用户名: 密码: 验证码:
人类iNOS基因启动子-1026C/A多态的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类iNOS基因启动子-1026C/A多态的功能研究
     前言
     一氧化氮合酶包括:神经型一氧化氮合酶(nNOS)、诱导型一氧化氮合酶(iNOS)和内皮型一氧化氮合酶(eNOS).其中,iNOS在正常生理状态下不表达或表达量极低,只有诱导后才大量表达,因此iNOS基因表达调控对NO的产生至关重要。iNOS基因在原发性高血压发生中发挥重要作用,一方面iNOS可通过产生NO引起血管平滑肌细胞舒张降低血压,另一方面还通过NO衍生物一过氧亚硝酸盐阴离子(ONOO-)发挥促高血压作用。
     本课题组前期研究中,通过高血压高发区连锁分析发现17号染色体上的微卫星D17S1878与高血压存在连锁。进一步病例-对照人群和家系研究证实,iNOS基因启动子-1026C/A多态与高血压发生相关,其中-1026C等位基因及-1026CC基因型是高血压发生的独立危险因素。此外对iNOS启动子-1026C/A多态的初步功能研究发现,-1026位点存在转录因子YY1反应元件,-1026C/A多态影响了YY1-DNA结合模式以及iNOS启动子萤光素酶报告基因重组体p1173C/A-luc的转录活性,并推测可能继而通过影响NO的产生导致-1026C/C的高血压易感风险升高。然而,YY1是如何影响iNOS启动子,-1026C/A多态对iNOS基因转录的确切功能,以及多种高血压相关因子调控iNOS转录活性的效应和具体机制尚不明确。
     材料与方法
     一、实验材料
     1、细胞系:人喉鳞癌细胞(Hep2),人胃癌细胞(BGC823),非洲绿猴肾(COS-7),小鼠巨噬细胞(RAW264.7);
     2、载体:萤火虫荧光素酶报告载体、海肾荧光素酶表达载体、YY1表达及RNA干扰载体、NFIC野生型及突变型表达载体、c-Jun表达载体、雌激素受体表达载体、糖皮质激素受体表达载体、盐皮质激素受体表达载体、p300野生型及突变型表达载体;
     3、Western印迹杂交相关试剂及试剂盒;
     4、基因克隆及萤光素酶报告基因检测相关试剂及试剂盒;
     5、DNA-蛋白质结合实验、免疫共沉淀、电泳泳动迁移实验(EMSA)及染色质免疫沉淀(ChIP)相关试剂及试剂盒;
     6、Real-time PCR相关试剂及试剂盒;
     7、细胞刺激因子:细胞因子混合物(IFN-y、IL-1p和TNF-a)、丁酸钠、雌二醇、地塞米松、醛固酮、转化生长因子-β1、胰岛素样生长因子Ⅱ和胰岛素。
     二、实验方法
     1, iNOS启动子萤光素酶报告基因载体构建及检测:利用在线软件进行iNOS启动子转录因子预测分析,构建系列截短的萤光素酶报告基因重组体,应用双荧光素酶检测系统检测启动子的活性,鉴定iNOS基因关键转录调控区;
     2、应用DNA-蛋白质结合实验、免疫共沉淀、EMSA和ChIP方法鉴定iNOS启动子-1026C/A多态位点DNA-蛋白质复合物组成,各转录因子相互作用,及DNA-结合亲和力;
     3、共转染转录因子及激素受体表达载体,应用萤光素酶报告基因系统,检测YY1、NFI和AP-1对iNOS基础启动子活性的影响;以及雌二醇、地塞米松、醛固酮、转化生长因子-β1、胰岛素样生长因子Ⅱ和胰岛素在iNOS转录调控中的作用;
     4、Real-time PCR方法检测YY1、NFI和AP-1过表达对细胞因子混合物诱导后iNOSmRNA表达的影响;
     5、丁酸钠刺激,以及共转染野生型/突变型p300表达载体,检测乙酰化在iNOS表达调控中的作用。
     结果
     1、系列截短的萤光素酶报告基因活性检测发现iNOS启动子-1173bp~-1032bp的141-bp片段可能为负性转录调控区;含有-1026C/A多态位点的16-bp片段(-1032 bp~-1016 bp)为iNOS基因转录的关键正性调控区。
     2、转录因子预测分析发现,除YY1外,iNOS启动子-1026C/A位点还存在另两个转录因子NFI和AP-1,DNA-蛋白质结合实验显示,-1026C/A位点存在由YY1,NFI和AP-1组成的蛋白质复合物,其中YY1与-1026C优势结合,而NFI与-1026A优势结合,免疫共沉淀结果提示AP-1和NFI之间存在相互作用,NFI和YY1之间也可能存在相互作用,而AP-1和YY1之间可能无直接的相互作用。
     3、EMSA实验证实NFI能与-1026A特异性直接结合,而AP-1与-1026A之间的结合可能是间接的,ChIP实验显示细胞内NFI和YY1与含有-1026C/A位点iNOS启动子结合,且YY1与-1026C结合亲和力较强,NFI与-1026A结合亲和力较强。
     4、通过YY1和NFI过表达及YY1的RNA干扰后检测p1173C/A-luc和p1032C/A-luc转录活性,发现YY1和NFI抑制iNOS基础启动子活性,该负性调控作用受正性转录调节因子AP-1的影响;其中,YY1的抑制作用明显强于NFI。
     5、Real-time PCR结果显示,细胞因子混合物(IFN-γ> IL-1β和TNF-α)显著诱导BGC823细胞iNOS表达,YY1、NFI或AP-1单独过表达对iNOS的诱导表达影响不明显,而AP-1/NF1或AP-1/YY1联合过表达均抑制iNOS的诱导表达,且AP-1/YY1的抑制作用明显强于AP-1/NF1。
     6、转录因子预测分析显示iNOS基因启动子1.2 kb序列中还存在一个TATA box、NF-κB/C/EBP、C/EBP、Spl以及多个糖皮质激素和雌激素反应元件;
     7、体外培养BGC823、Hep2、COS-7和RAW264.7细胞发现,p1173C/A-luc转录活性在不同细胞系中差异明显,而-1026C/A在不同细胞系中均影响iNOS启动子活性。
     8、类固醇激素(雌二醇、地塞米松、醛固酮)刺激及其受体过表达实验结果显示,雌激素下调p1173A-luc转录活性依赖于雌激素受体,醛固酮及盐皮质激素受体有上调p1173A-luc转录活性的趋势,而地塞米松及糖皮质激素受体对p1173A-luc转录活性无明显作用;此外,p1173C-luc转录活性不受这些激素的影响。
     9、应用去乙酰化酶抑制剂丁酸钠刺激,以及乙酰转移酶辅助因子p300的过表达实验,发现丁酸钠处理可显著降低p1173C-luc和p1173A-luc的转录活性,且对p1173A-luc的抑制作用较强;而共转染野生型p300后p1173C-luc和p1173A-luc转录活性无显著变化;提示由丁酸钠介导的乙酰化修饰可能抑制iNOS基因的基础启动子活性。
     10、应用血压调节因子(TGF-β1、IGFⅡ和胰岛素)处理Hep2细胞后p1173C/A-luc转录活性均无明显改变,-1026C/A多态的作用仍很显著,提示人iNOS基因1.2 kb启动子可能不是这些血压调节因子的直接作用靶点。
     结论
     1、iNOS启动子-1026C/A多态位点所在16-bp片段是基础转录活性的关键调控区,该位点DNA-蛋白质复合物包括YY1、NFI和AP-1,其中YY1和NFI直接结合DNA,而AP-1间接结合DNA;
     2、YY1和NFI与-1026C/A位点的结合亲和力存在差异,YY1与-1026C优势结合,NFI与-1026A优势结合;
     3、YY1和NFI均抑制iNOS基础启动子转录活性,且YY1的作用明显强于NFI,在细胞因子诱导后,AP-1/YY1对iNOS基因mRNA转录的抑制效应明显强于AP-1/NFI;
     4、iNOS基因启动子可能存在多个转录因子反应元件,其中的雌激素反应元件(ERE)可能在雌激素下调iNOS启动子转录活性中起重要作用;
     5、-1026C/A多态对iNOS启动子活性的影响在多种细胞系中趋势一致,但其作用效应存在一定的种属特异性;多种刺激因素也没有影响-1026C/A多态对转录调控作用的趋势;
     6、乙酰化修饰对iNOS基因转录调控发挥重要作用,特别是丁酸钠对iNOS启动子转录活性的明显抑制作用值得进一步研究。
Functional identification of the-1026C/A polymorphism in the human iNOS promoter
     Introduction
