用户名: 密码: 验证码:
黄土高原小流域典型坝地土壤水分和泥沙空间分布特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原水土流失是世界瞩目的生态环境问题,其水土保持影响到我国黄土高原地区的农业发展,生态环境以及黄河两岸安全等等。为了保持水土,黄土高原大面积打坝淤地。坝地不仅可以控制水土流失,也可以作为种植作物的农田。截止到2003年,在黄土高原地区已经建成淤地坝11.35万座,形成了3,340 km2的坝地,淤积了2.1×1010 m3的泥沙,控制的坡地面积达9,247 km2。按照《黄河流域黄土高原地区水土保持淤地坝规划》,到2020年底前,黄土高原地区的坝地面积将翻一番。因此,加强对坝地相关科学问题研究,显得非常紧迫和重要。
     鉴于黄土高原淤地坝坝地的土壤水分和泥沙研究对粮食生产、坝体安全、防洪,以及人畜用水的重要性,本论文以黄土高原六道沟小流域的几座典型坝地为研究对象,基于野外试验观测,结合地统计学方法、经典统计、模型模拟等手段,对坝地土壤水分和泥沙分布特征进行了研究,探讨了坝地土壤水分、泥沙、植物多样性、地上生物量等之间的相关关系,坝地表层和浅层土壤水分变化规律,表层土壤容重和饱和导水率分布特征等问题,得到了以下的主要研究成果:
     (1)淤地坝坝地表层(0-6 cm)土壤水分具有很好的空间结构性,高斯模型可以很好的拟合其半方差函数的实际值,但其空间分布具有各向异性,主要呈带状分布。普通Kriging插值和序贯高斯条件模拟可以很好的表现坝地表层水分的空间分布特征。在坝地样带上的表层土壤水分研究也表明其有很好的空间结构,结果表明坝地样带上的土壤水分采集可以采用2 m的采样间距。
     (2)坝地由多种异质土壤组成,本论文中研究中的两座坝地有四种质地的土壤组成:砂壤土、粉质壤土、壤质砂土和砂土,并且土壤呈现层状分布,这对土壤水分分布和运移造成了很大的影响。在坝地,土壤水分会因为和土壤颗粒的相关性呈现层状分布,土壤水分入渗的时候会形成漏斗流。正因为优先流的存在,使得坝地土壤水分入渗过程中的湿润锋不稳定。通过空间相关性分析,层状水流的速度可以达到7 m/天,比垂直入渗的速度(0.3 m/天)快。但这只是在降雨后的第一天和特定的降雨条件、坝地环境下,因此这个速度并不是固定不变的。
     (3)Pearson分析表明坝地表层土壤的饱和导水率和土壤质地、饱和含水量、土壤容重等显著相关。坝地中部的饱和导水率最大,这是因为粗泥沙的沉积和频繁的动物活动。而坝体前离淤积最远处的饱和导水率最小,这主要是因为颗粒的沉降规律:细颗粒会随着径流在较远的地方沉积。
     (4)坝地土壤颗粒组成具有很好的单一分形特征,分形维和土壤质地呈S型曲线关系。但是多重分形分析方法的应用受到限制,可能是因为坝地土壤颗粒组成内部信息混乱。通过对14个颗粒组成参数模型的适用性评价,结果表明二参数的Weibull模型可以用来坝地土壤颗粒分布的估测和插值。
     (5)淤地坝坝地除了保持水土,固碳外,还能保持植物多样性。坝地内物种和控制坡地上的基本相同。在土壤物理性指标中,土壤水分和砂粒含量是影响植物多样性最重要的两个指标,前者为显著负相关,而后者为显著正相关(P<0.05)。
     坝地表层土壤水分具有空间相关性,这意味着Kriging插值,自相关模型等都可以用于表层水分研究以获得更多的信息。坝地内发生优先流可能会携带病毒、杀虫剂或者除草剂等进入浅层地下水体,从而污染地下水。层状流也因为其相对较快的运动速度,应引起足够的重视。坝地土壤水分除了接受天然降雨外,汇集坡面径流势必造成其水分运动活跃。土壤扰动会增加饱和导水率,加强未耕作坝地的扰动是增强坝地防洪能力的一个措施。作为一个新环境,注重坝地内的物种多样性,也是保护生态环境的一个重要方面。有研究表明,适度放牧和割草有利于物种多样性保护,因此,坝地内可以进行适当的放牧和割草以保护其植物生物多样性。
     坝地的土壤水分和泥沙特征对于淤地坝环境影响评价、坝地粮食种植以及人畜用水安全都有重要影响,同时对其研究也能对淤地坝建设规划有所帮助和启示。本文在野外试验研究的基础上,研究了坝地水分和泥沙等的科学问题,以期对黄土高原淤地坝坝地科学问题的研究,以及土壤水分和泥沙相关问题的探索深入等提供借鉴,对小流域坝地的利用和农业生产提供一定的指导。在整个黄土高原进行淤地坝坝地碳累积,粮食产量研究、淤地坝坝地对地下水水质水量的影响,以及控制泥沙和植被的关系等,应该是淤地坝科学问题研究的方向之一。
The Loess Plateau of China was more famous with the most serious soil loss in the world than the biggest area. Lots of check-dams were built to hold sediment and conserve water widely and quickly. As a consequence, the widespread dam farmlands, which were believed to be to the last barrier to control soil and water losses, were formed quickly due to the serious soil and water losses. In addition, the dam farmland also can be grown plant to increase the crop yield with higher value than the sloping farmland. By 2002, there were about 113,500 check-dams which formed 3,340 km2 dam farmland, held 2.1×1010 m3 of sediments, and controlled 9,247 km2 drainage areas on the Loess Plateau of China. The number of check-dams and the area of dam farmlands are expected to be doubled by 2020. Many plans also showed that more check-dam should be built to conserve the soil and water for their great achievement. Consequently, it is necessary to pay more attention to the dam farmland for the aim of serving agriculture production and ecological protection.
