用户名: 密码: 验证码:
中纬度海陆热力差异对东亚夏季环流及降水的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
季风产生的根本原因就是海陆差异,对东亚夏季风环流影响显著的海陆差异研究主要集中在青藏高原与印度洋、西太平洋之间的海陆热力差异对夏季风环流的影响,以及南亚次尺度海陆分布对季风的爆发的影响这两方面。对中纬度副热带地区海陆分布影响东亚夏季风环流和降水的研究相对较少,本文就从这个角度出发,研究了中纬度夏季对流层大气海陆热力变化特征,分析了中纬度海陆热力差异对东亚夏季风环流和降水的影响及可能的物理机制,探讨了影响该热力变化的主要因子。主要结论可归纳为以下几个方面:
     1.定义了中纬度夏季海陆热力差异指数并讨论了其变化特征
     首先通过对1958-2000年夏季(6-8月)东亚太平洋地区(60o-180oE,10o-80oN)500hPa位势高度场的EOF分析表明,其主要模态显示了中纬度欧亚大陆与东部其邻近海洋的大气内部热力状态呈反相变化关系。根据这一特征,定义了反映对流层中低层大气热力差异的中纬度海陆热力差异指数LSI,该指数等于欧陆内陆区域(75o-90oE,40o-55oN)和日本附近海洋区域(140o-150oE,35o-42.5oN)的500hPa位势高度距平的偏差。通过周期谱分析表明,中纬度海陆热力差异指数有着显著的年际和年代际变化,1978年之后指数有明显的上升趋势。海陆差异指数存在周期为3年左右的年际变化和10年左右的年代际变化,其年际变化主要归因于日本及邻近海洋区域大气热力状况,该区域大气热力变化存在3-5年周期的年际变化特征,而欧亚内陆大气热力状况10年左右周期的年代际变化明显,对LSI指数的年代际变化的贡献更显著。
     2.中纬度海陆热力差异与东亚夏季降水关系密切。
     当中纬度海陆热力差异异常强(弱)时,长江中下游地区-韩国-日本及其东部洋面夏季降水增多(减少),而在我国南海,热带西太平洋,华北地区,东北亚高纬度地区的夏季降水则减少(增加)。LSI指数与夏季降水距平相关系数的空间分布特征与夏季降水距平EOF主要模态的空间分布特征十分相似,而且指数的年际变化趋势与该模态的年际变化有很高的相关关系。这表明中纬度海陆热力差异是影响东亚太平洋地区夏季降水变化的一个非常重要的影响因子。
     我们还探讨了中纬度海陆热力差异影响东亚太平洋地区夏季降水的可能物理机制。中纬度海陆热力差异通过影响东亚地区夏季环流进而影响降水。在LSI指数高值年夏季,陆地异常的暖气团使得中纬度欧亚内陆哈萨克斯坦东部地区产生反气旋型异常环流,而海洋的异常冷气团则使得日本及其邻近海洋产生气旋性异常环流。与此同时,中国南海及西太平洋的热带地区也出现了反气旋性异常环流,并与日本地区的气旋性异常环流相连。这种空间环流结构的配置容易造成长江中下游地区-韩国-日本一带的降水较常年偏多,而在此纬向带的南、北两侧地区如华南和华北则降水较常年偏少。在LSI指数低值年夏季,与此相反。
     3.研究了陆面和海洋不同的下垫面热通量及大气内部非绝热加热对海陆热力差异指数的影响。
     分析表明,欧亚内陆-气热通量的变化对陆地热力指数的影响不显著,与此相比,在日本附近的西北太平洋海域海-气潜热通量和长波辐射的变化对海洋热力指数的年际变化作用较明显。在欧亚内陆地区和日本邻近西北太平洋区域,大气的非绝热加热率随高度的变化各有特点,影响陆地热力指数最显著的是对流层中层的长波辐射和短波辐射加热,其次是对流层低层的长波辐射,短波辐射和深对流加热;而对海洋热力指数有显著影响的主要是近地面边界层的垂直湍流扰动加热,大尺度凝结潜热加热和长波辐射加热,对流层中低层的大尺度凝结潜热加热和浅对流加热对海洋热力指数也有一定影响。导致海洋热力指数与对流层低层大气温度的关系更密切,而陆地热力指数与对流层中层大气温度的关系密切,后者可能更主要受大气内部大尺度准定常波动或遥相关的影响所致。
     4.探讨了前期全球海表温度异常对海陆热力差异指数的影响
     通过对陆地、海洋热力指数及海陆差异指数与前期全球海表温度的相关分析,发现北印度洋(50°-130°E,10°S-20°N)区域的海温异常对欧亚内陆陆地热力指数的影响最显著,而影响日本附近海洋热力指数的关键区是西北太平洋(140°E-180°,10°-20°N)区域。通过对整个北太平洋冬季海温的EOF分析,表明了该西北太平洋区域的海温年际变化与整个北太平洋冬季海温的主要变化模态密切相关。合成分析结果进一步证实这两个海洋关键区对海陆热力差异指数的影响。
     为此,我们分别讨论了西北太平洋区域前冬、春季海表面温度变化与夏季海洋热力指数,北印度洋关键区前冬、春季海表面温度变化与夏季陆地热力指数年际变化特征,其相关系数分别为0.55,0.51和0.48,0.57。说明这两个关键区域的前冬、春季海温异常对中纬度海陆热力差异指数的变化具有很重要的预报意义。我们还讨论了北太平洋、北印度洋前冬海表面温度变化与东亚地区夏季环流的联系。西北太平洋冬季海温异常增暖(变冷)时,次年夏季日本及邻近海域大气易出现深厚的反气旋性(气旋性)环流,欧亚内陆哈撒克斯坦地区也易出现弱的气旋性(反气旋性)环流;而北印度洋冬季海温异常增暖(变冷)时,欧亚内陆哈撒克斯坦地区易出现深厚的反气旋性(气旋性)环流。
     5.提出了前期冬季海温变化影响东亚夏季环流和降水的概念模型