     Nitric oxide synthases (NOS) include three isoforms, the neuronal type (nNOS), the inducible type (iNOS), and the endothelial type (eNOS). In the normal condition, iNOS does not express or expresses at a very low level, however, a large amount after induction, therefore, the regulation of iNOS expression have impact on the NO production. iNOS gene plays an important role in development of essential hypertension, which may exhibit an anti-hypertensive effect through relaxation of vascular muscle cells by NO, or a pro-hypertensive effect through oxidative stress by excess of the NO derivative peroxynitrite ONOO-.
     In the previous study, we have linkage between chromosome 17 microsatellite D17S1878 and hypertension in a hypertension prevalence region. Further case-control population and family-based study demonstrated the association between the-1026C/A variant of the human iNOS promoter and susceptibility to hypertension, and found that the-1026C allele and-1026CC genotype were independent risk factors for hypertension. Moreover, functional investigation of the-1026C/A polymorphism in the human iNOS promoter revealed that-1026C/A altered the Yin Yang 1 (YY1)-binding pattern, and transcriptional activity of the iNOS promoter reporter constructs p1173C/A-luc, resulting in increased risk for hypertension through reduced NO production. However, how YY1 contributs to the iNOS promoter, the function of-1026C/A polymorphism on iNOS transcription, as well as the effect of various hypertension-related factors on iNOS transcriptional activity remained unclear.
     Materials and Methods
     Materials
     1. Cell lines:Human epidermoid cancer cell (Hep2), human gastric carcinoma cell (BGC823), African Green Monkey kidney cell (COS-7), and mouse macrophage cell (RAW264.7);
     2. Vector:pGL3-Basic, pRL-TK, pCMV-YY1, pBSU6-YY1, pcDNA3.1-NFIC, pcDNA3.1-NFICDBD, pcDNA3.1-Jun, expression vectors for estrogen, glucocorticoid, and mineralocorticoid receptor, p300w, and p300m;
     3. Reagents and kits for Western blot;
     4. Reagents and kits for gene cloning and luciferase reporter assay;
     5. Reagents and kits for DNA-binding assay, Co-immunoprecipitation (Co-IP), electrophoresis mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP);
     6. Reagents and kits for Real-time RT-PCR;
     7. Stimuli in cell culture:cytomix (IFN-y, IL-1β, and TNF-a), sodium butyrate, estradiol, dexamethasone, aldosterone, transforming growth factor-β1, insulin-like growth factorⅡ, and insulin.
     Methods
     1. Construction iNOS promoter luciferase reporters and assay:transcription factors in the iNOS promoter were analyzed using online research program; a series of truncated luciferase reporter constructs were generated and assayed using Dual-Glo luciferase system to identify the key regulatory region of the iNOS gene.
     2. DNA-binding assay, co-immunoprecipitaion, EMSA and ChIP were performed to identify the components of DNA-protein complex in the iNOS-1026C/A polymorphism, the interaction between these transcription factors, and their DNA-binding affinity.
     3. Cotransfection of expression vectors for transcription factors and steroid hormone receptors, and luciferase reporter assay were performed to detect the effects of estradiol, dexamethasone, aldosterone, transforming growth factor-β1, insulin-like growth factor II, and insulin on regulation of the iNOS transcription.
     4. Real-time PCR was used to evaluate the impact of overexpression of YY1, nuclear factor I (NFI), and active protein-1 (AP-1) on cytomix induced iNOS mRNA expression.
     5. Stimulation using sodium butyrate, and cotransfection of p300w and p300m expression vectors were conducted to detect the effect of acetylation on iNOS expression.