     The spatial distribution of the soil water content and sediment in the dam farmland is very important to the crop yield, flood control, and water consuming and so on. The objectives of this dissertation were to explore the spatial distribution of soil water content and sediment in the dam farmlands. The study dam farmland located in the Liudaogou catchment of the northwest of Shaanxi province. The soil water content was measured by neutron tube and soil auger. The soil textures of the samples were measured by Mastersizer2000. Classic and geostatistic tools were combined to study the soil water content in the dam farmlands. In addition, fractal theory and parametric model were also introduced to study the soils taken from the dam farmlands.
     The major results of the present study in the dam farmland on the Loess Plateau of China are listed below:
     (1) The soil water content (0-6 cm) of the surface layer showed good spatial structure in the dam farmland. Gaussan model could fit the semivariance well. However, the semivariance showed anisotropism. The results showed that the Kriging and condition simulation could be well used in the study of soil water content of surface layer in the dam farmland.
     (2) The soil texture in the study dam farmland included silt loam, sandy loam, loamy sand, and sand. The soil water contents showed layered distribution corresponding to the particle size. The funnel flow was only found in the shallow soils with layered soil structure of the dam farmland after rainfall. The instability of an unsaturated wetting front as it passes from fine to coarse layers was demonstrated in the dam farmland. The soil water moved laterally in the dam farmland proved by the spatial correlation analysis. However, the water movement mainly happened on the first day after rainfall with a velocity of about 7 m day-1 which was quicker than the infiltration rate.
     (3) Analysis using Pearson correlation coefficients showed that the spatial variation in KS (at the observation scale) was significantly correlated with the spatial distributions of soil texture, saturated water content, and bulk density at both the filled dam farmland and the silting dam farmland under natural silting conditions. The areas with lowest KS values corresponded to the areas with the highest clay content, silt content, and saturated water content, indicating that the uplands of the dam farmlands are more prone to surface runoff. The area with the highest KS value was found at the middle portion of the dam farmlands with relative higher sand content and bulk density values (not the highest) which can benefit floodwater and runoff control.
     (4) The relationship between fractal feature and soil texture of the soils in dam farmlands was shown by sigmoid curve. However, the multifractal tool was invalid to predication soil degradation or soil desertification for the disordered intrinsic particle-size information. In addition, Weibull model was recommended to interpolate the soil particle-size distribution for the soils in the dam farmlands from the comparison among 14 models.
     (5) The dam farmlands without tillage contributed to the plant biodiversity. The plant species in dam farmland was similar with the sloping land. The collected data showed that soil water and sand fraction were important determinants of plant species. The local environment condition was very important for the establishment of the biodiversity in dam farmland.
     Some methods related to auto-correlation could be used to study topsoil water content for exploring more information. The existence of wetting front instability, carrying water rapidly and deeply in layered soils, might have great practical importance to the hydrologic process and environment protection. Not only the preferential flow, but also the layered water flow should be considered in case of possible contamination in the dam farmland. More attention should be paid to the preferential flow and layered flow aiming at water resource management and contamination control. As the water cycling of the dam farmland was more active due to the acceptation of runoff, the protection and the study was more urgent and important. Moreover, our results suggest focusing on environmental site conditions in order to better explain plant diversity in dam farmland. To the forage resource in filled dam farmland without tillage should be given more attention for it is an additional and potential resource. To encourage the local farmers to graze at a low stocking rate in dam farmland of no tillage could contribute to the biodiversity. If the terrain of dam farmland is too steep to decline the accessibility, advisable mowing is also encouraged.
