用户名: 密码: 验证码:
磁化吸积盘:致密天体高能辐射及喷流的中心发动机
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑洞是广义相对论的一个重要的预言。现在人们已经普遍相信,几乎在每一个星系中央都存在着一个超大质量黑洞。以黑洞为核心的致密天体,包括活动星系核和某些X射线双星、伽玛射线暴等,展现出了一些非常极端的高能辐射现象,并时常伴随着猛烈的喷流和复杂的光变。
     黑洞吸积是这些致密天体“中心发动机”事实上的标准模型。经过几十年的发展,吸积盘理论日趋完善,但也存在着一些基本的问题尚无定论,如粘滞的物理过程、盘上外流的发生机制等。近年来,人们逐渐意识到磁场可能在物质吸积的过程中扮演着非常重要的角色,其中包括小尺度和大尺度两种形态的磁场。前者对应于吸积流内部的粘滞过程以促使吸积的进行,如“磁旋转不稳定性”(MRI);后者则被认为与喷流的加速、准直以及宏观的能量、角动量转移相关,如Blandford-Payne(BP)过程。
     除吸积外,快速旋转的黑洞其本身也是一个巨大的能源。在本文中我们详细地阐述了通过大尺度磁场从黑洞提取能量的物理机制,包括Blandford-Znajek (BZ)过程和磁耦合(Magnetic Coupling, MC)过程。本文细致地论述了MC过程中的能量转移及其在盘内部耗散的过程、MC过程对吸积盘辐射特征的影响、MC过程对吸积盘位形的影响——由于MC过程导致的盘内边缘位置的移动。
     考虑到大尺度闭合磁场对等离子体的束缚作用,我们提出了一个“磁化吸积盘—冕”模型。其中,MC过程的大尺度磁场很自然地为冕物质提供了一个落向黑洞视界面的通道,籍此我们得以限制冕的分布。通过综合求解黑洞与吸积盘、吸积盘与冕之间的能量传递及其对盘动力学和磁场分布的影响,我们自洽地得到了盘冕系统的整体解,并用Monte-Carlo方法模拟了系统的出射谱。结果表明,盘冕系统很自然地具有“高光度、软谱态”或者“低光度、硬谱态”的辐射特征,这一特性可用于解释一些黑洞双星的高能X射线非热谱。
     另外,越来越多的观测证据表明,喷流与吸积之间存在着密切的联系。我们从能量和角动量平衡的角度出发论述了磁化外流与吸积盘之间的耦合。盘上发出的外流将降低吸积盘的光度,而吸积盘的动力学性质反过来也限制着对外流的功率输出。籍此我们解释了一些射电类星体盘光度与喷流功率的相关关系。另外,考虑到外流可以有效地带走角动量,我们讨论了通过磁化外流解决吸积盘角动量整体平衡的可能性。
     在我们的模型中,黑洞自转的快慢和大尺度磁场位形至关重要。最后我们对这两个问题进行了讨论,并期望日后能够找到一些观测上的判别。
     作为攻读博士学位期间的学习和工作总结,结合自己的理解本文引述了较多的理论背景知识。作者本人的工作主要分布在第2.3、2.4、3.2、4.2、4.3和5.1节,感兴趣的读者可直接跳读到相关的章节。
The existence of black holes is an important prediction of general relativity. It is widely believed that a super massive black holes lies in the center of every galaxy. And some extremely high-energy phenomena have been observed in some black-hole systems, including Active Galactic Nuclei and some X-Ray Binaries and Gamma-Ray Bursts.
     Black-hole accretion is the de facto standard model for the central engines of those compact objects. The accretion theory is well established, but there are still some essential problems, e.g., the physical viscosity process, the mechanism for launching outflow from disks. Recently, it is realized that both small-scale and large-scale magnetic fields might play important roles in the accretion physics. The small-scale magnetic fields are related closely to the internal viscosity which promotes accretion. And the larger-scale magnetic fields can give rise to "large-scale" transfers of energy and angular momentum, e.g., being in charge of accelerating and collimating jets.
     The rotation energy of a fast spinning black hole is also extractable. We discuss two main methods of extracting energy from a spinning black hole, i.e., Blandford-Znajeck (BZ) process and Magnetic Coupling (MC) process. The following aspects are investigated in details:(ⅰ) the energy budget and dissipation in the MC process, (ⅱ) the MC effects on disk radiation; (ⅲ) the derivation of inner edge of a thin disk from the innermost stable circular orbit due to the MC effects.