     Results
     1. Truncated luciferase reporters assay demonstrated that a 141-bp segment from-1173 bp to-1032 bp in the iNOS promoter was a potential negative regulatory region, and a 16-bp segment from-1032 bp to-1016 bp was a key positive regulatory region for iNOS transcriptional regulation.
     2. Transcription factors prediction revealed that besides YY1, two novel transcription factors NFI and AP1 were located in the iNOS promoter locus; DNA-binding assay showed that a protein complex formed by YY1, NFI, and AP-1 existed in-1026C/A, YY1 dominantly bound to-1026C, and NFI dominantly bound to-1026A; co-immunoprecipitation demonstrated an interaction between AP-1 and NFI, a possible interaction between NFI and YY1, but no direct interaction between AP-1 and YY1.
     3. EMS A demonstrated a specific binding of NFI to-1026A, and suggested a indirect binding of AP-1 to-1026A; ChIP assay confirmed the binding of YY1 or NFI to iNOS promoter encompassing-1026C/Ain cell culture, wherein the binding affinity of YY1 to-1026C, as well as the binding affinity ofNFI to-1026A were dominant.
     4. Transcriptional activity assay of pl173C/A-luc and p1032C/A-luc after overexpression of YY1 and NFI, or YY1 RNA interference showed that YY1 and NFI inhibited iNOS basal promoter activity, and the negative regulatory effects were influenced by the positive regulator AP-1, wherein the inhibitory effect of YY1 was more potent than NFI.
     5. Real-time PCR results showed that the cytomix (IFN-y, IL-1(3 and TNF-a) significantly induced the iNOS expression in BGC823 cells, the independent effect of YY1, NFI, and AP-1 on the.iNOS induced-expression was not marked, however, overexpression of AP-1/NF1 or AP1/YY1 potently inhibited iNOS induced-expression, wherein the inhibitory effect of AP-1/YY1 was more dominant than AP-1/NF1.
     6. Prediction of transcription factor demonstrated that a TATA box, NF-κB/CEBP、CEBP, Sp1, and several estrogen and glucocorticoid responsive elements existed in the 1.2 kb iNOS promoter.
     7. The transcriptional activity of p1173C/A-luc significantly differed among BGC823, Hep2, COS-7, and RAW264.7 cells, however, the influence of-1026C/Aon the promoter activity was the same in different cell lines.
     8. Steroid hormones (estradiol, dexamethasone, and aldosterone) treatment and overexpression of their receptors showed that estradiol downregulated p1173A-luc transcriptional activity in a receptor-dependent way, aldosterone and mineralocorticoid receptor had a tendency of p1173A-luc upregulation, whereas dexamethasone and glucocorticoid receptor did not affect the p1 173A-luc transcriptional activity; moreover, these hormones did not influence the transcriptional activity of p1173C-luc.
     9. Cell stimulation using deacetylase inhibitor sodium butyrate and overexpression of p300 showed that sodium butyrate markedly reduced the transcriptional activities of p1173C-luc and p1173A-luc, and the inhibition was more significant for p1173A-luc than for p1173C-luc; whereas the transcription activities of p1173C/A-luc did not alter after cotransfection of expression vectors for p300, indicating the sodium butyrate-mediated acetylation may inhibit the iNOS basal promoter activity.
     10. Stimulation of Hep2 cells using blood pressure regulators (TGF-β1, IGF II, and insulin) did not significantly alter thep1173C/A-luc transcriptional activity, while the effect of-1026C/A remained marked, suggesting the 1.2 kb human iNOS promoter may not direct target of these blood pressure regulators.
     Conclusion
     1. The iNOS promoter-1026C/A polymorphism was located in a 16-bp key regulatory region for basal transcriptional activity, wherein existed a protein complex formed by YY1, NFI and AP-1; the DNA-binding of YY1 and NFI was direct, whereas the DNA-binding of AP-1 was indirect.
     2. YY1 and NFI bound to-1026C/A with different binding affinity, YY1 dominantly bound to-1026C, and NFI dominantly bound to-1026A.
     3. Both YY1 and NFI inhibit iNOS basal promoter activity, and the inhibitory effect of YY1 was more potent than NFI; the AP-1/YY1 inhibited the cytokmix-induced iNOS mRNA expression more markedly than AP-1/NFI.
     4. Several transcription factor responsive elements may exist in the promoter, in which the estrogen responsive element (ERE) play a vitol role in downregulation of iNOS transcriptional activity.
     5. The regulation tendency of-1026C/Aon iNOS promoter activity was the same among different cell lines, while their impacts exhibited a species-specific maner; a number of stimuli did not influence the regulation tendency of-1026C/A on iNOS transcription.
     6. Acetylation modification played an important role in the regulation of iNOS transcription, and the marked sodium butyrate-mediated inhibition of iNOS promoter activity needed further investigation.
引文
1 Hong H, LOH S, Yen M. Suppression of the development of hypertension by the inhibitor of inducible nitric oxide synthase. Br J Pharmacol.2000; 131:631-637.
    2 Singh A, Sventek P, Lariviere R, et al. Inducible nitric oxide synthase in vascular smooth muscle cells from prehypertensive spontaneously hypertensive rats. Am J Hypertens. 1996; 9:867-877.
    3 Glenn CL, Wang WY, Morris BJ. Different frequencies of inducible nitric oxide synthase genotypes in older hypertensives. Hypertension.1999; 33:927-932.
    4 Fu LY, Zhao YY, Shi JP, et al. Linkage analysis of the polymorphism at D17S1878 site with essential hypertension. Zhongguo Yi Xue Ke Xue Yuan Xue Bao.2006; 28: 129-133.
    5 Fu L, Zhao Y, Lu J, et al. Functional single nucleotide polymorphism-1026C/A of inducible nitric oxide synthase gene with increased YY1-binding affinity is associated with hypertension in a Chinese Han population. J Hypertens.2009; 27:991-1000.
    6 Broadbelt NV, Stahl PJ, Chen J, et al. Early upregulation of iNOS mRNA expression and increase in NO metabolites in pressurized renal epithelial cells. Am J Physiol Renal Physiol.2007; 293:1877-1888.