     综合上述分析结果,给出了前期冬季海温年际变化影响中纬度东亚地区夏季环流和降水的概念模型。当前冬西北太平洋区域海表面温度异常增温时,次年夏季日本及邻近海洋的对流层中层易出现反气旋性环流,通过大气内部的遥相关响应,影响欧亚内陆的哈撒克斯坦地区易出现弱的气旋性环流;同时北印度洋冬季海表温度往往出现异常变冷,可能通过青藏高原的动力或热力作用,影响高原北侧的哈萨克斯坦地区夏季易出现气旋性环流;在两者的共同作用下,使得哈萨克斯坦的气旋性环流更加深厚,日本及邻近海洋地区与欧亚内陆地区的位势高度差加剧,即中纬度海陆热力差异指数增强,因而造成中国长江流域-韩国-日本及邻近海洋地区的夏季降水易偏多,而我国南海,热带西太平洋,华北地区,东北亚高纬度地区的夏季降水则减少。反之亦然。
The land-ocean thermal contrast is the primary driver for the Asian monsoon. Much work has gone into the connection of East Asian Summer Monsoon circulation and the large scale surface thermal contrast between Tibetan Plateau and Indian Ocean and Pacific; while the middle-latitude land-sea thermal contrast between Asian continent and adjacent ocean was paid to less attention. In this paper, the main feature of the middle-latitude troposphere atmospheric thermal contrast between the land and the sea in the boreal summer was studied, the impact mechanism of the land-sea thermal contrast on the East Asian summer monsoon circulation and precipitation were examined, and then explored the impact factors on the LSI.
     The main conclusions are as follows:
     1. The middle-latitude Land-Sea thermal contrast Index (LSI) was defined and studied its variation.
     An empirical orthogonal function (EOF) analysis to the ERA-40 reanalysis data of June-July-August (JJA) 500-hPa geopotential height over Asia to Pacific area (60o-180oE, 10°-80°N) during 1958-2000 was done. The leading mode reveals the main feature of opposite year-to-year variation in phase of every JJA atmospheric internal thermal conditions over the middle-latitude East Asian continent and over the adjacent marginal ocean. The difference of the 500 hPa geopotential height anomalies between the land area A (75°-90°E, 40°-55°N) and the oceanic area B (140°-150°E, 35-42.5°N) is regarded as a representative of the middle-to-lower troposphere atmospheric temperature or thermal contrast between the continent and the ocean. The difference is defined as a middle-latitude Land-Sea thermal contrast Index (LSI).
     The LSI has significant interannual and interdecadal variability. There exists an abrupt climate change near 1978. The climatological mean of LSI before 1978 is obviously lower than that after 1978. The surging periods of LSI are 3years and 10 years. Its interannual variation is mainly attributed to the atmospheric thermal condition over the ocean,which has 3-5 year period; while the interdecadal variability is mainly attributed to the atmospheric thermal condition over the land, which has 10 years period.