     We propose a magnetically induced disk-corona model, in which the closed field lines of MC process provide natural channels for corona matter falling onto the central black hole. We derive the boundaries of corona according to the configuration of large-scale magnetic fields. We obtained the global solution of the system numerically, taking into account the energy transfer among black hole, disk and corona and also its effects on the disk dynamics. Finally, the emerged spectra are simulated by using Monte-Carlo method. It turns out the disk-corona system naturally gives rise to hard spectra with low luminosity or soft spectra with high luminosity. This property could be used to explain the non-thermal hard X-ray spectra observed in black hole binaries.
     There are many observational implications for disk-jet connection. We discuss the coupling between magnetic outflow and disk accretion based on the balance of energy and angular momentum, trying to explain the correlation between the disk luminosity and jet power observed in dozens of radio quasars. We also discussed the contribution of magnetic outflow to the overall equilibrium of angular momentum in accretion disk.
     There are two key points related to our model, i.e., black hole spin and the configuration of large-scale magnetic fields. We give a general comment on these issues, expecting to do some new works based on the observations in future.
引文
[1]McClintock, J E,& Remillard R A., In Compact Stellar X-ray Sources, ed. WHG Lewin, M, van der Klis, Cambridge:Cambridge University Press.2006, pp.157-214.
    [2]Remillard, R. A.,& McClintock, J. E. X-Ray Properties of Black-Hole Binaries. ARA&A,2006,44,49
    [3]Belloni T. M.,2009, in Belloni T., ed., Lect. Notes Phys. Vol.794, The Jet Paradigm-From Microquasars to Quasars, preprint (arXiv:0909.2474)
    [4]Fender R. P.,2009, in Belloni T., ed., Lect. Notes Phys. Vol.794, The Jet Paradigm-From Microquasars to Quasars, preprint (arXiv:0909.2572)
    [5]Esin A. A., McClintock J. E.& Narayan R., Advection-dominated Accretion and the Spectral States of Black Hole X-Ray Binaries:Application to Nova MUSCAE 1991. ApJ,1997,489,865
    [6]Fender R., Belloni T., Gallo E.,et al., Towards a unified model for black hole X-ray binary jets. MNRAS,2004,355,1105
    [7]Fender, R. P.; Homan, J.; Belloni, T. M., Jets from black hole X-ray binaries:testing, refining and extending empirical models for the coupling to X-rays, MNRAS,2009, 396,1370
    [8]van der Klis, M., In Compact Stellar X-ray Sources, ed. WHG Lewin,& M van der Klis, pp.39-112. Cambridge, UK:Cambridge University Press.2006 (astro-ph/0410551)
    [9]Remillard, R. A., Morgan, E. H., McClintock, J. E., et al., RXTE Observations of 0.1-300 HZ Quasi-periodic Oscillationsin the Microquasar GRO J1655-40. ApJ,1999, 522,397
    [10]Strohmayer, T. E., Discovery of a 450 HZ Quasi-periodic Oscillation from the Microquasar GRO J1655-40 with the Rossi X-Ray Timing Explorer. ApJ,2001a,552, L49
    [11]Remillard, R. A., Muno, M. P., Mcclintock, J. E.,& Orosz, J. A. Evidence for Harmonic Relationships in the High-Frequency Quasi-periodic Oscillations of XTE J1550-564 and GRO J1655-40. ApJ,2002,580,1030
    [12]Miller J. M., Wijnands R., Homan J., Belloni T., Pooley D., Corbel S., Kouveliotou C., van der Klis M., Lewin W. H. G., High-Frequency Quasi-Periodic Oscillations in the 2000 Outburst of the Galactic Microquasar XTE J1550-564, ApJ,2001,563,928
    [13]Peterson, Bradley M., An introduction to active galactic nuclei, Cambridge:New York Cambridge University Press,1997
    [14]Krolik, Julian H., Active Galactic Nuclei:From the Central Black Hole to the Galactic Environment, Princeton:Princeton University Press,1998
    [15]黄克谅.类星体与活动星系核.北京:中国科学技术出版社,2005
    [16]Rawlings, S.,& Saunders, R. Evidence for a common central-engine mechanism in all extragalactic radio sources, Nature,1991,349,138
    [17]Urry, C. Megan; Padovani, Paolo, Unified Schemes for Radio-Loud Active Galactic Nuclei, PASP,1995,107,803
    [18]李启斌.90年代天体物理学.北京:高等教育出版社,1996.