    7 Li C, Li Y, Li Y, et al. Glucocorticoid repression of human with-no-lysine (K) kinase-4 gene expression is mediated by the negative response elements in the promoter. J Mol Endocrinol.2008; 40:3-12.
    8 Guo B, Odgren PR, van Wijnen AJ, et al. The nuclear matrix protein NMP-1 is the transcription factor YY1. Proc Natl Acad Sci USA.1995; 92:10526-10530.
    9 Flanagan JR, Becker KG, Ennist DL, et al. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol. 1992; 12:38-44.
    10 Hariharan N, Kelley DE, Perry RP. Delta, a transcription factor that binds to downstream elements in several polymerase Ⅱ promoters, is a functionally versatile zinc finger protein. Proc Natl Acad Sci USA.1991; 88:9799-9803.
    11 Park K, Atchison ML. Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3'enhancer and the immunoglobulin heavy-chain mu El site. Proc Natl Acad Sci USA.1991; 88:9804-9808
    12 Riquet FB, Tan L, Choy BK, et al. YY1 Is a Positive Regulator of Transcription of the Collal Gene. J Biol Chem.2001; 276:38665-38672.
    13 Nowak K, Lange-Dohna C, Zeitschel U, et al. The transcription factor Yin Yang 1 is an activator of BACE1 expression. J Neurochem.2006; 96:1696-1707.
    14 Deng Z, Wan M, Cao P, et al. Yin Yang 1 regulates the transcriptional activity of androgen receptor. Oncogene.2009; 28:3746-3757.
    15 Sui G, Affarel B, Shi Y, et al. Yin Yang 1 is a negative regulator of p53. Cell.2004; 117: 859-872.
    16 Gronroos E, Terentiev A A, Punga T, et al. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. J Proc Natl Acad Sci USA.2004; 101: 12165-12170.
    17 Rylski M, Amborska R, Zybura K, et al. Yin Yang 1 Is a Critical Repressor of Matrix Metalloproteinase-9 Expression in Brain Neurons. J Biol Chem.2008; 283: 35140-35153.
    18 He CQ, Ding NZ, Fan W, YY1 repressing peroxisome proliferator-activated receptor delta promoter. Mol Cell Biochem.2008; 308:247-252.
    19 Shi Y, Seto E, Chang LS, et al. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell. 1991; 67:377-388.
    20 Joo M, Wright JG, Hu NN, et al. Yin Yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol.2007; 292:1219-1226.
    21 Luke MP, Sui G, Liu H, et al. Yin Yang 1 physically interacts with Hoxall and represses Hoxall-dependent transcription. J Biol Chem.2006; 281:33226-33232.
    22 Nowak K, Lange-Dohna C, Zeitschel U, et al. The transcription factor Yin Yang 1 is an activator of BACE1 expression. J Neurochem.2006; 96:1696-1707.
    23 Jones K, Kadonaga J, Rosenfeld P, et al. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell.1987; 48:79-89.
    24 Lee JS, See RH, Galvin KM, et al. Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Res.1995; 23:925-931.
    25 Bushmeyer S, Park K, Atchison ML. Characterization of functional domains within the multifunctional transcription factor, YY1. J Biol Chem.1995; 270:30213-30220.
    26 Becker KG, Jedlicka P, Templeton NS, et al. Characterization of hUCRBP (YY1, NF-E1, delta):a transcription factor that binds the regulatory regions of many viral and cellular genes. Gene.1994; 150:259-266.
    27 Lewis BA, Tullis G, Seto E, et al. Adenovirus El A proteins interact with the cellular YY1 transcription factor. J Virol.1995; 69:1628-1636.
    28 Shrivastava A, Calame K. An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic Acids Res.1994; 22:5151-5155.
    29 Ye J, Cippitelli M, Dorman L, et al. The nuclear factor YY1 suppresses the human gamma interferon promoter through two mechanisms:inhibition of AP-1 binding and activation of a silencer element. Mol Cell Biol.1996; 16:4744-4753.
    30 Shi Y, Lee JS, Galvin KM. Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta.1997; 1332:49-66.
    31 Nagata K, Guggenheimer R, Enomoto T, et al. Adenovirus DNA replication in vitro identification of a host factor that stimulates synthesis of the reterminal protein-dCMP complex. Proc Natl Acad Sci USA.1982; 79:6438-6442.
    32 Gronostajski RM, Adhya S, Nagata K, et al. Site-specific DNA binding of nuclear factor I: Analyses of cellular binding sites. MolCell Biol.1985; 5:964-971.
    33 Hennighausen L, Siebenlist U, Danner D, et al. High-aYnity binding site for a specific nuclear protein in the human IgM gene. Nature.1985; 314:289-292.
    34 Leegwater PAJ, van Driel W, van der Vliet PC. Recognition site of nuclear factor I, a sequence-specific DNA-binding protein from HeLa cells that stimulates adenovirus DNA replication. EMBO J.1985; 4:1515-1521.
    35 Nowock J, Borgmeyer U, Puschel AW, et al. The TGGCA protein binds to the MMTV-LTR, the adenovirus origin of replication, and the BK virus enhancer. Nucleic Acids Res.1985; 13:2045-2061.
    36 Meisterernst M, Gander Ⅰ, Rogge L, et al. A quantitative analysis of nuclear factor I/DNA interactions. Nucleic Acids Res.1988a; 16:4419-4435.
    37 Mermod NO, Neill E, Kelly T, et al. The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell.1989; 58: 741-753.
    38 Gounari F, De Francesco R, Schmitt J, et al. Amino-terminal domain of NF1 binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J.1990; 9:559-566.
    39 Richard M. Gronostajski. Roles of the NFI/CTF gene family in transcription and development. Gene.2000; 249:31-45.
    40 Osada S, Ikeda T, Xu M, et al. Identification of the transcriptional repression domain of nuclear factor 1-A. Biochem Biophys Res Commun.1997; 238:744-747.
    41 Laniel MA, Poirier GG, Guerin SL. Nuclear factor 1 interferes with Spl binding through a composite element on the rat poly(ADP-ribose) polymerase promoter to modulate its activity in vitro. J Biol Chem.2001; 276:20766-20773.