     2. The LSI has close connection to the East Asian summer precipitation.
     The results show that large/small LSI is related to rich/poor summer precipitation in the middle-to-lower reaches of the Yangtze River,Korea,Japan and its eastern adjacent ocean at the same latitude and poor/rich precipitation in the South China Sea and tropical western Pacific,as well as poor/rich precipitation in North China and high-latitude northeast Asia,respectively. The pattern of correlation between LSI and precipitation resembles to the spatial distribution of the principle EOF mode of year-to-year precipitation variations. Furthermore,the variation of LSI is highly correlated to the time series of the first EOF mode of summer precipitation anomalies. This suggests that the middle-latitude land-sea thermal contrast is one of important factors to influence on the summer precipitation variations over the area from the whole East Asia to the western Pacific.
     The physical mechanism of LSI impacting on the East Asian summer precipitation is also investigated. In high LSI summers,strong land-sea thermal contrast i.e. warm air over land and cold air over ocean causes anticyclonic anomalies over Asian middle-latitude inland centered in the eastern part of Kazakhstan and the northwestern part of China and a cyclonic anomalies over East Asian middle-latitude ocean near Japan and around ocean. At the same time,an anomalous anticyclone over the tropical region from South China Sea to the western Pacific also appears to match with the anomalous cyclone near Japan. This spatial pattern causes more-than-normal summer monsoon precipitation from the middle-to-lower reaches of the Yangtze River valley to Japan and west Pacific,and less-than-normal precipitation to its north and south sides i.e. the south China and the north China. The anticyclonic anomalies over Asian inner continent likely play an important role in strengthening the anomalous north wind in north China and also positively act on the maintenances of the anomalous cyclone over Japan. In addition,the anomalous cyclone over Japan adjacent Ocean possibly acts as a bridge connecting the high-latitude systems like blocking highs and the lower latitude systems like Asian summer monsoon.
     3. The impact of the surface heat flux and atmospheric diabatic heating over the land and the ocean on the LSI.
     The results show that the surface heat flux over Eurasian inner land has little influence to the land thermal index, while the variation of the surface latent heat flux and long-wave radiation over the Pacific adjacent to Japan has highly correlation with the ocean thermal index. The changes with height of the atmospheric diabatic heating rates over the Eurasian inner land and the Pacific adjacent to Japan have different features.
     The variations of the middle troposphere atmospheric long-wave and short-wave radiation heating have significantly influences on land thermal index, and that of the low troposphere atmospheric long-wave radiation, short-wave radiation and deep convective heating also have impact on the yearly variation of the land thermal index. For the ocean thermal index, the variations of the surface layer atmospheric vertical diffuse heating, large-scale latent heating and long-wave radiation heating are more important, low and middle troposphere atmospheric large-scale latent heating and shallow convective heating also have impact on the yearly variation of the ocean thermal index. And then the ocean thermal index has closely connection with the low troposphere atmospheric temperature, while the land thermal index has closely connection with the middle troposphere atmospheric temperature.
     4. Effect of the preceding global SST anomalies on the LSI.
     The relations of land thermal index and ocean thermal index and the global SST anomalies in the preceding autumn, winter, spring and same summer are observed, the results show that the preceding SST anomalies in North Indian Ocean (50o-130oE,10oS-20oN) has closely relationship with the land thermal index, and the preceding SST anomalies in Northwest Pacific (140oE-180o,10oN-20oN) are highly positively correlated with ocean thermal index. Utilizing EOF analysis, we have discussed the spatial distribution of SSTA in preceding winter over North Pacific, and it is found that the variation of SSTA in the area located in Northwest Pacific could reflect the variation of SSTA in North Pacific. The spacial distribution of preceding SSTA in the high and low LSI year confirmed the important effect of these two areas.
     The relationship of the preceding winter and spring SSTA in the area located in Northwest Pacific and the ocean thermal index, and that of the preceding winter and spring SSTA in the area located in North Indian Ocean and the land thermal index, reveal that the preceding winter and spring SSTA in these two areas could be used as forecasting factors of the LSI. The effect of the preceding winter SSTA in these two areas on the summer circulation in East Asian was also observed. The results show that, when the preceding winter SSTA in Northwest Pacific is warmer (colder), the anticyclonic (cyclonic) anomalies appears in summer over Japan and adjacent ocean; when the preceding winter SSTA in North Indian Ocean is warmer (colder), the anticyclonic (cyclonic) anomalies appears in summer over Kazakhstan area in Eurasian inner land.