    [19]Schawinski Kevin, Thomas Daniel, Sarzi Marc, et al., Observational evidence for AGN feedback in early-type galaxies, MNRAS,2007,382,1415
    [20]Mirabel I., Phenomenological Analogies in Black Hole Systems of All Masses, PThPS,2004,155,71
    [21]卢炬甫.黑洞吸积盘理论进展.天文学进展,2001,19:365~374
    [22]Shakura N. I., Sunyaev R. A., Black holes in binary systems:Observational appearance. Astron. Astrophys.,1973,24:337~355
    [23]Novikov, I. D.,& Thorne, K. S. in Black Holes, ed. Dewitt C, (Gordon and Breach, New York),1973
    [24]Page D. N., Thorne K. S. Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk. ApJ,1974,191:499-506
    [25]Pringle, J.E., Accretion discs in astrophysics. ARA&A,1981,19,137
    [26]Shapiro S L, Lightman A P, Eardley D M, A two-temperature accretion disk model for Cygnus X-1:Structure and spectrum. Astrophys J,1976,204:187-199
    [27]Abramowicz M A, Czerny B, Lasota J P et al., Slim accretion disks. Astrophys J, 1988,332:646-658
    [28]Narayan R, Yi I, Advection-dominated accretion:A self-similar solution. Astrophys J, 1994,428:L13-L16
    [29]Abramowicz M. A., Chen, X. M., Granath, M., Lasota, J. P., Advection-dominated Accretion Flows around Kerr Black Holes, ApJ,1996, vol.471, p.762
    [30]Narayan R et al., in The Theory of Black Hole Accretion Disks, eds. Abramowicz, Bjornesson, and Pringle, Cambridge:Cambridge Univ. Press,1998
    [31]Gammie, Charles F.; Popham, Robert, Advection-dominated Accretion Flows in the Kerr Metric.I. Basic Equations, ApJ,1998, vol.498, p.313
    [32]Popham, Robert; Gammie, Charles F., Advection-dominated Accretion Flows in the Kerr Metric. II. Steady State Global Solutions, ApJ,1998, vol.504, p.419
    [33]Yuan Feng, Luminous hot accretion discs, MNRAS,2001,324:119-127
    [34]Narayan R, Igumenschchev I V, Abramowicz M A. Self-similar accretion flows with convection. ApJ (2000),539:798-808.
    [35]Quataert E, Gruzinov A. Convection-dominated accretion flows. ApJ,2000,539: 809~814
    [36]Blandford R. D,Begelman M C. On the fate of gas accreting at a low rate on to a black hole. MNRAS 1999,303:Ll-L5
    [37]Di Matteo, T., Perna, R.,& Narayan, R. Neutrino Trapping and Accretion Models for Gamma-Ray Bursts. ApJ,2002,579,706
    [38]Kohri, Kazunori; Narayan, Ramesh; Piran, Tsvi, Neutrino-dominated Accretion and Supernovae, ApJ,2005:341-361
    [39]Balbus S. A., Hawley J. F., A powerful local shear instability in weakly magnetized disks. I-Linear analysis. II-Nonlinear evolution. ApJ,1991,376,214
    [40]Frank Juhan, King Andrew, Raine Derek, Accretion Power in Astrophysics, Cambridge University Press,1992
    [41]Kato S., Fukue J., Mineshige S., Black-Hole Accretion Disks, Kyoto University Press, 1998
    [42]Rybicki, G. B.,& Lightman, A. P., Radiative Processes in Astrophysics (New York: Wiley-Interscience),1979
    [43]杨兰田,流体力学与吸积盘理论,科学出版社,1992
    [44]Matsumoto R., Kato S., Fukue J., Viscous transonic flow around the inner edge of geometrically thin accretion disks. PASJ,1984,36,71
    [45]Bardeen, J. M. Kerr Metric Black Holes. Nature,1970,226,64
    [46]Li L.X. Accretion disk torqued by a black hole. ApJ,2002,567:463-476.