    42 Halazonetis TD, Georgopoulos K, Greenberg ME, et al. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell.1988; 55: 917-924.
    43 Bohmann D, Bos TJ, Admon A, et al. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1, Science.1987; 238:1386-1392.
    44 3rd Rauscher FJ, Voulalas PJ, Franza BRJr, et al. Fos and Jun bind cooperatively to the AP-1 site:reconstitution in vitro. Genes Dev.1988; 2:1687-1699.
    45 Kleinert H, Wallerath T, Fritz G, et al. Cytokine induction of NO synthase Ⅱ in human DLD-1 cells:roles of the JAK-STAT, AP-1 and NF-kappa B-signaling pathways. Br J Pharmacol.1998; 125:193-201.
    46 Marks-Konczalik J, Chu SC, Moss J. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor-nB-binding sites. J. Biol. Chem.1998; 273:22201-22208.
    47 Ye J, Cippitelli M, Dorman L, et al. The Nuclear Factor YY1 Suppresses the Human Gamma Interferon Promoter through Two Mechanisms:Inhibition of AP-1 Binding and Activation of a Silencer Element. Mol Cell Biol.1996; 16:4744-4753.
    48 Ye J, Zhang X, Dong Z. Characterization of the human granulocyte-macrophage colony-stimulating factor gene promoter:an AP-1 complex and an Spl-related complex transactivate the promoter activity that is suppressed by a YY1 complex. Mol Cell Biol. 1996; 16:157-167.
    49 Linker K, Pautz A, Fechir M, et al. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res.2005; 33:4813-4827.
    50 Taylor BS, de Vera ME, Ganster RW, et al. Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem.1998; 273:15148-15156.
    51 Ganster RW, Taylor BS, Shao L, et al. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA. 2001; 98:8638-8643.
    52 Chu SC, Marks Konczalik J, Wu HP, et al. Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene:characterization of differ-ences between human and mouse iNOS promoters. Biochem Biophys Res Commun.1998; 248: 871-878.
    53 Marks-Konczalik J, Chu HC, Moss J. Cytokine-mediated Transcriptional Induction of the Human Inducible Nitric Oxide Synthase Gene Requires Both Activator Protein 1 and Nuclear Factor kB-binding Sites. J Biol Chem.1998; 273:22201-22208.
    54 Guo Z, Shao L, Feng X, et al. A critical role for C/EBPbeta binding to the AABS promoter response element in the human iNOS gene. FASEB J.2003; 17:1718-1720.
    55 Li Y, Zhao Y, Li G, et al. Regulation of neuronal nitric oxide synthase exon If gene expression by nuclear factor-kappaB acetylation in human neuroblastoma cells. J Neurochem.2007; 101:1194-204.
    56 Taylor BS, de Vera ME, Ganster RW, et al. Multiple NF-κB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem.1998; 273:15148-15156.
    57 Kolyada AY, Savikovsky N, Madias NE. Transcriptional regulation of the human iNOS gene in vascular-smooth-muscle cells and macrophages:evidence for tissue specificity. Biochem Biophys Res Commun.1996; 220:600-605.
    58 Stampfer MJ, Colditz GA, Willett WC, et al. Post-menopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses'health study. N Engl J Med. 1991; 325:756-762.
    59 Kauser K, Sonnenberg D, Diel P, et al. Effect of 17betaoestradiol on cytokine-induced nitric oxide production in rat isolated aorta. Br J Pharmacol.1998; 123:1089-1096,
    60 Baker AE, Brautigam VM, Watters JJ. Estrogen modulates microglial in Xammatory mediator production via interactions with estrogen receptor{beta}. Endocrinology. (2004)
    61 Noris M, Todeschini M, Zappella S, et al.17Beta-estradiol corrects hemostasis in uremic rats by limiting vascular expression of nitric oxide synthases. Am J Physiol Renal Physiol. 2000; 279:F626-F635.
    62 Nuedling S, Karas RH, Mendelsohn ME, et al. Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett.2001; 502:103-108.
    63 Ogando D, Farina M, Ribeiro ML, et al. Steroid hormones augment nitric oxide synthase activity and expression in rat uterus. Reprod Fertil Dev.2003; 15:269-274.
    64 Mershon JL, Baker RS, Clark KE. Estrogen increases iNOS expression in the ovine coronary artery. Am J Physiol Heart Circ Physiol.2002; 283:H1169-H1180.
    65 石文磊,孙海文,蒋春雷.糖皮质激素对血压的调节作用及其机制.生理科学进展.2007;38.
    66 Suzuki T, Nakamura Y, MoriyaT, et al. Effects of steroid hormo neson vascular functions. Microsc Res Tech.2003; 60:76-84.
    67 John W. Aldosterone and Mineralocorticoid Receptors in the Cardiovascular System. Funder Cardiovascular Diseases.2010; 52:393-400.
    68 CHUN TAE-YON, BLOEM LJ, PRATT JH. Aldosterone Inhibits Inducible Nitric Oxide Synthase in Neonatal Rat Cardiomyocytes. Endocrinology.144:1712-1717
    69 Kobayashi N, Yoshida K, Nakano S, et al. Cardioprotective mechanisms of eplerenone on cardiac performance and remodeling in failing rat hearts. Hypertension.2006; 47: 671-679.
    70 Komberg RD and Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell.1999; 98:285-294.
    71 Grunstein M. Histone acetylation in chromatin structure and transcription. Nature.1997; 389:349-352.
    72 Kouzarides T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev,1999,9:40-48.
    73 Lee JS, Galvin KM, See RH, et al. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300.Genes Dev.1995; 9: 1188-1198.
    74 Juan LJ, Shia WJ, Chen MH, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem.2000; 275:20436-20443.
    75 Luo J, Su F, Chen D, et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature.2000; 408:377-381.
    76 Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J.2004; 23:2369-2380.
    77 Watamoto K, Towatari M, Ozawa Y, et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene.2003; 22:9176-9184.
    78 Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol.2001; 21:5979-5991.
    79 Lee JS, Galvin KM, See RH, et al. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev.1995; 9: 1188-1198.
    80 Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol.2001; 21:5979-5991.