     5. The conceptual model of the preceding winter SST impacting on the summer circulation and precipitation in East Asian.
     When the preceding winter SSTA in Northwest Pacific is warmer, the anticyclonic in summer over Japan and adjacent ocean, and the weak cyclonic anomalies appears over Kazakhstan area in Eurasian inner land; and at the same time the preceding winter SSTA in North Indian Ocean is always colder, then the cyclonic anomalies appears in summer over Kazakhstan area in Eurasian inner land. The anticyclonic in Japan and adjacent ocean and the cyclonic in Eurasian inner land make the difference of geopotential height between these two areas be significant, and the LSI is higher, and result in the rich summer precipitation in the middle-to-lower reaches of the Yangtze River,Korea,Japan and its eastern adjacent ocean at the same latitude and poor summer precipitation in the South China Sea and tropical western Pacific,as well as poor precipitation in North China and high-latitude northeast Asia.
引文
Andrea Silverman, SUN Jilin, 2005: Characteristics of Thermal and Geopotential Height Differences Between Continent and Ocean and Its Role in the Strength of the Asian Summer Monsoon, JOURNAL OF OCEAN UNIVERSITY OF CHINA (in English), 4(4):366-376
    Annamalai,H.,and P. Liu, 2005a: Response of the Asian summer monsoon to changes in El Ni?o properties. Q. J. Royal Meteoro. Soc., 131, 805-831.
    Annamalai,H.,P. Liu,and S.P. Xie,2005b: Southwest Indian Ocean SST Variability: Its Local Effect and Remote Influence on Asian Monsoons,J. Climate,18,4150-4167.
    Bryan C. Weare, P. Ted Strub and Michael D. Samuel. 1981: Annual Mean Surface Heat Fluxes in the Tropical Pacific Ocean. Journal of Physical Oceanography: Vol. 11, No. 5, pp. 705–717.
    C. Chou, 2004: Land–sea heating contrast in an idealized Asian summer monsoon, Climate Dynamics, 21(1),
    Chang C.P., East Asian monsoon, 2004
    Chang,C.P.,Y.S. Zhang,and T. Li,2000a: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge,J. Climate,13,4310-4325.
    Chang,C.P.,Y.S. Zhang,and T. Li,2000b: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional Structure of the Monsoon,J. Climate,13,4326-4340.
    Chengfeng Li and Michio Yanai, 1996: The Onset and Interannual Variability of the Asian Summer Monsoon in Relation to Land–Sea Thermal Contrast, Journal of Climate, 9(2), 358–375
    da Silva, A. M., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data, NOAA Atlas Series, 74pp.
    Daniel R. Cayan. 1992: Latent and Sensible Heat Flux Anomalies over the Northern Oceans: The Connection to Monthly Atmospheric Circulation. Journal of Climate: Vol. 5, No. 4, pp. 354–369.
    Ding YH and Liu YJ, 2001: Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998, J Meteror Soc Japan, 79(1B), 255-276.
    Ding Yihui, Johnny C.L. Chan, 2005, the East Asian summer monsoon: an overview, Meteorology and Atmospheric Physics. 89,117-142
    Ding,Q. H.,and B. Wang,2005: Circumglobal Teleconnection in the Northern Hemisphere Summer,J. Climate,18,3483–3505.
    Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description: Part I. ERA40 Reanalysis Project Report Series, ERA40, 72 pp.
    Goswami B N, Krishnamurthy V, Annamalai H. 1999: A broad scale circulation index for the interannual variability of the Indian summer monsoon. Q. J. R. Meteor. Soc., 125:611-633.
    Guang Jun Zhang and Michael J. Mcphaden.1995: The Relationship between Sea Surface Temperature and Latent Heat Flux in the Equatorial Pacific. Journal of Climate: Vol. 8, No. 3, pp. 589–605.
    Huang R. H.,and W. J. Li,1987: Influence of the heat source anomaly over the tropical western Pacific on the subtropical high over East Asia,Proceedings,International Conference on the General Circulation of East Asia,Chengdu,40-51.
    IPCC,2007: Fourth Assessment Report - Climate Change 2007,the fourth assessment report of the intergovernmental panel on climate change,IPCC/WMO/UNEP.
