ⅱ. 耙秸还田机械化作业工艺和配套机具. 山东农业大学学报, 1986, 17(4): 37-43
    112.严慧岭. 盐溃土麦秸还田效应初探. 土壤肥料, 1993(5):15-17
    113.杨光立, 李林, 孙玉桃等. 湖南省稻草还田利用现状及利用模式. 刘巽浩等编.秸秆还田的机理与技术模式. 北京:中国农业出版社, 2001:169-177
    114.杨树德. 土壤耕作对自桨土生物活性的影响. 土壤肥料,1982(3):13-15
    115.杨学明. 利用农业土壤固定有机碳-缓解全球变暖与提高土壤生产力. 土壤与环境, 2000, 9(4):311-315.
    116.姚大年, 刘广田, 朱金宝等. 基因型和环境对冬小麦品种籽粒性状及馒头品质的影响. 中国粮油学报, 2000,15(2):1-5.
    117.余优森, 林日暖, 邓振镛等. 人工草地土壤水分周年变化规律的研究. 土壤学报, 1992, 29(2):175-182.
    118.袁家富. 麦田秸秆覆盖效应及增产作用. 生态农业研究, 1996,4(3):61- 65
    119.袁新民, 王周琼. 硝态氮的淋洗及其影响因素. 干旱区研究, 2000,17(4):46-52.
    120.曾广骥. 秸秆直接还田对作物产量与土壤性质的影响. 土壤, 1989,2:10-14
    121.曾木祥, 张玉洁, 单秀枝等. 我国主要农区的秸秆还田模式. 土壤肥料,2001,4: 32-36
    122.张丙一等. 麦田圆盘耙耕法研究初报. 河北农业大学学报, 1982,1:15-17
    123.张夫道. 有机和无机氮在土壤—水稻系统中平衡的研究:Ⅱ有机和无机氮类土壤中的转化. 土壤肥料, 1995(2 ) :1-4
    124.张志国, 徐琪. 长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响. 土壤学报, 1998,35(3):384-390
    125.张海林, 陈阜, 秦耀东等. 覆盖免耕夏玉米耗水特性的研究. 农业工程学报, 2002, 18(2): 36-40
    126.张海林, 高旺盛, 陈阜. 保护性耕作研究现状!发展趋势及对策. 中国农业大学学报, 2005, 10(1):16-20
    127.张洪程, 戴其根, 严宏生等. 少免耕小麦高产群体生长模式及其控制技术的研究. 江苏农学院学报, 1990,11(3):3l-42
    128.张庆忠, 陈欣, 沈善敏. 农田土壤硝酸盐积累与淋失研究进展. 应用生态学报, 2002, 13(2): 233-238
    129.张喜英. 太行山山前平原冬小麦根系在土壤中分布的动态模拟. 生态学杂志. 1996, 15(4):29-32
    130.张喜英. 夏玉米根系生长发育特点及吸水规律的研究. 生态农业实验研究. 中国科技出版社,1994
    131.张喜英. 作物根系与土壤水利用. 气象出版社, 1999,10
    132.张玉铭, 马永清. 麦秸覆盖夏玉米对其苗期生长发育的生化化感作用研究初报. 生态学杂志, 1994,13(3):70-72
    133.张振清. 植物材料中可溶性糖的测定. 薛应龙主编, 植物生理学试验手册, 上海:上海科技出版社. 1985,134-138
    134.张志田, 高绪科, 蔡典雄等. 旱地麦田保护性耕作对土壤水分状况影响研究. 土壤通报, 1995, 26 (5): 200-203
    135.赵秉强, 李凤超. 不同耕法对冬小麦根系生长发育的影响. 作物学报, 1997, 23(5): 587-596
    136.赵秉强, 李凤超. 耙茬少耕在我国的研究与应用. 耕作与栽培. 1992(6): 6-9
    137.赵秉强. 小麦玉米两熟制农田轮耕的研究. 山东农业大学硕士论文, 泰安. 1991
    138.赵俊晔, 于振文. 不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响. 生态学报, 2006,26(3):815-822
    139.赵世杰, 许长成, 邹琦等. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3):207-210.