    [47]Bardeen J. M., Press W. H., Teukolsky S. A., Rotating Black Holes:Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation, ApJ, 1972,178:347-370
    [48]Ohsuga K.,Mori M., Nakamoto T., Mineshige S., Supercritical Accretion Flows around Black Holes:Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping, ApJ,2005,628,368-381
    [49]Yuan F., Cui W.& Narayan R., An Accretion-Jet Model for Black Hole Binaries: Interpreting the Spectral and Timing Features of XTE J1118+480. ApJ,2005,620, 905
    [50]Stepney, S.,& Guilbert, P.W. Numerical FITS to important rates in high temperature astrophysical plasmas. MNRAS,1983,204,1269
    [51]Watarai, K., Mizuno, T., Mineshige, S. Slim-Disk Model for Ultraluminous X-Ray Sources. ApJ,2001,549, L77
    [52]Park, M. G., Ostriker, J. P., Preheated Advection-dominated Accretion Flow. ApJ, 2001,549,100
    [53]Misner C W, Thorne K S, Wheeler J A. Gravitation, San Francisco:Freeman,1973.
    [54]Shapiro S. L.& Teukolsky S. A., "Black Holes, White Dwarfs and Neutron Stars", 1983, Chapter 12.
    [55]俞允强,广义相对论引论(第二版),北京:北京大学出版社,2002,p125
    [56]Gan Zhao-Ming, Wang Ding-Xiong, Lei Wei-Hua., Li Yang, Energy dissipation and angular momentum transfer within a magnetically torqued accretion disc, Science in China Series G,2010,53,106-109
    [57]Gan Zhao-Ming, Wang Ding-Xiong, Li Yang, Effects of magnetic coupling on radiation from accretion disc around a Kerr black hole, Mon. Not. R. Astron. Soc., 2007,376:1695
    [58]Penrose R. Gravitational Collapse:the Role of General Relativity. Nuovo. Cim.,1969, 1:252
    [59]Blandford R. D., Znajek R. L. Electromagnetic extraction of energy from Kerr black holes. MNRAS,1977,179:433-456
    [60]Macdonald D., Thorne K. S., Black-hole electrodynamics-an absolute-space/ universal-time formulation. MNRAS,1982,198:345~382
    [61]Thorne K. S., Price R. H., Macdonald D. A., Black Holes:The Membrane Paradigm. Yale Univ.,1986
    [62]Livio M., Ogilvie G I., Pringle J. E.,Extracting Energy from Black Holes:The Relative Importance of the Blandford-Znajek Mechanism. ApJ,1999,512,100
    [63]Blandford R. D. in Scllwood J. A., Goodman J., eds, ASP Conf. Ser. Vol.160, Astrophysical Discs:An EC Summer School, Astron. Soc. Pac., San Francisco,1999, p.265
    [64]Wang D X, Xiao K, Lei W H, Evolution characteristics of the central black hole of a magnetized accretion disc. Mon Not R Astron Soc,2002,335:655-664
    [65]Uzdensky D. A., Force-Free Magnetosphere of an Accretion Disk-Black Hole System. I. Schwarzschild Geometry, ApJ,2004,603,652
    [66]Uzdensky, D. A. Force-Free Magnetosphere of an Accretion Disk-Black Hole System. II. Kerr Geometry. ApJ,2005,620:889~904
    [67]Wang D. X., Ma R. Y., Lei W. H., Yao G Z. Magnetic coupling of a rotating black hole with its surrounding accretion disk. ApJ,2003,595:109~119
    [68]Afshordi N., Paczynski B., Geometrically Thin Disk Accreting into a Black Hole. ApJ, 2003,592,354
    [69]Paczynski B., The Inner Boundary Condition for a Thin Disk Accreting Into a Black Hole.2000, astro-ph/0004129