    JoseP.Peixoto,Abrraham H.Oort著;吴国雄,刘辉译,气候物理学,1995.5
    J.L. Kinter , K. Miyakoda, and S. Yang, 2002: Recent Change in the Connection from the Asian Monsoon to ENSO, J. Climate, 1203-1215
    Kalnay E, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Ameri. Meteor Soc, 77: 437-471
    Kriplani RH, Kulkarni A, 2001: Monsoon rainfall variations and teleconnections over south and east Asia, Int J Climatol , 21, 603-616
    Kubota, M., N. Iwasaka, S. Kizu, M. Konda, and K. Kutsuwada, 2002: Japanese ocean flux data sets with use of remote sensing observations (J-OFURO). J Oceanogr, 58, 213-225.
    Lau K. M., Kim K. M., Yang S. 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13 :2461-2482.
    Masahisa Kubota, Atsuko Kano, Hidenori Muramatsu and Hiroyuki Tomita. 2003: Intercomparison of Various Surface Latent Heat Flux Fields. Journal of Climate: Vol. 16, No. 4, pp. 670–678.
    Minoura,D.,R. Kawamura,and T. Matsuura,2003: A Mechanism of the Onset of the South Asian Summer Monsoon,J. Meteor. Soc. Japan,81,563-580.
    Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 70,243-256
    S. A. Josey. 2001: A Comparison of ERA40, NCEP–NCAR, and SOC Surface Heat Fluxes with Moored Buoy Measurements in the Subduction Region of the Northeast Atlantic. Journal of Climate: Vol. 14, No. 8, pp. 1780-1789.
    Schulz, J., J. Meywerk, S. Ewald, and P. Schluessel, 1997: Evaluation of satellite-derived latent heat fluxes. J. Climate, 10, 2782-2795.
    Shu-Hsien Chou, Eric Nelkin, Joe Ardizzone and Robert M. Atlas. 2004: A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products. Journal of Climate: Vol. 17, No. 20, pp. 3973–3989.
    imon A. Josey, Elizabeth C. Kent and Peter K. Taylor. 1999: New Insights into the Ocean Heat Budget Closure Problem from Analysis of the SOC Air–Sea Flux Climatology. Journal of Climate: Vol. 12, No. 9, pp. 2856-2880
    Tao S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press,60-92
    Thomas M. S.,Reynolds R. W.,2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997), J. Climate, 16 (10): 1495-1510
    Ueda,H.,and Yasunari T,1998: role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea,J Meteor Soc. Japan,76,1-12.
    W. Timothy Liu,1988:Moisture and Latent Heat Flux Variabilities in the Topical Pacific Derived from Satellite Data, Journal of Geophysical Research, Vol.93, NO.C6, 6749-6760
    W. tongwei, Wu Guoxiong, the Thermodynamic Difference of Land-Sea Contrast of South Asian and its Influences on Circulation of Tropical Monsoon Area, 2006, Western Pacific Geophysics Meeting. Atmospheric Sciences
    Wang B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13,1517-1536
    Wang,B.,and T. Murakami,1994: summer monsoon in the eastern north Pacific,Proceedings of International Conferences on Monsoon Variability and Prediction,held at Trieste,Italy,112-118.
    Wang,B.,and Z. Fan,1999: Choice of the South Asian summer monsoon indices,Bull. Amer. Meteor. Soc,80,629-638.
    Wang,B.,R. Wu,and X. Fu,2000:Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13,1517-1536
    Webster,P. J. and S. Yang,1992: Monsoon and ENSO: Selectively interactive systems,Quart. J. Roy. Meteor. Soc.,118, 877-926.
    Webster,P. J.,1987: The elementary monsoon,Monsoons,edited by J. S. Fein and P. L. Stephens,3-32,John Wiley,New York.
    Wu Guoxiong, Liu Yimin., 2003: Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation, Geophysical Research Letter, 30 (5), 1201
    Wu,G. X,and Y.S. Zhang,1998: Tibetan Plateau Forcing and monsoon onset in South Asia and Southern China Sea,Mon. Wea. Rev., 126, 913-927.
    Wu,R. G.,2002: a mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. International J. Climatology, 22, 1879-1895.
    Wu,T. W. and Z. A. Qian,2003: the Relation between the Tibetan Winter Snow and the Asian,Summer Monsoon and Rainfall: An Observational Investigation,J. Climate,16,2038-2051.
    Xie,P.,and P. A. Arkin,1997: Global precipitation: A 17-year monthly analysis based on gauge observation,satellite estimates,and numerical model output,Bull. Amer. Meteor. Soc., 78, 2539-2558.
    Xu J. J.,and G. X. Wu,1999: Dynamic Features and maintenance mechanism of Asian summer monsoon subsystem,Advanced in Atmospheric Sciences,16,523-536.
    Yanai,M.,C. Li,and Z. Song,1992: seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon,J. Meteor. Soc., Japan, 70, 319-351.
