用户名: 密码: 验证码:
基于压缩感知的生物发光断层成像重建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物发光断层成像(Bioluminescence Tomography,BLT)作为一种领先的光子影像技术,由于其本身成像信噪比相对较高,而且具有安全性和灵敏性等优点,近年来受到了学者的广泛关注。目前生物发光断层成像已开始应用于基因表达、肿瘤检测和药物研发等小动物实验和预临床实验。目前生物发光断层成像研究热点集中于前向模型求解和逆向光源重建两方面。由于BLT是早期成像,因此BLT光源在生物体内呈现稀疏分布,导致生物体表逃逸出的光子数较少,成像设备在体表采集到的光学信号比较弱。另外由于光子在生物体内传输过程的复杂性,生物发光断层成像的逆重建问题在数学上是一个严重病态的欠定线性方程求解问题,是一个具有挑战性的问题。本文基于压缩感知理论,利用BLT光源的稀疏特性,对逆重建问题展开研究,所取得的主要研究成果为:
     1.针对l2正则化方法重建结果过于平滑的问题,提出了基于初始对偶内点法的生物发光断层成像重建方法。基于l2正则化方法的BLT重建方法,重建结果分布范围较大,远远超出光源本身大小,而且重建光源能量分布过于平滑。因此基于压缩感知理论,利用生物发光光源的稀疏分布特性,研究初始对偶内点法解决生物发光断层成像的光源重建问题。本方法将BLT光源重建问题从基于l1范数的稀疏正则化转化为求解极小化的线性规划问题,并采用初始对偶内点法得到极小化问题的初始对偶形式;然后引入对数障碍函数,通过Karush-Kuhn-Tucker条件得到初始对偶方程;最后采用牛顿法得到方程的最优解。仿真实验证明了该方法的准确性和有效性,同时在体实验说明了方法在预临床肿瘤早期检测应用中的可行性。
     2.针对目前大部分BLT重建方法稀疏性不足的问题,提出了基于加权迭代收缩阈值方法的生物发光断层成像重建方法。一些数值计算研究表明,在某些情况下,基于l1范数的正则化方法稀疏性要小于基于lp(0     3.针对各种可能影响生物发光断层成像重建的因素,选用一组通用的测试条件来评价多种常用的正则化重建方法的性能,以期为相关研究者选择和设计重建算法时提供一个公平的参考。选用的测试条件包括实验可行区、测量噪声(0%-50%)、光学参数、组织特异性、光源位置,以及单、双光源仿真实验和在体实验。基于一系列测试实验结果,我们发现基于lp(0     4.针对l1正则化在估值时经常引入额外偏差的问题,以及为了更好的逼近稀疏目标函数的l0正则子,提出了基于l1/2范数的加权内点法求解生物发光断层成像重建问题。在实际应用中,l1正则子的稀疏性通常要小于l0正则子,无法获得最好的稀疏重建效果;而l0正则子为NP难问题,无法直接求解,因此为了寻找比l1正则化方法更稀疏的求解方法,我们将用于求解极小化问题的lp(0In recent years, bioluminescence tomography (BLT) has been widely studied as apromising optical molecular imaging technique due to its significant advantages in highspecificity, sensitivity, safety and cost effectiveness high signal-to-noise ratio (SNR).Bioluminescence tomography has been applied in the animal experiments andpreclinical trials of gene expression, tumor detection and drug development, etc. Nowthe research of bioluminescence tomography focus on the forward model and theinverse reconstruction of the light source. As an early imaging modality, the source ofBLT has a sparse distribution and the optical signals obtained by the imaging equipmentfrom the surface of the animal are weak. Meanwhile because the transmission of photonis complex, the inverse reconstruction of the BLT light source is a severely ill-posedproblem as an underdetermined linear equation in mathematics. Based on thecompressed sensing theory and the sparsity of bioluminescent source distribution, thedissertation conducts the inverse reconstruction problem. The author’s majorcontributions are outlined as follows:
     1. A three-dimensional bioluminescence tomography reconstruction algorithm isproposed based on primal-dual interior-point method. In order to reduce the severelyill-posedness of the BLT inverse problem, we propose a primal-dual interior-point(PDIP) method based on the compressed sensing theory and the sparsity ofbioluminescent source distribution. The PDIP method takes the l1norm problem as aminimization problem of linear programming. In order to obtain the optimal solution ofthe minimization problem, the Karush-Kuhn-Tucker condition is used to restrain thesolving process. Using the Newton method, we obtain the optimal solution to theprimal-dual equation. Reconstruction results on numerical simulation validate theaccuracy and effectiveness of the proposed method. Then in vivo mouse experimentvalidate the feasibility of the proposed method in early detection of clinicaloncology.
     2. A three-dimensional bioluminescence tomography reconstruction algorithm isproposed based on weighted iterative shrinkage/thresholding algorithm (WISTA). Insome computational studies, l1regularization methods are often less sparse than lp(0     3. A comparison of six regularization methods is conducted through a series ofexperiments to study various conditions that affect the inverse BLT reconstruction. Theregularization methods have become the mainstream strategy to obtain the optimalsolution of the BLT inverse problem. But there is no generally accepted method whichcan be suitable for all of the reconstruction cases. We intend to fill the gap in theexisting studies to systematically benchmark the performance of thelp-regularization-based BLT reconstruction algorithms. In order to investigate theresponses of these algorithms to the permissible source region, measurement noise,optical properties and tissue specificity, we conduct a series of single source numericalphantom experiments. Then, the double sources numerical phantom experiment and thein vivo mouse experiment are carried out to further test their performances. For mostexperiments, the lp(0     4. A three-dimensional bioluminescence tomography reconstruction algorithm isproposed based on weighted interior-point algorithm (WIPA). In recent years, many l1regularization methods have been researched for various of inverse reconstructionproblem. However, the sparse property of the l1regularizer is often less than that of l0regularizer in many practical applications. In order to find more sparse solutions thanthe l1regularizer, many lp(0
引文
[1] Rice B W, Cable M D, Nelson M B. In vivo imaging of light-emitting probes.Journal of Biomedical Optics.2001,6(4):432-440.