    81 Susick L, Veluthakal R, Suresh MV, et al. Regulatory roles for histone deacetylation in IL-1 beta-induced nitric oxide release in pancreatic beta-cells. J Cell Mol Med.2008; 12: 1571-83.
    82 Sasahara Y, Mutoh M, Takahashi M, et al. Suppression of promoter-dependent transcriptional activity of inducible nitric oxide synthase by sodium butyrate in colon cancer cells. Cancer Lett.2002; 177:155-61.
    83 Thomsen B, Bendixen C, Westergard O. Histone hyperacetylation is accompanied by changes in DNA topology in vivo. Eur J Biochem.1991; 201:107-111.
    84 Salminen A, Tapiola T, Korhonen P, et al. Neuronal apoptosis induced by histone deacetylase inhibitors. Brain Res Mol Brain Res.1998; 61:203-206.
    85 Siavoshian S, Blottiere HM, Cherbut C, et al. Butyrate stimulates cyclin D and p21 and inhibits cyclindependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem Biophys Res Commun.1997; 232:169-172.
    86 Archer SY, Meng S, Shei A, et al. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA.1998; 95:6791-6796.
    87 赵琳.转化生长因子-β在高血压发生中的作用.医学综述.2004;10
    88 Bogdan C, Vodovotz Y, Xie QW, et al. Immunotherapy of Infections. Masihi, N.,editor. Marcel Dekker; New York:1994. p.37-54.
    89 Vodovotz Y, Bogdan C. Control of nitric oxide synthase expression by transforming growth factor-beta:implications for homeostasis. Prog Growth Factor Res.1994; 5: 341-351.
    90 Vodovotz Y. Control of nitric oxide production by transforming growth factor-betal: mechanistic insights and potential relevance to human disease.Nitric Oxide.1997; 1: 3-17.
    91 Vodovotz Y, Geiser AG, Chesler L, et al. Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor beta 1 null mouse. J Exp Med.1996; 183:2337-2342.
    92 Vodovotz Y, Letterio JJ, Geiser AG, Chesler L, Roberts AB, Sparrow J. Control of nitric oxide production by endogenous TGF-betal and systemic nitric oxide in retinal pigment epithelial cells and peritoneal macrophages. J Leukoc Biol.1996; 60:261-270.
    93 Gilbert RS, Herschman HR.Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types. Biochem Biophys Res Commun.1993; 195:380-384.
    94 Goureau O, Lepoivre M, Becquet F, Courtois Y. Differential regulation of inducible nitric oxide synthase by fibroblast growth factors and transforming growth factor beta in bovine retinal pigmented epithelial cells:inverse correlation with cellular proliferation. Proc Natl Acad Sci USA.1993; 90:4276-4280.
    95 Blanco FJ, Geng Y, Lotz M. Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression.J Immunol.1995; 154:4018-4026.
    96 Hamby ME, Hewett JA, Hewett SJ. TGF-betal potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia.2006; 54: 566-577.
    97 Lee SD, Chu CH, Huang EJ, et al. Roles of insulin-like growth factor II in cardiomyoblast apoptosis and in hypertensive rat heart with abdominal aorta ligation. Am J Physiol Endocrinol Metab.2006; 291:E306-314.
    98 Sun WL, Chen LL, Yan J, et al. Effects of IGF-II on promoting proliferation and regulating nitric oxide synthase gene expression in mouse osteoblast-like cell. J Zhejiang Univ Sci B.2005; 6:699-704.
    99 Begum N, Ragolia L. High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol.2000; 278:C81-91.
    100 Begum N, Ragolia L, Rienzie J, et al. Regulation of mitogen-activated protein kinase phosphatase-1 induction by insulin in vascular smooth muscle cells. J Biol Chem.1998; 273:25164-25170.
    101 Begum N, Song Y, Rienzie J, et al. Vascular smooth muscle cell growth and insulin regulation of mitogen-activated protein kinase in hypertension. Am J Physiol.1998; 275: C42-49.
    102 Martins JO, Ferracini M, Ravanelli N, et al. Insulin suppresses LPS-induced iNOS and COX-2 expression and NF-kappaB activation in alveolar macrophages. Cell Physiol Biochem.2008; 22:279-286.
    103 Ellger B, Langouche L, Richir M, et al. Modulation of regional nitric oxide metabolism: blood glucose control or insulin? Intensive Care Med.2008; 34:1525-1533.
    1 Forstermann U, Li H, Schwarz PM, et al. NO synthesis and NOS regulation.2003; Chapter 7.
    2 Forman HJ, Fukuto J, Torres M, Signal transduction by reactive oxygen and nitrogen species. Kluwer Academic Dordrecht.1997; 119-154.
    3 MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997; 15:323-350.
    4 Kleinert H, Schwarz PM, Forstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol Chem.2003; 384:1343-1364.
    5 Kleinert H, Euchenhofer C, Ihrig-Biedert I, et al. Glucocorticoids inhibit the induction of nitric oxide synthase II by down-regulating cytokine-induced activity of transcription factor nuclear factor-kappa B. Mol Pharmacol.1996; 49:15-21.
    6 Lowenstein CJ, Alley EW, Raval P, et al. Macrophage nitric oxide synthase gene:two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA.1993; 90:9730-9734.
    7 Xie QW, Whisnant R, Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. JExpMed.1993; 177:1779-1784.
    8 Darville MI, Eizirik DL. Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia.1998; 41:1101-1108.
    9 Guo H, Cai CQ, Kuo PC. Hepatocyte nuclear factor-4alpha mediates redox sensitivity of inducible nitric-oxide synthase gene transcription. J Biol Chem.2002; 277:5054-5060.
    10 Kuo PC, Abe KY, Schroeder RA. Oxidative stress increases hepatocyte iNOS gene transcription and promoter activity. Biochem Biophys Res Commun.1997; 234:289-292.
    11 Zhang H, Chen X, Teng X, et al. Molecular cloning and analysis of the rat inducible nitric oxide synthase gene promoter in aortic smooth muscle cells. Biochem Pharmacol.1998; 55: 1873-1880.