    [70]Shafee R., Narayan R., McClintock, J. E.,Viscous Torque and Dissipation in the Inner Regions of a Thin Accretion Disk:Implications for Measuring Black Hole Spin. ApJ, 2008,676,549
    [71]Moderski R., Sikora M., Lasota J. P., On Black Hole Spins and Dichotomy of Quasars. in "Relativistic Jets in AGNs" eds.M. Ostrowski, M. Sikora, G. Madejski & M. Belgelman, Krakow,1997, p.110
    [72]Branduardi-Raymont G, et al., Soft X-ray emission lines from a relativistic accretion disk in MCG-6-30-15 and Mrk 766. Astron Astrophys,2001,365:L140-L145
    [73]Wilms J et al, MM-EPIC observation of MCG-6-30-15:direct evidence for the extraction of energy from a spinning black hole? Mon Not R Astron Soc,2001,328: L27-L31
    [74]Li L X, Observational signatures of the magnetic connection between a black hole and a disk. Astron Astrophys,2002b,392:469-472
    [75]Krolik, Julian H.; Hawley, John F., Where Is the Inner Edge of an Accretion Disk around a Black Hole? ApJ,2002,573,754
    [76]Wang, Y. M. On the Torque Exerted by a Magnetically Threaded Accretion Disk. ApJ,1995,449,L153
    [77]Liu B.-F., Mineshige S.& Shibata K., A Simple Model for a Magnetic Reconnection-heated Corona. ApJ,2002,572,173
    [78]Reynolds C S and Nowak M A., Fluorescent iron lines as a probe of astrophysical black hole systems, Phys.Rep.,2003,377:389
    [79]Gan Zhao-Ming, Wang Ding-Xiong, Lei Wei-Hua., A Model of Magnetically Induced Disc-Corona for Black Hole Binaries, Mon. Not. R. Astron. Soc.,2009,394,2310
    [80]Narayan R, Yi I, Advection-dominated Accretion:Underfed Black Holes and Neutron Stars. ApJ,1995,452,710
    [81]尤峻汉,天体物理中的辐射机制,北京:科学出版社,1983
    [82]Pozdnyakov, L. A.; Sobol, I. M.; Syunyaev, R. A., Comptonization and the shaping of X-ray source spectra-Monte Carlo calculations, ASPRv,1983,2,189
    [83]Hua Xin-Min, Monte Carlo simulation of Comptonization in inhomogeneous media, CIP,1997,11,660
    [84]Stella L.& Nosner R.,Magnetic field instabilities in accretion disks. ApJ,1984,277, 312
    [85]Hirose S., Krolik J. H., De Villiers J.-P., Hawley J. F., Magnetically Driven Accretion Flows in the Kerr Metric. II. Structure of the Magnetic Fi.ApJ,2004,606,1083
    [86]Fragile, P. Chris; Meier, David L., General Relativistic Magnetohydrodynamic Simulations of the Hard State as a Magnetically Dominated Accretion Flow, ApJ, 2009,693,771
    [87]Wandel, A.,& Liang, E. P. T. Hybrid accretion disks in active galactic nuclei. I-Structure and spectra. ApJ,1991,380,84
    [88]Taam, R.,& Lin, D. N. C. The evolution of the inner regions of viscous accretion disks surrounding neutron stars. ApJ,1984,287,761
    [89]Wang, J. M., Luo, B.,& Ho Luis C., The Connection between Jets, Accretion Disks, and Black Hole Mass in Blazars. APJ,2004,615, L9
    [90]Merloni A.,& Fabian A. C., Coronal outflow dominated accretion discs:a new possibility for low-luminosity black holes?. MNRAS,2002,332,165
    [91]Gierlinski M., Zdziarski A. A., Done C. et al.,Simultaneous X-ray and gamma-ray observations of CYG X-1 in the hard state by GINGA and OSSE. MNRAS,1997, 288,958.