    Zhang Tao, Wu Guoxiong, Guo Yufu, 2005: The diabatic heating and the generation of available potential energy: results from NCEP reanalysis, Acta Atmos Sinica, 19(2), 143-159
    曹杰,黄荣辉,陶云,夏季东北亚阻塞高压年际变化的一个物理机制,地球物理学报,2006,49 (1) :37-44
    陈晶华,陈隆勋,亚洲南部的海陆分布对亚洲夏季风形成的作用.应用气象学报,1991,2(4): 355-361
    陈菊英,春季南方涛动和初夏南海高压对长江中下游地区夏涝的影响,应用气象学报,1998,9(增刊),119-124
    陈烈庭,热带印度洋-太平洋海温纬向差异及其对亚洲夏季风的影响,大气科学,1988,(特刊),142-148
    陈烈庭,阿拉伯海-南海海温距平纬向差异对长江中下游降水的影响,大气科学,1991,15,33-42
    陈烈庭,东太平洋赤道地区海水温度异常对热度大气环流及中国汛期降水的影响,大气科学,1977,1(1):11-12.
    陈烈庭,金祖辉,罗绍华,1985:印度洋和南海海温变化的特征及其与大气环流的某些联系,海洋学报,7,103-110
    陈隆勋、朱乾根、罗会邦,东亚季风,北京气象出版社,1991
    陈文,厄尔尼诺和拉尼娜事件对东亚冬、夏季风循环的影响.大气科学,2002,26(5):595-610.
    陈兴跃,王会军,曾庆存,大气季节内振荡及其年际变化,北京气象出版社,2000
    丁一汇,高等天气学,北京气象出版社,2005.2
    高辉,张芳华,关于东亚夏季风指数的比较,热带气象学报,2003,19(1),79-86
    龚道溢,王绍武, ENSO对中国四季降水的影响, 自然灾害学报, 1998,7(4):44-52
    郭其蕴,东亚季风强度指数及其变化分析,地理学报,1983,38 (3) : 207-216
    何金海,温敏,施晓晖等.南海夏季风建立期间副高带断裂和东撤及其可能机制. 南京大学学报(自然科学),2002,38(3): 318-330
    何金海,徐海明,周兵等.关于南海夏季风建立的大尺度特征及其机制的讨论. 气候与环境研究,2000,5(4): 333-344
    何金海,朱乾根,M Murakami.TBB资料揭示的亚澳季风区季节转换及亚洲夏季风建立的特征.热带气象学报,1996,12(1): 34-42
    黄菲,姜治娜,欧亚大陆阻塞高压的统计特征及其与我国东部夏季降水的关系,青岛海洋大学学报,2002,32(2):186-192
    黄嘉佑,气象统计分析与预报方法,北京气象出版社,2004,298
    黄荣辉,蔡榕硕,陈际龙,周连童,我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系,大气科学,2006,30(5):730-743
    黄荣辉,陈际龙,黄刚,张启龙,中国东部夏季降水的准两年周期振荡及其成因,大气科学,2006,30(4):545-560
    黄荣辉,陈文,丁一汇,李崇银,关于季风动力学以及季风与ENSO循环相互作用的研究,大气科学,2003,27(4),484-502
    黄荣辉,顾雷,徐予红等,东亚夏季风爆发和北进的年际化特征及其与热带西太平洋热状态的关系,大气科学,2005,29,20-36
    黄荣辉,李维京,夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制,大气科学,1988,12 (特刊): 95-107
    黄荣辉,任保华,东亚夏季风的研究进展及其需进一步研究的问题,大气科学,1999,23(2),129-141
    黄荣辉,孙凤英,热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响,大气 科学,1994,18(2),141-151
    黄荣辉,孙凤英,热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响,大气科学,1994, 18(4),456-465
    贾小龙,李崇银,南印度洋海温偶极子及其气候影响.地球物理学报,2005,48,1238-1249.
    江滢,翟盘茂,几种亚洲季风指数与我国夏季主要雨型的关联,应用气象学报,2005,16(增刊), 79-76
    姜华,热带大西洋海表潜热和感热通量的季节和年际变化研究,博士论文。
    蒋国荣,何金海,王东晓,等.南海夏季风爆发前后海-气界面热交换特征.气象学报,2004,62(2):189-198
    金啟华,亚洲南部地区和南半球築椒植级匝侵薅募痉缧纬傻挠跋?2006,南京信息工程大学,博士 论文
    金祖辉,沈如桂,长江中下游旱梅和涝梅年海温场及大气环流系统的特征,气象科学技术集刊,1987, 11,83-88,北京气象出版社.