    140.赵四申, 段汝浩, 宁吉洲等. 玉米秸秆整株深埋还田技术研究. 农业工程学报, 2002, 18(2): 58-61
    141.赵子俊, 林忠敏. 旱地玉米免耕秸秆覆盖条件下病虫害发生特点及防治技术研究. 山西农业科学, 1994,22(3):37-40
    142.郑丕尧. 作物生理学导论. 北京:北京农业大学出版社, 1992.121-127.
    143.周凌云, 周刘宗, 徐梦雄. 农田秸秆覆盖节水效应研究. 生态农业研究, 1996, 4(3): 49-52
    144.周兴祥, 高焕文, 刘晓峰. 华北平原一年两熟保护性耕作体系试验研究. 农业工程学报, 2001,17(6):81-84.
    145.朱金宝, 刘广田, 张树榛. 基因型和环境对小麦烘烤品质的影响. 作物学报, 1995, 2(6): 679-684
    146.朱丽霞. 根系分泌物与根际微生物相互作用研究综述. 生态环境, 2003,12(1):102-105.
    147.朱文珊等. 北方一年两熟地区秸秆覆盖免耕技术原理及应用效果研究. 中国少耕免耕与覆盖技术研究. 北京:北京科学技术出版社,1991,11-20.
    148.朱泽亮, 陶胜. 钾肥和稻草对水稻生长及产量的影响. 土壤,1992,24(6):310-311
    149.朱兆良, 文启孝. 中国土壤氮素. 南京: 江苏科学技术出版社. 1990. 267-276.
    150.朱兆良. 中国土壤氮素肥力与农业中的氮素管理. 沈善敏主编. 中国土壤肥力. 北京:科学出版社,1999
    151.邹国元, 张福锁, 陈新平等. 秸秆还田对旱地土壤反硝化的影响. 中国农业科技导报, 2001,3(6):47-50
    152.邹琦主编. 植物生理生化试验指导, 北京:中国农业出版社,1995,27-29
    153.Paul E. Rasmussen.著,杨键译.残茬和肥料对免耕小麦产量的效应.麦类作物. 1998, 18(4):59-62
    154.Zhang Q D, Liu H Q, Zhang J H, et al. Effects of limited irrigation on some photosynthetic functions of flag leaves in winter wheat. Acta Agronomica Sinica, 2000, 26 (6): 869- 873.
    155.Aase J.K., Pikul, J. L.. Crop and soil response to long term tillage practice in the northern Great P1ains. Agronomy Journal, 1995,87(4):652-656.
    156.Adem H.,et al. Management of tillage and crop residues for double cropping in fragile soils of south eastern Australia. Soil and Tillage Research,1984,4:577-589
    157.Anvimelech, D. M., Fischbach, P. E. and Young, I. I.. Movement of nitrates under irrigated agriculture. Transactions of the ASAE,1972,15:73-75
    158.Bailey L D, Beauchamp E G.. Nitrate Reduction, and Redox Potentials measured with permanently. and Temporarily Placed Platinum Electrodes in Saturated Soils. Canadian Journal of Soil Science,1973a,53:213-218
    159.Bergstrom D W, Monreal C M, King D J.. Sensitivity of soil enzyme activities to conservation practices. Soil Science Society of America Journal, 1998,62:1286-1295.
    160.Bergstrom D W, Monreal C M, Tomlin A D,et al. Interpretation of soil enzyme activities in a comparison of tillage practices along a topographic and textural gradient. Canadian Journal of Soil Science, 2000, 80:71-79
    161.Blevins R H,et al . Influence of no-tillage and nitrogen fertilization on soil properties after 5 years of continuous corn. Agronomy Journal, 1997,69:383-386
    162.Booltink H W G.. Field monitoring of intrate leaching and water flow in a structured clay soil. Agriculture Ecosystems & Environment, 1995, 52(2/3):251-261.