    [92]Zdziarski, A. A. Broad-band X-ray/gamma-ray spectra and binary parameters of GX 339-4 and their astrophysical implications.1999, ASP Conf. Ser.161:High Energy Processes in Accreting Black Holes,16
    [93]Brocksopp C., McGowan K. E., Krimm H.,et al., The 2005 outburst of GRO J1655-40:spectral evolution of the rise, as observed by Swift. MNRAS,2006,365, 1203
    [94]Miller J. M., Fabian A. C., Reynolds C. S., et al.,Evidence of Black Hole Spin in GX 339-4:XMM-Newton/EPIC-pn and RXTE Spectroscopy of the Very High State. ApJ, 2004,606,031
    [95]Merloni, A., Heinz, S., Matteo, T., A Fundamental Plane of black hole activity. MNRAS,2003,345,1057
    [96]Blandford R D, Payne D G, Hydromagnetic flows from accretion discs and the production of radio jets. Mon Not R Astron Soc,1982,199:883-903
    [97]Meier D. L., The theory and simulation of relativistic jet formation:towards a unified model for micro-and macroquasars. New Astron. Rev.2003,47,667
    [98]Levinson A, Black Holes:Research and Development, Nova 12 Science Publishers (astro-ph/0502346),2005
    [99]Ferreira J, Jets from Young Stars:Models and Constraints, Ferreira J, Dougados C and Whelan E (eds), Springer Verlag,2006 (astro-ph/0607216)
    [100]Spruit H C, Theory of magnetically powered jets.2008, arXiv:0804.3096
    [101]Li Yang, Wang Ding-Xiong, Gan Zhao-Ming, A simplified model of jet power from active galactic nuclei, Astronomy Astrophysics,2008,482:1L
    [102]Xie F G, Yuan F & BU D F, The influences of outflow on the dy-namics of inflow. Astrophys J,2008,681:499-505
    [103]Bu D F, Yuan F, Xie F G, Self-similar solution of hot accretion flows with ordered magnetic field and outflow, Mon Not R Astron Soc,2009,392:325-331
    [104]Li Yang, Gan Zhao-Ming, Wang Ding-Xiong, A Simplified Model of ADAF with the Jet Driven by the Large-Scale Magnetic Field, New Astronomy,2010,15:102
    [105]Ghisellini G, Padovani, P., Celotti, A., et al., Simultaneous X-ray and gamma-ray observations of CYG X-1 in the hard state by GINGA and OSSE. APJ,1993,407,65
    [106]Celotti, A., Padovani, P.,& Ghisellini, G Jets and accretion processes in active galactic nuclei:further clues. MNRAS,1997,286,415
    [107]Willott, C. J., Rawlings, S., Blundell, K. M.,& Lacy, M. The emission line-radio correlation for radio sources using the 7C Redshift Survey. MNRAS,1999,309,1017
    [108]Punsly, B., An Independent Derivation of the Oxford Jet Kinetic Luminosity Formula. ApJ,2005,623,9
    [109]Maraschi, L.& Tavecchio, F., The Jet-Disk Connection and Blazar Unification. ApJ, 2003,593,667
    [110]D'Elia, V., Padovani, P.,& Landt, H., The disc-jet relation in strong-lined blazars. MNRAS,2003,339,1081
    [111]Sambruna, R. M., Gliozzi, M., Tavecchio, F., et al., The Jet-Disk Connection in AGNs:Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars. ApJ,2006,652,146
    [112]Cao, X. W., The jet power extracted from a magnetized accretion disc. MNRAS, 2002,332,999
    [113]McKinney, J. C. General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. MNRAS, 2006,368,1561
    [114]Kuncic Z, Bicknell G V, Dynamics and energetics of turbulent, magnetized disk accretion around black holes:A first-principles approach to disk-corona-outflow coupling. ApJ,2004,616:669-687
    [115]Kuncic Z, Bicknell G V, Towards a new standard theory for astro-physical disk accretion. Mod. Phys. Lett. A,2007,22:1685-1700
    [116]Taam R E, Wade R A, Angular momentum loss and the evolution of binaries of extreme mass ratio. Astrophys J,1985,293:504-507
    [117]Miller J M, Raymond J, Reynolds C S et al, The accretion disk wind in the black hole GRO J1655-40. Astrophys J,2008,680:1359-1377
    [118]Lovelace R V E, Koldoba A V, Ustyugova G V et al, Poynting jets from accretion disks. Astrophys J,2002,572:445-455
    [119]Wang Ding-Xiong, Gan Zhao-Ming, Huang Chang-Yin, Li Yang, Association of the 3:2 HFQPO Pairs with the Broad Fe K Line in XTE J1550-564 and GRO J1655-40, Mon. Not. R. Astron. Soc,2008,391:1332