     The spatial distribution of soil water and sediment content in the dam farmlands had important effects on the environmental impact assessment of check-dam, crop yield, water quality, and the layout of the check-dam. Based on the field observation, a little work about the soil water and sediment in the dam farmland was studied. The results were expected to be helpful on the related research about dam farmland. However, some science problems were still unclear, such as the accumulation of soil organic carbon, crop yield, the quality and quantity of the groundwater, the transport of the chemicals, and the relationship between sediment control and vegetation in the dam farmland. Those may be the direction of the study on the dam farmland in the future.
引文
[1]孟庆枚.黄土高原水土保持[M].郑州:黄河水利出版社. 1996.
    [2] Kaiser J. Wounding earth's fragile skin [J]. Science, 2004, 304:1616-1618.
    [3]邵明安,郭忠升,夏永秋,王延平.黄土高原土壤水分植被承载力研究[M].科学出版社. 2009: 46-79.
    [4]王礼先.水土保持工程学[M].北京:中国林业出版社. 2000.
    [5]高照良,张晓萍.黄土高原地区淤地坝建设及其规划研究[M].北京:中央文献出版社. 2007.
    [6]张红娟,延军平,周立花,等.黄土高原淤地坝对水资源影响的初步研究-以绥德县韭园沟典型坝地为例[J].西北大学学报(自然科学版), 2007, 37(3):475-478.
    [7]王治国,胡振华,段喜明,王春红.黄土残塬区沟坝地淤积土壤特征比较研究[J].水土保持学报, 1999, 5:22-27,61.
    [8]毕银丽,王百群,郭胜利,余存祖.黄土丘陵区坝地系统土壤养分特征及其与侵蚀环境的关系:Ш坝系土壤粒径分布及各粒径的养分状况[J].土壤侵蚀与水土保持学报, 1997, 3:37-43.
    [9]毕银丽,王百群,郭胜利,余存祖.黄土丘陵区坝地系统土壤养分特征及其与侵蚀环境的关系:Ⅰ坝地土壤的理化性质及其数值分析[J].土壤侵蚀与水土保持学报, 1997, 3:1-9.
    [10]李勇,白玲玉.黄土高原淤地坝对陆地碳贮存的贡献[J].水土保持学报, 2003, 17(2):1-4.
    [11] Stallard R. Terrestrial sedimentation and the carbon cycle: Coup ling w eathering and erosion to carbon burial [J]. Global Biogeochemical Cycles, 1998, 12:231-252.
    [12] Schlesinger W., J Andrews. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48:7-20.
    [13]刘家宏,王光谦.基于数字流域的淤地坝减水减沙效果模拟[J].中国水土保持, 2006, 8:20-22.
    [14]李靖,郑新民.淤地坝拦泥减蚀机理和减沙效益分析[J].水土保持通报, 1995, 15:33-37.
    [15]刘勇,冉大川,罗全华等.晋西北地区淤地坝减洪减沙效益分析[J].水土保持通报, 1997, 17:30-34.
    [16]方学敏,万兆慧,匡尚富.黄河中游淤地坝拦沙机理及作用[J].水利学报, 1998, 10:49-53.
    [17]焦菊英,王万忠,李靖,郑宝明.黄土高原丘陵沟壑区淤地坝的淤地拦沙效益分析[J].农业工程学报, 2003, 19:302-306.
    [18]高照良,张晓萍.黄土高原地区淤地坝建设及其规划研究[M].北京:中央文献出版社. 2007.
    [19]魏霞,李占斌,沈冰,等.陕北子洲县典型淤地坝淤积过程和降雨关系的研究[J].农业工程学报, 2006, 22:80-84.
    [20] Castillo V. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain) [J]. Catena, 2007.
    [21] Lenzi M., F. Comiti. Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern Italy [J]. Geomorphology, 2002, 45:243-260.
    [22] Boix-Fayos C., G. Barberá, López-Bermúdez. F., V. Castillo. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia,Spain) [J]. Catena, 2007, 91:103-123.
    [23] Romero-Díaz A., F. Alonso-Sarriá, M. Martínez-Lloris. Erosion rates obtained from check-dam sedimentation(SE Spain). A multi-method comparision. [J]. Catena, 2005, 5:1-7.
    [24] Muralidharan D., R. Andrade, R. Rangarajan. Evaluation of check-dam recharge through water-table response in ponding area [J]. Current Science, 2007, 92:1350-1352.
    [25] Rao M., R. Adhikari, S. Chitteranjan, M. Chandrappa. Influence of conservation measures on groundwater regime in a semi arid tract of south India [J]. Agicurlture water management 1996, 30:301-312.
    [26]唐克丽,侯庆春,王斌科,张平仓.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J].中国科学院水利部西北水土保持研究所集刊, 1993, 18:2-15.