    163.Bradford M M. A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein dyebinding. Analytical Biochemistr, 1976, 72:248-255.
    164.Brandt S.A. Zero vs conventional tillage and their effects on crop yield and moisture. Canadian Journal of P1ant Science, 1992,72:679-688
    165.Burton G.W. Meeting human needs through plant breeding: post progress and prospects for the future. In: Frey K Jed. Plant Breeding Ⅱ.Lowa State University Press, Ames. 1981, 433-465.
    166.Campbell R.B. Conservation tillage for soybean in the U.S. southern coastal plain. Soil and Tillage Research,1984,4:531-541
    167.Canter L W. Nitrates in Groundwater. CRC Press Inc.1997.
    168.Cassel D K. Tillage effects on corn production and soil physical conditions. Soil Science Society of America journal. 1995,59(5):1436-1443.
    169.Chance B, Maehly A C. Assay of catalase and peroxidase. Methods of Enzymology, VolⅡ . New York: Academic Press, 1955. PP764-755.
    170.Doran J W. Soil microbial and biochemical changes agsociated with reduced tillage Soil Science Society of American.1980,44:765-771
    171. Delwich S R, Graybosch R A, Nelson L A, Hruschka W R, et al. Environmental effects on developing wheat as sensed by near-infrared reflectance of mature grains. Cereal Chemistry, 2002, 76 (6): 885 -891.
    172.Demmig Adams B, Adams W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Plant Physiology, 1996, 98: 253-264.
    173.Dick, R P, Myrold, D D, Kerle E A. Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soils. Soil Science Society of America Journal, 1988, 52: 512-516.
    174.Dickey E C, et al. Enhancing soil conservation practice adoption with targeted educational programs. Applied Engineering in Agriculture.1991,7(1):91-96
    175.Dou, Z, Fox, R H., Toth, J D. Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen-source. Soil Science of America Journal, 1995, 59(3):858-864.
    176.Fowler DB, Brydon J. No-till winter wheat production on the Canadian prairies: placement of urea and ammonium nitrate fertilizers. Agronomy Journal, 1989, 81: 518-524.
    177.Froudwilliams R.J.,et al. Potential changes in weed floras associated with reduced cultivation system for cereal production in temperate region. Weed Research, 1981, 21: 99-109
    178.Frye W W, Blevins R L, Murdock L W. et al. Effectiveness of nitrapyrin with surface-applied fertilizer nitrogen in no-till. Agronomy Journal,1981,73:287-289
    179.Genty B E, Briantais M J, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 1989, 990: 87-92.
    180.Goss M J, Howse K R., Lane P W, et al. Losses of nitrate-N in water draining from under autumn-sown crops established by direct drilling or mouldboard ploughing. Journal of Soil Science, 1993, 44(1):35-48.
    181.Goss M J, Williams B L, Howse K R. Orangic matter turnover and nitrate leaching, In Wilson, W.S.(ed.) Advances in soil organic matter research: the impact on agriculture and the environment. Royal Society of Chemistry, Cambridge, 1991, 107-114.