    12 Linn SC, Morelli PJ, Edry I, et al. Transcriptional regulation of human inducible nitric oxide synthase gene in an intestinal epithelial cell line. Am J Physiol.1997; 272:1499-1508.
    13 Kolyada AY, Savikovsky N, Madias NE. Transcriptional regulation of the human iNOS gene in vascular-smooth-muscle cells and macrophages:evidence for tissue specificity. Biochem Biophys Res Commun.1996; 220:600-605.
    34 Majano PL, Medina J, Zubia Ⅰ, et al. N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol.2004; 40:632-637.
    15 Taylor BS, Geller DA. Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene. Shock.2000; 13:413-424.
    16 Hausding M, Witteck A, Rodriguez-Pascual F, et al. Inhibition of small G proteins of the rho family by statins or clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II. Br J Pharmacol.2000; 131:553-561.
    17 Rodriguez-Pascual F, Hausding M, Ihrig-Biedert Ⅰ, et al. Complex contribution of the 3'-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J Biol Chem.2000; 275: 26040-26049.
    18 Kristof AS, Marks-Konczalik J, Moss J. Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J Biol Chem. 2001; 276:8445-8452.
    19 Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses. Annu Rev Immunol.1998; 16:225-260.
    20 Taylor BS, de Vera ME, Ganster RW, et al. Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem.1998; 273: 15148-15156.
    21 Sakitani K, Nishizawa M, Inoue K, et al. Synergistic regulation of inducible nitric oxide synthase gene by CCAAT/enhancer-binding protein beta and nuclear factor-kappaB in hepatocytes. Genes Cells.1998; 3:321-30.
    22 Martin E, Nathan C, Xie QW. Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med.1994; 977-84.
    23 Spink J, Evans T. Binding of the transcription factor interferon regulatory factor-1 to the inducible nitric-oxide synthase promoter. J Biol Chem.1997; 272:24417-24425.
    24 Lee SH, Nishino M, Mazumdar T, et al.16-kDa prolactin down-regulates inducible nitric oxide synthase expression through inhibition of the signal transducer and activator of transcription 1/IFN regulatory factor-1 pathway. Cancer Res.2005; 65:7984-7992.
    25 Xiong H, Zhu C, Li H, et al. Complex formation of the interferon (IFN) consensus sequence-binding protein with IRF-1 is essential for murine macrophage IFN-gamma-induced iNOS gene expression. J Biol Chem.2003; 278:2271-2277.
    26 Fujimura M, Tominaga T, Kato I, et al. Attenuation of nitric oxide synthase induction in IRF-1-deficient glial cells. Brain Res.1997; 759:247-250.
    27 Kamijo R, Harada H, Matsuyama T, et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science.1994; 263:1612-1615.
    28 Shiraishi A, Dudler J, Lotz M. The role of IFN regulatory factor-1 in synovitis and nitric oxide production. J Immunol.1997; 159:3549-3554.
    29 Upreti M, Kumar S, Rath PC. Replacement of 198MQMDII203 of mouse IRF-1 by 197IPVEVV202 of human IRF-1 abrogates induction of IFN-beta, iNOS, and COX-2 gene expression by IRF-1. Biochem Biophys Res Commun.2004; 314:737-744.
    30 Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands:the JAK-STAT pathway. Annu Rev Biochem.1995; 64:621-651.
    31 Meraz MA, White JM, Sheehan KC, et al. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell.1996; 84: 431-442.
    32 Nishiya T, Uehara T, Edamatsu H, et al. Activation of Statl and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-gamma-induced MAPK activation that is mediated by p21ras. FEBS Lett.1997; 408: 33-38.
    33 Kleinert H, Euchenhofer C, Fritz G, et al. Involvement of protein kinases in the induction of NO synthase II in human DLD-1 cells. Br J Pharmacol.1998; 123:1716-1722.
    34 Doi M, Shichiri M, Katsuyama K, et al. Cytokine-activated Jak-2 is involved in inducible nitric oxide synthase expression independent from NF-kappaB activation in vascular smooth muscle cells. Atherosclerosis.2002; 160:123-132.
    35 De Stefano D, Maiuri MC, Iovine B, et al. The role of NF-kappaB, IRF-1, and STAT-1 alpha transcription factors in the iNOS gene induction by gliadin and IFN-gamma in RAW 264.7 macrophages.J Mol Med.2006; 84:65-74.
    36 Gao J, Morrison DC, Parmely TJ, et al. An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem.1997; 272:1226-1230.
    37 Teng X, Zhang H, Snead C, et al. Molecular mechanisms of iNOS induction by IL-1 beta and IFN-gamma in rat aortic smooth muscle cells. Am J Physiol Cell Physiol.2002; 282:144-152.
    38 Blanchette J, Jaramillo M, Olivier M. Signalling events involved in interferon-gamma-inducible macrophage nitric oxide generation. Immunology.2003; 108: 513-522.
    39 Ganster RW, Taylor BS, Shao L, et al. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA.2001; 98: 8638-8643.
    40 Bhat NR, Feinstein DL, Shen Q, et al. p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem.2002; 277:29584-29592.
    41 Kolyada AY, Madias NE. Transcriptional regulation of the human iNOS gene by IL-1 beta in endothelial cells. Mol Med.2001; 7:329-343.
    42 Guo Z, Shao L, Feng X, et al. A critical role for C/EBPbeta binding to the AABS promoter response element in the human iNOS gene. FASEB J.2003; 17:1718-20.
    43 Kizaki T, Suzuki K, Hitomi Y, et al. Negative regulation of LPS-stimulated expression of
    inducible nitric oxide synthase by AP-1 in macrophage cell line J774A.1. Biochem Biophys Res Commun.2001; 289:1031-1038.
    44 Kleinert H, Wallerath T, Fritz G, et al. Cytokine induction of NO synthase Ⅱ in human DLD-1 cells:roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways. Br J Pharmacol.1998; 125:193-201.
    45 Marks-Konczalik J, Chu SC, Moss J. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J Biol Chem.1998; 273:22201-22208.
    46 Gough DJ, Sabapathy K, Ko EY, et al. A novel c-Jun-dependent signal transduction pathway necessary for the transcriptional activation of interferon gamma response genes. J Biol Chem. 2007; 282:938-946.