    [27] Kettler T., J. Doran, T. Gilbert. Simplified method for soil particle-size determination to accompany soil quality analysis [J]. Soil Sci. Soc. Am. J., 2001, 65:849-852.
    [28] Jennifer M. Jacobsa Binayak P. Mohantyb, En-Ching Hsuc, Douglas Miller. SMEX02: Field scale variability, time stability and similarity of soil moisture [J]. Remote Sensing of Environment, 2004, 92:436-446.
    [29] Rossi R., D. Mulla. Geostatistical tools for modeling and interpreting ecological spatial dependence [J]. Ecol. Monogr., 1992, 62:277-314.
    [30]王政权.地统计学及在生态学中的应用[M].北京:科学出版社. 1999.
    [31] Nielsen D., J. Bouma. Soil spatial variability [M]. Pudoc Wageningen. 1985: 2-30.
    [32] Cambardella C., T. Mooman, J. Novak, T. Parkin, D. Karlem, R. Turvo, A. Konopa. Field scale variability of soil properties in central lowa soil [J]. Soil Sci. Soc. Am. J., 1994, 47:1501-1511.
    [33] Hu W., M. Shao, Q. Wang, K. Reichardt. Soil water content temporal-spatial variablity of the surface layers of a Loess Plateau hillside in China [J]. Sci Agr, 2008, 65:277-289.
    [34]李保国,胡克林,陈德立,White R.农田土壤表层饱和导水率的条件模拟[J].水利学报, 2002, 2:36-40.
    [35] Journel A. Geostatistics for conditional simulation of ore bodies [J]. Economic Geoogy, 1974, 69(673-678).
    [36]魏孝荣,邵明安.黄土沟壑区小流域土壤PH值的空间分布及条件模拟[J].农业工程学报, 2009, 25:61-67.
    [37]王云强,张兴昌,韩凤朋.黄土高原淤地坝土壤性质剖面变化规律及其功能探讨[J].环境科学, 2008, 29:1020-1026.
    [38] Miyazaki T. Water flow in unsaturated soil in layered slopes [J]. Journal of Hydrology, 1988, 102:201-214.
    [39] Samani Z., A. Cheraghi, L. Willardson. Water movement in horizontally layered soils [J]. Journal of Irrigation and Drainage Engineering, 1989, 115(449-456).
    [40] Stephens D., Jr. Robert Knowlton. Soil water movement and recharge through sand at a semiarid site in New Mexico [J]. Water Resources Research, 1986, 22:881-889.
    [41]佘冬立.黄土高原水蚀风蚀交错带小流域植被恢复的水土环境效应研究[D].杨凌:中国科学院教育部水土保持与生态环境研究中心, 2009,博士.
    [42]胡伟.黄土高原小流域土壤含水量与饱和导水率的时空变异[D].北京:中国科学院地理科学与资源研究所, 2009,博士.
    [43] Heilig A., T. Steenhuis, M. Walter, Herbert S. Funneled flow mechanisms in layered soil: field investigations [J]. Journal of Hydrology, 2003, 279:210-223.
    [44] Walter M.T., J.-S. Kim, T.S. Steenhuis. Funneled flow mechanism in a sloping layered soil: Laboratory investigation. [J]. Water Resour. Res. , 2000, 36:841-849.
    [45] Campbell R., C. Phene. Tillage, matric potential, oxygen and millet yield relations in a layered soil [J]. Transactions of the ASAE, 1977, 20:271-275.
    [46] Leij F., J. Dane, M. Van Genuchten. Mathematical analysis of one-dimensional solute transport in a layered soil profile [J]. Soil Science Society of America Journal, 1991, 55:944-953.
    [47] Hill D., J. Parlange. Wetting front instability in layered soils [J]. Soil Science Society of America Journal, 1972, 36:697-702.
    [48] Starr J., H. Deroo, C. Frink, J. Parlange. Leaching characteristics of a layered field soil [J]. Soil Science Society of America Journal, 1978, 42:386-391.
    [49] Miller D., W. Gantzer. Water infiltration into stratified soil [J]. Soil Science Society of America Journal, 1962, 26:115-119.
    [50] Ritsema C., T. Steenhuis, J. Parlange, L Dekker. Predicted and observed finger diameters in field soils [J]. Geoderma, 1996, 70:185-196.
    [51] Berndtsson R., H. Chen. Variability of soil water content along a transect in a desert area [J]. J Arid Environ, 1994, 27:127- 139.
    [52] Pierce F., P. Nowak. Aspects of precision agriculture [J]. Adv. Agron., 1999, 67:1-85.
    [53] Anselin L. Local indicators of spatial assosiation [J]. Geographical Analysis, 1995, 27:93-115.