    182.Grant C A, et al. The effects of tillage systems and crop sequences on soil bulk density and penetration resistance on a clay soil in southern Saskatchewan. Canadian Journal of Soil Science., 1993, 73:223-232
    183. Griffith D R, et al. Soil and moisture management with reduced tillage. In: no-tillage and surface tillage agriculture. John wiley, New York, 1986:19-57
    184.Hill R L. Long-term conventional and no-tillage effects on selected soil physical properties. Soil science of society of America Journal, 1990, 54(1):161-166
    185.Huggins D R., Fuchs D J, Staricka J A . Long-term management effects on corn production and nitrate leaching potential at southwest experiment station, in: Field Research in Soil Science 1993, Miscellaneous Pubilication, 1993,47-53
    186.Ike L.F. Soil and crop response to different tillage practices in a ferruginous soil in the Nigeria savanna. Soil and Tillage Research,1986,6:261-272
    187.Inger K. Schmidt, Sven Jonasson, Anders Mechelsen. Mineralization and microbial immolization of N and P in arctic soil in relation to season, temperature and nutrient amendment. Applied Soil Ecology .1999 (11):147-160
    188.Izaurralde R C, et al. Crop and nitrogen yield in legume based rotations practiced with zero tillage and low input methods. Agronomy Journal, 1995,87(5): 958-964
    189.Kanwar R.S, et al. Nitrate movement through the soil profile in relation to tillage systems and application methods. Transactions of the ASAE. 1985,28:1802-1807
    190.Kapusta G, et al. Corn yield is equal in conventional, reduced, and no tillage after 20 years. Agronomy Journal, 1996,88(5): 812-817
    191.Karasov C. No tillage farming on comeback trail. Environ. Health Persp. 2002.110.A75
    192.Karlen D L, et al. Twelve year tillage and crop rotation effects on yields and soil chemical properties in northeast Iowa. Commun. Soil Sci. Pant Anal.,1991,22:1895-2003
    193.Karlen D L, Wollenhaupt N C, Erbuch D C, et al. Long-term tillage on soil quality. Soil and tillage Research. 1994.,32:313-327
    194.Katupitiya A, Eisenhauer D E, Ferguson R B, et al. Long-term tillage and crop rotation effects on residual nitrate in the crop root zone and nitrate accumulation in the intermediate vadose zone. Transactions of the ASAE, 1997, 40(5):1321-1327.
    195.Kirby M J, Morgan R P C, Soil erosion, John Wiley&Sons Lid,1980
    196.Lal R. Long term tillage and rotation effects on properties of a central Ohio soil. Soil Science Society of America journal. 1994, 58(2):517-552
    197.Lewis W M. No-tillage system. in Conservation Tillage, 1973,182-187
    198.Liang B C, Mac Kenzie A F. Changes of soil nitrate nitrogen and denitrification as affected by nitrogen fertilizer on two Quebec soils. Journal of Environmental Quality, 1994, 23 (3) 521- 525
    199.Lindwall C W, et al. Rotation, tillage and seeder effects on winter wheat performance and soil moisture regime. Canadian Journal of Soil Science,1995.75:109-116
    200.Logan T J, Lal R, Dick W A. Tillage systems and soil properties in North America. Soil and Tillage Research.1991, 20:241-270.
    201.Lopezbellido L. Long term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed mediterranean conditions. Agronomy Jorunal, 1996,88(5):783-791
    202.Lukow O M, Mcvetty P B E. Effect of cultivar and environment on quality characteristics of spring wheat. Cereal Chemistry, 1991,68(4):597-601.
    203.Mccalla T M, Army T J. Stubble mulch farming .Advances in agronomy ,1961,135-150
    204.Mcgregor K C, Creer J D, Gurley G.E. Erosion control with no-tillage cropping practices. Transactions of the ASAE.1975(18):918-920
    205.Mladenov N, Przulj N, Hristov N, Djuric V,et al. Cultivar by environment. Interaction for wheat quality traits in semiarid conditions. Cereal Chemistry, 2001,78(3):363-367.
    206.Monreal C M, Bergstrom D W. Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil biochemical quality. Canadian Journal of Soil Science, 2000, 80: 419 -428.
    207.Morgan R P C. Soil degradation and erosion as a result of agricultural pratice. In: K.R. Chards(ed). Geomorphology and Soil. George Allen and Unwin, 1985,379-395
    208.Muhtar H A. Economic comparison of conventional and conservation tillage systems; [A ph.D, Dissertation], Michigan State University 1982.1.2
    209.O’neal D, Joy KW. Glutamine synthetase of pea leaves-divalent cation effects, substrate specificity, and other properties. Plant Physiology, 1974, 54:773-779
    210.Odum E P. Properties of agroecosystems. In: LowranceR, Stiner BR,House G J(eds). Agricultural Ecosystems, John Wiley&Sons,New York .1984.5-12.