    47 Xu W, Comhair SA, Zheng S, et al. STAT-1 and c-Fos interaction in nitric oxide synthase-2 gene activation. Am J Physiol Lung Cell Mol Physiol.2003; 285:137-148.
    48 Feinberg MW, Watanabe M, Lebedeva MA, et al. Transforming growth factor-betal inhibition of vascular smooth muscle cell activation is mediated via Smad3. J Biol Chem.2004; 279: 16388-16393.
    49 Feinberg MW, Cao Z, Wara AK, et al. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem.2005; 280:38247-38258.
    50 Geller DA, Lowenstein CJ, Shapiro RA, et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA.1993; 90: 3491-3495.
    51 de Vera ME, Shapiro RA, Nussler AK, et al. Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines:initial analysis of the human NOS2 promoter. Proc Natl Acad SciU SA.1996; 93:1054-1059.
    52 Linker K, Pautz A, Fechir M, et al. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 2005; 33:4813-4827.
    53 Soderberg M, Raffalli-Mathieu F, Lang MA. Inflammation modulates the interaction of heterogeneous nuclear ribonucleoprotein (hnRNP) I/polypyrimidine tract binding protein and hnRNP L with the 3'untranslated region of the murine inducible nitric-oxide synthase mRNA. Mol Pharmacol.2002; 62:423-431.
    54 Brennan CM, Steitz JA. HuR and mRNA stability. Cell Mol Life Sci.2001; 58:266-277.
    55 Misquitta CM, Iyer VR, Werstiuk ES, et al. The role of 3'-untranslated region (3'-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol Cell Biochem.2001; 224: 53-67.
    56 Mitchell P, Tollervey D. mRNA stability in eukaryotes. Curr Opin Genet Dev.2000; 10: 193-198.
    57 Pautz A, Linker K, Altenhofer S, et al. Similar regulation of human inducible nitric-oxide synthase expression by different isoforms of the RNA-binding protein AUF1. J Biol Chem. 2009; 284:2755-2766.
    58 Luss H, Li RK, Shapiro RA, et al. Dedifferentiated human ventricular cardiac myocytes express inducible nitric oxide synthase mRNA but not protein in response to IL-1, TNF, IFNgamma, and LPS. J Mol Cell Cardiol.1997; 29:1153-1165.
    59 Vodovotz Y, Bogdan C, Paik J, et al. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med.1993; 178:605-613.
    60 Kunz D, Walker G, Eberhardt W, et al. Molecular mechanisms of dexamethasone inhibition of nitric oxide synthase expression in interleukin 1 beta-stimulated mesangial cells:evidence for the involvement of transcriptional and posttranscriptional regulation. Proc Natl Acad Sci USA. 1996; 93:255-259.
    61 Jang BC, Sung SH, Park JG, et al. Leptomycin B, a metabolite of Streptomyces, inhibits the expression of inducible nitric oxide synthase in BV2 microglial cells. Int J Oncol.2006; 29: 1509-1515.
    62 Musial A, Eissa NT. Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J Biol Chem.2001; 276:24268-24273.
    63 Felley-Bosco E, Bender FC, Courjault-Gautier F, et al. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc Natl Acad Sci US A.2000; 97:14334-14339.
    64 Chan GC, Fish JE, Mawji IA, et al. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol. 2005; 175:3846-3861.
    65 Ara Al, Xia M, Ramani K, et al. S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation.Hepatology.2008; 47:1655-1666.
    66 Yu Z, Kone BC. Hypermethylation of the inducible nitric-oxide synthase gene promoter inhibits its transcription. J Biol Chem.2004; 279:46954-46961.
    67 Rose JL, Huang H, Wray SF, et al. Integrin engagement increases histone H3 acetylation and reduces histone H1 association with DNA in murine lung endothelial cells. Mol Pharmacol. 2005; 68:439-446.
    68 Susick L, Veluthakal R, Suresh MV, et al. Regulatory roles for histone deacetylation in IL-1 beta-induced nitric oxide release in pancreatic beta-cells. J Cell Mol Med.2008; 12: 1571-1583.
    69 Yu Z, Kone BC. Targeted histone H4 acetylation via phosphoinositide 3-kinase-and p70s6-kinase-dependent pathways inhibits iNOS induction in mesangial cells. Am J Physiol Renal Physiol.2006; 290:496-502.
    70 Granja AG, Sabina P, Salas ML, et al. J Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/ReIA acetylation and p300 transactivation. Virol.2006; 80:10487-10496.
    71 Yu Z, Zhang W, Kone BC. Histone deacetylases augment cytokine induction of the iNOS gene. J Am SocNephrol.2002; 13:2009-2017.
    72 Guo L, Guo H, Gao C, et al. Statl acetylation inhibits inducible nitric oxide synthase expression in interferon-gamma-treated RAW264.7 murine macrophages. Surgery.2007; 142: 156-162.
    73 Singh A, Sventek P, Lariviere R, et al. Inducible nitric oxide synthase in vascular smooth muscle cells from prehypertensive spontaneously hypertensive rats. Am J Hypertens.1996; 9: 867-877.
    74 Miyamoto Y, Saito Y, Kajiyama N, et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension.1998; 32:3-8.
    75 Hong HJ, Loh SH, Yen MH. Suppression of the development of hypertension by the inhibitor of inducible nitric oxide synthase. Br J Pharmacol.2000; 131:631-637.
    76 Glenn CL, Wang WY, Morris BJ. Different frequencies of inducible nitric oxide synthase genotypes in older hypertensives. Hypertension.1999; 33:927-932.
    77 Fu L, Zhao Y, Lu J, et al. Functional single nucleotide polymorphism-1026C/A of inducible nitric oxide synthase gene with increased YY1-binding affinity is associated with hypertension in a Chinese Han population. J Hypertens.2009; 27:991-1000.
    78 Li W, Liu H, Fu L, et al. Identification of Yin Yang 1-interacting partners at-1026C/A in the human iNOS promoter.Arch Biochem Biophys.2010 Apr 27. [Epub ahead of print.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700