    [54] Tobler W. Cellular geography. In Gale, S., Olsson, G. (Eds.), Philosophy in Geography [M]. Reidel, Dordrecht. 1979: 379-386.
    [55] Cliff A., J. Ord. Spatial processes [M]. London: Pion. 1981: 266.
    [56] Moret D., J.L. Arrue, M.V. Lopez, R. Gracia. Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain) [J]. Agricultural Water Management, 2006, 82:161-176.
    [57] Shah T., D. Molden, R. Sakthivadivel, D. Seckler. The global groundwater situation: Overview of opportunities and challenges. [M]. Colombo, Sri lanka: International Water Management Institute 2000.
    [58] Hebrard O., M. Voltz, P. Andrieux, R. Moussa. Spatio-temporal distribution of soil surface moisture in a heterogeneously farmed Mediterranean catchment [J]. Journal of Hydrology, 2006, 329:110-121.
    [59] Bell K., Blanchard, B., Schmugge, T., Witczak, M. . Analysis of surface moisture variations within large-field sites [J]. Water Resour Res, 1980, 16:796-810.
    [60] Western A., G. Bl?schl, R. Grayson. Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment [J]. Journal of Hydrology, 1998, 205:20-37.
    [61] Feng Q., T. Liu, M. Mikami. Geostatistical analysis of soil moisture variability in grassland [J]. J. Arid Environ., 2004, 58:357-372.
    [62] Wendroth O., H. Reuter, Kersebaum K. Predicting yield of barley across a landscape: astate-space modeling approach [J]. Journal of Hydrology, 2003, 272:250-263.
    [63] Klute A., C. Dirksen. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of soil analysis [M]. SSSA Book Ser. No. 5. Madison: SSSA. 1986: 687-734.
    [64] Braun P., T. Molnar, H. Kleeberg. The problem of scaling in grid-related hydrological process modeling [J]. Hydrol Process, 1997, 11:1219-1230.
    [65] Pardini G. Fractal scaling of surface roughness in artificially weathered smectite-rich soil regoliths [J]. Geoderma, 2003, 117:157-167.
    [66] Zhou X., N. Persaud, H. Wang. Periodicities and scaling parameters of daily rainfall over semi-arid Botswana [J]. Ecol Model, 2004, 182:371-378.
    [67] Teverovsky V., M. Taqqu. Testing for long-range dependence in the presence of shifting means or a slowly declining trend, using a variance-type estimator [J]. J Time Series Anal, 1997, 18:279 - 304
    [68] Lee C. Multifractal characteristics in air pollutant concentration time series [J]. Water Air Soil Pollut, 2002, 135:389-409.
    [69] Rossi R., D. Mulla, A. Journel, A. Franz. Geostatistics tools for modeling and interpreting ecological spatial dependence. [J]. Ecol. Monogr., 1992, 62:277-314.
    [70] Mckenzie N., P. Ryan. Spatial prediction of soil properties using environmental correlation [J]. Geoderma, 1999, 89:67-94.
    [71] Young R. Characteristics of eroded sediment [J]. Trans ASAE, 1980, 23:1139 - 1142, 1146.
    [72] Mcbratney A.B. . Some considerations on methods for spatially aggregating and disaggregating soil information [J]. Nutrition Cycling Agroecosyst, 1998, 50:51-62.
    [73] Sobieraj J.A., H. Elsenbeer, G. Cameron. Scale dependency in spatial patterns of saturated hydraulic conductivity [J]. Catena, 2004, 55:49-77.
    [74] Zeleke T., B. Si. Scaling Relationships between Saturated Hydraulic Conductivity and Soil Physical Properties [J]. Soil Sci. Soc. Am. J., 2005, 69:1961-1702.
    [75] Ersahin S., A.R. Brohi. Spatial variation of soil water content in topsoil and subsoil of a Typic Ustifluvent [J]. Agricultural Water Management, 2006, 83(79-86).
    [76] Hills T.C., S.G. Reynolds. Illustrations of soil moisture variability in selected areas and plots of different sizes [J]. Journal of Hydrology, 1969, 8(27-47).
    [77] Robinson M., T.J. Dean. Measurement of near surface soil water content using a capacitance probe [J]. Hydrological Processes, 1993, 7:77-86.
    [78] Blanco-Canqui H., C. Gantzer, S. Anderson, E. Alberts, F. Ghidey. Saturated Hydraulic Conductivity and Its Impact on Simulated Runoff for Claypan Soils [J]. Soil Sci. Soc. Am. J., 2002, 66:1596-1602.
    [79]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社. 2006: 2-30.
    [80] Tabachnick B., L. Fidell. Using multivariate statistics (3rd ed.) [M]. New York: Harper Collins. 1996.