    211.Ogunremi L T, et al. Effects of tillage and seeding methods on soil physical properties and yield of upland rice for an ultisol southern Nigeria. Soil and Tillage Research, 1986,6:305-324
    212.Olson R V. Immobilization, nitrification, and losses of fall-applied labeled ammonium-. nitrogen during growth of winter wheat. Agronomy Journal, 1982,74:991-995
    213.Rabinowitch H D, Sklan D. Sunscald tolerance in tomatoes: Role of superoxide dismutase. Planta, 1980,148: 162-167.
    214.Reeder R C. Five subsoiler designs and their effects on soil properties and crop yields. Transactions of the ASAE.1993, 36(6):1525-1531.
    215.Selles F, Zentener R P, Read DW. Prediction of fertilizer requirements for spring wheat grown on stubble in southwestern Saskatchewan. Canadian Journal of soil science, 1992, 72: 229-241
    216.Shad R A, et al. Reduced tillage techniques for wetland rice as affected by herbicides. Soil and Tillage Research, 1986(6):291-303
    217.Shapoor powshan, Alternative tillage systems for corn production in Michigan:[A ph.D Dissertation], Michigan state university,1986.12
    218.Sharlma D.N., Jain M L. Evaluation of no-tillage and conventional tillage systems. AMA, 1984(3):65-70
    219.Sharpley A N, et al. Wheat tillage and water quality in the southern plains. Soil Tillage Research, 1994 30:33-48
    220.Siemens J C. Energy requirements for tillage planting systems, soil conservation soc.of am.1973, in: conservation tillage, the proc.of a national confer.anleny,ia.,1982
    221.Simmons F W. Landscape and soil property effects on corn grain yield response to tillage. Soil Science Society of America Journal. 1989, 53(2):534-539.
    222.Smith J L. Cycling of nitrogen through microbial activity.in :Hatfield J L ,Stewart B A (eds).Soil Biology :Effects on Soil Quality.CRC Press lnc .,1994:91-120
    223.Stephen B P, Clements R L, et al. Effect of cultivar, environment, and their interaction and stability analyses on milling and baking quality of soft red winter wheat. Crop Science, 1985,25: 5-8
    224.Sturgul S J, et al. Ti11age and canopy cover effects on interrill erosion from first year alfalfa. Soil Science Society of America Journal, 1990,54(6):1733-1739
    225.Tisdall J M, et al. The effect of reduced tillage of an irrigated silty soil and of a mulch on seeding emergence growth and yield of maize harvested for si1age. Soil and Ti11age Research, 1986,6:365-375
    226.Tisdall J M, Oades J M. Organic matter and water stable aggregates in soil. Journal of Soil Science, 1982(33): 141-146
    227.Triplett G B, et al. Ti11age systems for cotton on si1ty upland soil. Agronomy Journal, 1996, 88(4):507-512
    228.Tullberg J N. Controlled Traffic in subtropical grain production. Proc. of ISTRO, 11th Int. Conf.,Vol. 1 1988, pp. 323-327.
    229.Van Kooten O, Snel J T H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 1990, 25:147-150.
    230.Wagger M G.. Corn grain yield and nitrogen utilization in relation to subsoiling and nitrogen rate on Paleudults. Agronomy Journal, 1992, 84(5):888-892.
    231.Wander M M, et al. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soil. Soil Science Society of America Journal, 1998,62(6): 1704- 1711
    232.Wardle D A. Impacts of disturbance on detritus food webs in agroecosystems of contracting tillage and weed management practices. Advances in Ecology Research. 1995, 26:105-85
    233.Weegels P I, Pijpekamp A M, Graveland A, et al. Depolymerisation and repolymerisation of wheat glutein during macropolymer content and quality parameters. Journal of Cereal Science, 1996, 23:103-114
    234.Wittmus H, Olson L. Energy requirements for conventional versus minimum tillage. Journal of Soil Water Conservation, 1975,30:72-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700