    黎伟标,罗会邦,地气系统净辐射加热的季节变化及其与亚洲夏季风的关系,热带气象学报,1999,15(3):205-212
    李崇银,廖清海,东亚及西北太平洋地区气候的准10年尺度振荡及其可能机制。气候与环境研究。1996,2,124-133。
    李崇银,穆明权,赤道印度洋海温偶极子型振荡及其气候影响,大气科学,2001,25,433-443.
    李崇银,气候动力学引论(第二版),北京:气象出版社,2000.
    李崇银,朱锦红,孙照渤,年代际气候变化研究。气候与环境研究,2002,7,209-219。
    李峰,何金海,北太平洋海海异常与东亚夏季风相互作用的年代际变化。热带气象学报,2000,23,378-387
    李春,孙照渤,中纬度阻塞高压指数与华北夏季降水的联系,南京气象学院学报,2003,26(4),458-464
    李峰,何立富,长江中下游地区夏季旱涝年际、年代际变化的可能成因研究,应用气象学报,2002,13(6),718-726
    李建平,曾庆存,一个新的季风指数及其年际变化和与雨量的关系,气候与环境研究,2005,10(3),351-365
    励申申,寿绍文,赤道东太平洋海温与我国江淮流域夏季旱涝的成因分析,应用气象学报,2000,11(3),331-328
    梁潇云,刘屹岷,吴国雄,热带、副热带海陆分布与青藏高原在亚洲夏季风形成中的作用,地球物理学报,2006 ,49 (4):983-992
    林振山,邓自旺,子波气候诊断技术的研究,北京气象出版社,1999,174
    刘衍韫,刘秦玉,,潘爱军,太平洋海气界面净热通量的季节、年际和年代际变化,中国海洋大学学报,2004,34(3):341-350
    吕俊梅,亚洲夏季风的季节内、年际和年代际变异及其成因研究。博士论文,2005。中科院大气物理研究所,北京。
    罗绍华,金祖辉,陈烈庭,印度洋和南海海温与长江中下游降水的相关分析,大气科学,1985,9,336-342.
    骆美霞,张可苏. 大气热源和大地形对夏季印度季风和东亚季风环流形成作用的数值模拟.大气科学,1991,15(2): 41-51
    马国柱,冯松,王冬梅,TOGA-COARE强化期IOP西太平洋热带海域的热通量特征,热带气象学报,1998,14(1):20-27
    钱粉兰,周明煜,太平洋海域海气热通量地理分布和时间变化的研究,海洋学报,2001,23(1):21-28
    钱永甫,颜宏,王谦谦等.行星大气中地形效应的数值研究.北京科学出版社,1988
    钱云,钱永甫.青藏高原隆升影响夏季大气环流的敏感性试验.气象学报,1996,54 (4):474-483
    乔云亭,陈烈庭,张庆云,东亚季风指数的定义及其与我国气候的关系,大气科学,2002,26(1),69-82
    曲绍厚,西太平洋热带海域动量、感热和潜热等湍流通量的观测研究,气象学报,1988,46(4),452-460
    曲维政,李若纯,孙瑞本,热带太平洋海域感热、潜热通量的时空特征,地理研究,1994,13(4):1-6
    任雪娟,钱永甫.局地海陆热力对比对南海夏季风爆发影响的数值试验.热带气象学报,2002,18(4):327-334
    邵庆秋,周明煜,李兴生,洋面动量、感热和潜热通量计算的研究,大气科学,1991,15(3),9-17
    孙淑清,马淑杰,海温异常对东亚夏季风及长江流域降水影响的分析及数值试验,大气科学,2003,27(1),36-52
    孙秀荣,陈隆勋,何金海,东亚海陆热力差指数与东亚夏季风强度关系讨论.见:何金海,丁一汇等编著.南海夏季风建立日期的确定于季风指数.北京:气象出版社,2001.96-108
    唐卫亚,孙照渤,印度洋海温偶极振荡对东亚环流及降水影响,南京气象学院学报,2005,28,316-322.
    陶诗言,张庆云,亚洲冬夏季风对ENSO事件的响应,大气科学,1998,22(4),339-407
    王会军,东亚夏季风和ENSO关系的不稳定性,Advances in Atmospheric Sciences,2002,19(1),1-11
    王绍武,叶谨琳,龚道溢等,近百年中国气温序列的建立,应用气象学报,1998,9,392-401.