    [81] Massey F. The Kolmogorov-Smirnov test of goodness of fit [J]. J Am Stat Assoc, 1951, 46:1-70.
    [82] Lai R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304:1623-1626.
    [83] Morkoc F., J.W. Biggar, D. Nielsen, D.E. Rolston. Analysis of soil water content and temperature using state-space approach [J]. Soil Science Society of America Journal, 1985, 49:798-803.
    [84] Shumway R., J.W. Biggar, F. Morkoc, M. Bazza, D. Nielsen. Time- and frequency-domain analyses of field observations [J]. Soil Science 1989, 147:286-298.
    [85] Nielsen D., M. Alemi. Statistical opportunities for analyzing spatial and temporal heterogeneity of field soils [J]. Plant Soil, 1989, 115:285-296.
    [86] Wendroth O., Al-Omran A., C. Kirda, K. Reichardt, D. Nielsen. State-space approach to spatial variability of crop yield [J]. Soil Science Society of America Journal, 1992, 56:801-807.
    [87] Li H., R. Lascano, J. Booker, L. Wilson, K. Bronson. Cotton lint yield variability in a heterogeneous soil at a landscape scale [J]. Soil Tillage Research, 2001, 58:245-258.
    [88] Vachaud G., A. Passerat De Silans, P. Balabanis, M. Vauclin. Temporal stability of spatially measured soil water probability density function [J]. Soil Sci. Soc. Am. J., 1985, 49:822-828.
    [89] Kachanoski R., E. De Jong. Scale dependence and the temporal persistence of spatial patterns of soil water storage [J]. Water Resource Research, 1988, 24:85-91.
    [90] Tallon L., B. Si. Representative soil water benchmarking for environmental monitoring [J]. Journal of Environmental Informatics, 2003, 1:581-590.
    [91] Guber A., T. Gish, Y. Pachepsky, M. Van Genuchten, C. Daughtry, T. Nicholson, R. Cady. Temporal stability in soil water content patterns across agricultural fields [J]. Catena, 2008, 73:125-133.
    [92] Grayson R.B., A.W. Western. Towards areal estimation of soil water content from pointmeasurements: Time and space stability of mean response [J]. Journal of Hydrology, 1998, 207:68-82.
    [93] Mohanty B.P., T.H. Skaggs. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation [J]. Advances in Water Resources, 2001, 24:1051-1067.
    [94] Reichardt K., O. Bacchi, M. Villagra, A. Turatti, A. Pedrosa. Hydraulic variability in space and time in a dark red latosol of the tropics [J]. Geoderma, 1993, 60:159-168.
    [95] Wang D., B. Fu, W. Zhao, H. Hu, Y. Wang. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China [J]. Catena, 2008, 72:29-36.
    [96] Shumway R., D. Stoffer. Time series analysis and its applications with R examples [M]. Second edition ed. New York: Springer Science+Business Media. 2006: 174-258.
    [97] Kalman R. A new approach to linear filtering and prediction problems [J]. Trans ASME J. Basic Eng., 1960, 82:35-45.
    [98] Kalman R., R. Bucy. New results in filtering and prediction theory [J]. Trans ASME J. Basic Eng., 1961, 83:95-108.
    [99] Timm L. Reichardt, K., Oliverira, J., Et Al. State-space approach to evaluate the relation between soil physical and chenmical properties [J]. R. Bras. Ci. Solo, 2004, 28:49-58.
    [100] Hu W., M. Shao, Q. Wang, K. Reichardt. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed [J]. Catena, 2009, 79:72-82.
    [101] Millán H., M. González-Posada, M.J. Aguilar, Et Al. On the fractal scaling of soil data. Particle-size distributions [J]. Geoderma, 2003, 117:117-128.
    [102] Su Y., H. Zhao, W. Zhao, T. Zhang. Fractal feartures of soil particle size distribution and the implication for indicating desertification [J]. Geoderma, 2004, 122:43-49.
    [103] Montero E. Rényi dimensions analysis of soil particle-size distributions [J]. Ecological Modelling, 2005, 182:305-315.
    [104]徐明权,汪岗.加快黄土高原地区淤地坝的建设[J].人民黄河, 2000, 22:26-28.
    [105] Ampontuah E., J. Robinson, S. Nortcliff. Assessment of soil particle redistribution on two contrasting cultivated hillslopes [J]. Geoderma, 2006, 132:324-343.
    [106] Tyler S., S. Wheatcraft. Application of fractal mathematics to soil water retention estimation [J]. Soil Science Society of America Journal, 1989, 53:987-996.
    [107] Tyler S., S. Wheatcraft. Fractal scaling of soil particle-size distribution: Analysis and limitation [J]. Soil Science Society of America Journal, 1992, 56:362-369.