    [120]Zhang, S. N., Cui, W & Chen, W. Black Hole Spin in X-Ray Binaries: Observational Consequences.ApJ,1997,482, L155
    [121]Gierlinski M, Maciolek-Niedzwiecki A, Ebisawa K, Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40. MNRAS, 2001,325:1253
    [122]Makishima, K., Maejima, Y, Mitsuda, K., et al. Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state. ApJ,1986,308,635
    [123]Barr P, White N E, Page C G, The discovery of low-level iron K line emission from CYG X-1. MNRAS,1985,216:65-70
    [124]Wagoner, R. V., Silbergleit, A. S., Ortega-Rodriguez, M. "Stable" Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology. ApJ,2001,559,25
    [125]Abramowicz, M. A.,& Kluzniak, W., A precise determination of black hole spin in GRO J1655-40. A&A,2001,374, L19
    [126]Dovciak, M., Karas, V.,& Matt, G., Polarization signatures of strong gravity in active galactic nuclei accretion discs. MNRAS,2004,355,1005
    [127]Wang D.X., Ma R. Y., Lei W. H., et al. Screw Instability of the Magnetic Field Connecting a Rotating Black Hole with its Surrounding Disk. ApJ,2004, 601:1031-1037
    [128]Agol E., Krolik J. H., Magnetic Stress at the Marginally Stable Orbit:Altered Disk Structure, Radiation, and Black Hole Spin Evolution. ApJ,2000,528,161
    [129]Gammie, C. F.,Efficiency of Magnetized Thin Accretion Disks in the Kerr Metric. ApJ,1999,522, L57
    [130]Krolik J. H.,Magnetized Accretion inside the Marginally Stable Orbit around a Black Hole. ApJ,1999,515,73
    [131]Garofalo D., Reynolds C. S., Sporadically Torqued Accretion Disks around Black Holes. ApJ,2005,624,94
    [132]Matt, G. X-ray polarization properties of a centrally illuminated accretion disc. MNRAS,1993,260,663
    [133]Lubow, S. H.; Papaloizou, J. C. B.; Pringle, J. E., Magnetic field dragging in accretion discs, MNRAS,1994,267,235
    [134]Chitre, D.M., Vishveshwara, C.V., Electromagnetic field of a current loop around a Kerr black hole, Physical Review D.1975, vol.12, p.1538-1543
    [135]Petterson, J.A., Stationary axisymmetric electromagnetic fields around a rotating black hole, Physical Review D.1975,12, p.2218-2225
    [136]Znajek R.L. Charged current loops around Kerr holes, MNRAS,1978,182:.639-646
    [137]Znajek R. L. The electric and magnetic conductivity of a Kerr hole. MNRAS,1978, 185:833-840
    [138]Li L.X. Toy model for the magnetic connection between a black hole and a disk. PhRvD,2002,65,084047
    [139]Lan Xiao-Xia, Wang Ding-Xiong, Gan Zhao-Ming. Connection of Screw Instability with Electric Current in an Accretion Disc around a Black Hole. Chinese Physics Letters.2005, Vol.22, No.9:2455-2458
    [140]Jones T. W., O'dell, S. L. Transfer of polarized radiation in self-absorbed synchrotron sources. I. Results for a homogeneous source.,ApJ,1977,214,522
    [141]Pacholczyk, A. G., Radio Astrophysics (San Francisco:W.H. Freeman),1970
    [142]Melia, F., Liu, S., Coker, R. A Magnetic Dynamo Origin for the Submillimeter Excess in Sagittarius A*. ApJ,2001,553,146
    [143]Laing, R. A. A model for the magnetic-field structure in extended radio sources. MNRAS,1980,193,439
    [146]McNamara A.L., Kuncic Z., Wu K., X-ray polarization in relativistic jets. MNRAS, 2009,395,1507
    [145]Sunyaev, R. A.,& Titarchuk, L. G. Comptonization of low-frequency radiation in accretion disks Angular distribution and polarization of hard radiation. A&A,1985, 143,374
    [144]McNamara A.L., Kuncic Z., Wu K., X-ray polarization signatures of Compton scattering in magnetic cataclysmic variables. MNRAS,2008,386,2167
    [147]Schnittman, J. D.,& Krolik, J. H. X-ray Polarization from Accreting Black Holes: Coronal Emission. ApJ,2010,712,908
    [148]Huang Chang-Yin, Gan Zhao-Ming, Wang Jiu-Zhou, Wang Ding-Xiong, A resonance model with magnetic connection for 3:2 HFQPO pairs in black hole binaries, accepted by Mon. Not. R. Astron. Soc.2009, arXiv:0912.4776

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700