    王晓春,吴国雄,我国夏季降水异常空间模与副热带高压的关系,大气科学,1997,21(2),161-169
    魏凤英,现代气候统计诊断与预测技术,北京气象出版社,1999,269
    魏凤英,张京江,1885-2000年长江中下游梅雨特征量的统计分析。应用气象学报, 2004,15,313-321.
    吴国雄,张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发:爆发地点,大气科学,1999,22(6): 825-838
    吴国雄,张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发:爆发时间,大气科学,1999,23(1): 51-61
    吴国雄等,青藏高原影响亚洲夏季气候研究的最新进展,气象学报,2004,62(5),528-540
    武炳义,王东晓,黄荣辉,冬季热带西太平洋海平面气压与后期亚洲夏季风的关系,大气科学进展,2003,20(4),496-510
    咸鹏,李崇银,北太平洋海温变化的年代际模态及其演变特征。大气科学, 2003,27,861-868.
    肖子牛,孙绩华,李崇银,2000:El Nino期间印度洋海温异常对亚洲气候的影响,大气科学,24,461-469.
    肖子牛,晏红明,李崇银.印度洋地区东西海温的偶极振荡与中国汛期降水的关系.热带气象学报, 2002,18,335-344.
    徐桂玉,苏炳凯,符淙斌,太平洋海气通量与长江流域降水及东亚500hPa环流的关系,大气科学,1994,18(1):89-95
    徐海明,何金海,董敏.印度半岛对亚洲夏季风进程影响的数值研究.热带气象学报,2001,17(2):117-124
    徐海明,何金海,温敏等.中南半岛影响南海夏季风建立和维持的数值研究.大气科学,2002,26(3): 330-342
    徐建军,王东晓,印度洋—太平洋海温的年际,年代际异常及其对亚洲季风的影响,海洋学报,2000,22(3),34-43
    许乃猷,徐启春, 北太平洋热通量场的时空变化特征及其与大气环流的关系, 海洋湖沼通报, 1994,2:120-130
    杨明珠,丁一汇,印度洋海表温度的变化及其对印度夏季季风降水影响的诊断研究,海洋学报,2006,28,9-16.
    杨秋明,南印度洋副热带偶极子型海温异常与全球环流和我国降水变化的关系,海洋学报,2006,28,47-56
    殷永红,倪允琪等,江淮流域夏季降水异常及与全球中低纬海温异常关系的诊断研究,南京大学学报(自科版),2001,37(3),358-368
    张红梅,董文杰,韦志刚,陆海温差与东亚夏季风环流异常指数的相关分析,高原气象,2002,21(6),610-614
    张庆云,陶诗言,陈烈庭,东亚夏季风指数的年际变化与东亚大气环流,2003,61(4),559-568
    张庆云,陶诗言,夏季东亚热带和副热带季风与我国东部汛期降水,应用气象学报,1998,9(增刊),16-23
    张庆云,陶诗言. 亚洲中高纬度环流对东亚夏季降水的影响. 气象学报,1998 ,56 (2):199-211
    张学洪,俞永强,刘辉,冬季北太平洋海表热通量异常和海气相互作用,大气科学,1998,22(4):511-521
    赵兵科,姚秀萍,吴国雄, 2003 年夏季淮河流域梅雨期西太平洋副高结构和活动特征及动力机制分析。大气科学,2005, 29,771-779.
    赵景霞,王安宇,高由禧,季风建立期间中高纬阻塞形式对季风发展的影响,高原气象,1987,4:87-98
    周兵,何金海,吴国雄,韩桂荣,东亚副热带季风特征及其指数的建立,大气科学,2003,27(1),123-135
    周林,沙文钰,热带太平洋海气热交换年变化特征的分析,海洋学报,1996,18(2):32-39
    周天军,张学洪,印度洋海气热通量交换研究,大气科学,2002,26(2):161-170
    周学鸣,何金海,叶榕生,乌拉尔阻塞高压影响亚洲季风环流和我国东部旱涝的数值试验,南京气象学院学报,1995,18(1):25-31
    祝从文,何金海,吴国雄.东亚季风指数及其大尺度热力环流年际变化关系.气象学报,2000,58(4):391-402
    邹力,倪允琪,ENSO 对亚洲夏季风异常和我国夏季降水的影响,热带气象学报,1997,13(4),306-314
    邹立尧,刘宣飞,热带太平洋印度洋海温异常对亚洲夏季风影响的数值研究,南京气象学院学报,2002,25:166-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700