    [108] Rasian V., E. Perfect, B. Kay. Linear and nonlinear estimates of fractal dimension for soil aggregate fragmentation [J]. Soil Science Society of America Journal, 1995, 59:83-87.
    [109] Perrier E., N. Bird, M. Rieu. Generalizing the fractal model of soil structure: The pore-solid fractal approach [J]. Geoderma, 1999, 88:137-164.
    [110] Bird N., E. Perrier, M. Rieu. The water retention function for a model of soil structure with pore and solid fractal distributions [J]. European Journal Soil Science, 2000, 5:55-63.
    [111]王德,傅伯杰,陈利顶,赵文武,汪亚峰.不同土地利用类型下土壤粒径分形分析-以黄土丘陵沟壑区为例[J].生态学报, 2007, 27:3081-3089.
    [112] Posadas A., D. Giménez, M. Bittelli, C. Vaz, M. Flury. Multfractal characterizaion of soil particle-size distributions [J]. Soil Sci. Soc. Am. J., 2001, 65:1361-1367.
    [113] Hwang S. Effect of texture on the performance of soil particle-size distribution models [J]. Geoderma, 2004, 123:363-371.
    [114]赵爱辉,黄明斌,史竹叶.土壤颗粒分布参数模型对黄土性土壤的适应性评价[J].农业工程学报, 2008, 24:1-6.
    [115] Hwang S. Effect of texture on the performance of soil particle-size distribution models [J]. Geoderma, 2004, 123:363-371.
    [116] Munkhohn L., E. Perfect. Brittle fracture of soil aggregates:Weibull models and methods of parameter estimation [J]. Soil Sci. Soc. Am. J. , 2005, 69:1565-1571.
    [117] Phoa F., Y. Pan, H. Xu. Analysis of supersaturated designs via the Dantzig selector [J]. Journal of Statistical Planning and Inference, 2009, 139:2362-2372.
    [118] Nemes A., J. Wosten, A. Lilly, Et Al. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases [J]. Geoderma, 1999, 90:187-202.
    [119] Wu Q., M. Borkovec, H. Sticher. On particle-size distributions in soils [J]. Soil Science Society of America Journal, 1993, 57:883-890.
    [120] Bittelli M., G. Campbell, M. Flury. Characterization of particle-size distribution in soils with a fragmentation model [J]. Soil Sci. Soc. Am. J., 1999, 63:782-788.
    [121]刘雪梅.土壤粒径分布的多重分形描述[J].安徽农业科学, 2008, 36:10557-10559.
    [122] Jaky J. . Soil mechanics [M]. Hungarian: Eyomada. 1944.
    [123] Skaggs T., L. Arya, P. Shouse, B. Mohanty. Estimating particle-size distribution from limited soil texture data [J]. Soil Sci. Soc. Am. J., 2001, 65:1038-1044.
    [124] Weibull W. . A statistical distribution function of wide application [J]. Journal of Applied Mechanics, 1951, 3:293-297.
    [125] Morgan P., L. Hercer, N. Flodin. General model for nutritional responses of higher organisms [J]. Proceedings of the National Academy of Science, 1975, 42:4327-4331.
    [126] Haverkamp R., J. Parlange. Predicting the water-retention curver from particle-size distribution-I: sandy soils without organic matter [J]. Soil Science of America Journal, 1986, 142:325-339.
    [127] Da Silva E. Comparison of mathematical models for particle-size distribution curves [J]. Esq. Agropec. Bras. Abr., 2004, 39:363-370.
    [128] Fredlund M., D. Fredlund, G. Wuilson. An equation to represent grain-size distribution [J]. Canadian Geotechnical Journal, 2000, 37:817-827.
    [129] Peters R., T. Nakashizuka, T. Ohkubo. Regeneration and development in beech-dwarf bamboo forest in Japan [J]. For Ecol Manage, 1992, 55:35-50.
    [130] Sala O.E., W.K. Lauenroth, S.J. Mcnaughton, G. Rusch, X. Zhang. Biodiversity and ecosystem functioning in grasslands. In: H. A. Mooney, J. H. Cushman, E. Medina, O. E. Sala, E.D. Schulze, eds. p. 129-149 in Functional roles of biodiversity. A global perspective [M]. Chichester, U.K.: Wiley. 1996.
    [131] Smith M.D., A.K. Knapp. Dominant species maintain ecosystem function with non-random species loss [J]. Ecol Lett, 2003, 6:509-517.
    [132] Hooper D.U., F.S. Chapin Iii, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Set?l?, A.J. Symstad, J. Vandermeer, D.A. Wardle. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research [J]. Ecol Mono, 2005, 75:3-35.
    [133] Balmford A., L. Bennun, B.T. Brink, D. Cooper, I.M. Cote, P. Crane, A. Dobson, N. Dudley, I. Dutton, R.E. Green, R.D. Gregory, J. Harrison, E.T. Kennedy, C. Kremen, N. Leader-Williams, T.E. Lovejoy, G. Mace, R. May, P. Mayaux, P. Morling, J. Phillips, K. Redford, T.H. Ricketts, J.P. Rodriguez, M. Sanjayan, P.J. Schei, A.S. Van Jaarsveld, B.A.Walther. The Convention on Biological Diversity's 2010 Target [J]. Science, 2005, 307:212-213.
    [134] Janssens F., A. Peeters, J. Tallowin, J. Bakker, R. Bekker, F. Fillat, M. Oomes. Relationship between soil chemical factors and grassland diversity [J]. Plant Soil, 1998, 202:69-78.
    [135] Mander U., M. Mikk, M. Kulvik. Ecological and low intensity agriculture as contributors to landscape and biological diversity [J]. Landsc Urb Plann, 1999, 46:169-177.
    [136] Zechmeister H., D. Moser. The influence of agricultural land-use intensity on bryophyte species richness. [J]. Biodiv Conserv, 2001, 10:1609-1625.
    [137] Kahmen S., P. Poschlod, Schreiber. K.F. Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years [J]. Biol Conserv, 2002, 104:319-328.
    [138] Dietschi S., R. Holderegger, Schmidt. S.G., P. Linder. Agri-environment incentive payments and plant species richness under different management intensities in mountain meadows of Switzerland [J]. Acta Oecol, 2007, 31:216-222.
    [139] Pyk?l? J., M. Luoto, R.K. Heikkinen, T. Kontula. Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe [J]. Basic Appl Ecol, 2005, 6:25-33.
    [140] Bennie J., M.O. Hill, R. Baxter, B. Huntley. Influence of slope and aspect on long-term vegetation change in British chalk grasslands [J]. J. Ecol., 2006, 94:355-368.
    [141] Reynolds H.L., B.A. Hungate, F.S. ChapinⅢ, C.M. D' Antonio. Soil heterogeneity and plant competition in an annual grassland [J]. J. Ecol. , 1997, 78:2076-2090.
    [142] Ostermann O.P. The need for management of nature conservation sites designated under Natura 2000 [J]. J Appl. Ecol., 1998, 35:968-973.
    [143] kland R.H., O. Eilertsen. Canonical Correspondence Analysis with variation partitioning: some comments and an application [J]. J. Veg. Sci., 1994, 5:117-126.
    [144] Vandvik V., H.J.B. Birks. Partitioning floristic variance in Norwegian upland grasslands into within-site and between-site components: are the patterns determined by environment or by land-use? [J]. Plant Ecol. , 2002, 162:233-245.
    [145] Heikkinen R.K., M. Luoto, R. Virkkala, K. Rainio. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic [J]. J. Appl. Ecol. , 2004, 41:824-835.
    [146] Myklestad . . Soil, site and management components of variation in species composition of agricultural grasslands in western Norway [J]. Grass Forage Sci., 2004, 59:136-143.
    [147] Borcard D., P. Legendre, P. Drapeau. Partialling out the spatial component of ecological variation [J]. J Ecol, 1992, 73(1045-1055).
    [148] Cushman S.A., K. Mcgarigal. Hierarchical, multi-scale decomposition of species-environment relationships [J]. Landscape Ecol., 2002, 17:637-646.
    [149] Ter Braak C.J.F., P. Smilauer. CANOCO Reference manual and CanoDraw for Windows User's guide: Software for Canonical Community Ordination (version 4.5). [M]. Ithaca, New York: Microcomputer Power. 2002.
    [150] Klimek S., A.R. Gen Kemmermann, M. Hofmann, J. Isselstein. Plant species richness and composition in managed grasslands: The relative important of field management and environment factors [J]. Biol. Conserv., 2007, 34:559-570.
    [151] Bakker J.P., F. Berendse. Constraints in the restoration of ecological diversity in grassland and heathland communities [J]. Trends. Ecol. Evol. , 1999, 14:63-68.
    [152] Eriksson O., S.O.A. Cousins, H.H. Bruun. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia [J]. J. Veg. Sci., 2002, 13:743-748.
    [153] Olff H., M.E. Ritchie. Effects of herbivores on grassland plant diversity [J]. Trends. Ecol. Evol., 1998, 13:261-265.
    [154] Adler P.B., D.A. Raff, W.K. Lauenroth. The effect of grazing on the spatial heterogeneity of vegetation [J]. Oecologia, 2001, 128:465-479.
    [155] Hansson M., H. Fogelfors. Management of a semi-natural grassland; results from a 15-year-old experiment in southern Sweden [J]. J. Veg. Sci., 2000, 11:31-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700