    [2] Contag C H, Bachmann M H. Advances in in vivo bioluminescence imaging ofgene expression. Annual Review of Biomedical Engineering.2002,4:235-260.
    [3] Wang X, Rosol M, Ge S, et al. Dynamic tracking of human hematopoietic stemcell engraftment using in vivo bioluminescence imaging. Blood.2003,102(10):3478-3482.
    [4] Paroo Z, Bollinger R A, Braascb D A, et al. Validating bioluminescence imagingas a high-throughput quantitative modality for assessing tumor burden. MolecularImaging.2004,3(2):117-124.
    [5] Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light: theevolution of whole-body photonic imaging. Nature Biotechnology.2005,23(3):313-320.
    [6] Kaijzel E L, Pluijm G, Lowik C W G M. Whole-body optical imaging in animalmodels to assess cancer development and progression. Clinical Cancer Research.2007,13(12):3490-3497.
    [7] Min J J, Kim H J, Park J H, et al. Noninvasive real-time imaging of tumors andmetastases using tumor-targeting light-emitting Escherichia coli. MolecularImaging and Biology.2008,10(1):54-61.
    [8] Gross S, Gammon S T, Moss B L, et al. Bioluminescence imaging ofmyeloperoxidase activity in vivo. Nature Medicine.2009,15(4):455-461.
    [9] Naumann E A, Kampff A R, Prober D A, et al. Monitoring neural activity withbioluminescence during natural behavior. Nature Neuroscience.2010,13(4):513-520.
    [10] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier inbiology. Nature Methods.2010,7(7):603-614.
    [11] Solomon M, Liu Y, Berezin M Y, et al. Optical imaging in cancer research: basicprinciples, tumor detection, and therapeutic monitoring. Medical Principles andPractice.2011,20(5):397-415.
    [12] Negrin R S, Contag C H. In vivo imaging using bioluminescence: a tool forprobing graft-versus-host disease. Nature Reviews Immunology.2006,6(6):484-490.
    [13] Wang G, Li Y, and Jiang M. Uniqueness theorems in bioluminescence tomography.Medical Physics.2004,31(8):2289-2299.
    [14] Feng J, Qin C, Jia K, et al. Bioluminescence tomography imaging in vivo: recentadvances. IEEE Journal of Selected Topics in Quantum Electronics.2012,18(4):1394-1402.
    [15] Zhang Q, Zhao H, Chen D, et al. Source sparsity based primal-dual interior-pointmethod for three-dimensional bioluminescence tomography. OpticsCommunications.2011,284(24):5871-5876.
    [16] He X, Liang J, Qu X, et al. Truncated total least squares method with a practicaltruncation parameter choice scheme for bioluminescence tomography inverseproblem. International Journal of Biomedical Imaging.2010,2010:1-12.
    [17] Slavine N V, Lewis M A, Richer E, et al. Iterative reconstruction method for lightemitting sources based on the diffusion equation. Medical Physics.2006,33(1):66-68.
    [18] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory.2006,52(4):1289-1306.
    [19] Candes E J, Wakin M B. An introduction to compressive sampling. IEEE SignalProcessing Magazine.2008,25(2):21-30.
    [20] Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal processing.2006,86(3):549-571.
    [21] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Transactionson Information Theory.2006,52(2):489-509.
    [22] Candes E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies? IEEE Transactions on Information Theory.2006,52(12):5406-5425.
    [23] Wang G, Hoffman E A, McLennan G, et al. Development of the firstbioluminescent CT scanner. Radiology,2003,229:566.
    [24] Wang G, Hoffman E, McLennan G. Systems and methods for bioluminescentcomputed tomographic reconstruction.2002, Patent disclosure filled with Univ. ofIowa Research Foundation in July2002; US provisional patent application filledin March2003; US patent application filed in March2004: USA.
    [25] Feng J, Qin C, Jia K, et al. Bioluminescence tomography imaging in vivo: recentadvances. IEEE Journal of Selected Topics in Quantum Electronics.2012,18(4):1394-1402.
    [26] Schulz R B, Ripoll J, Ntziachristos V. Noncontact optical tomography of turbidmedia. Optics Letters.2003,28(18):1701-1703.
    [27] Schulz R B, Ripoll J, Ntziachristos V. Experimental fluorescence tomography oftissues with noncontact measurements. IEEE Transactions on Medical Imaging.2004,23(4):492-500.
    [28] Herve L, Silva A, Boutet J, et al. Non contact fluorescence optical tomography bymeans of numerical and analytical approaches. Nuclear Instruments&Methods inPhysics Research A.2006,571(1-2):203-206.
    [29] Deliolanis N, Lasser T, Hyde D, et al. Free-space fluorescence moleculartomography utilizing3600geometry projections. Optic s Letters.2007,32(4):382-384.
    [30] Lasser T, Soubret A, Ripoll J, et al. Surface reconstruction for free-space3600fluorescence molecular tomography and the effects of animal motion. IEEETransactions on Medical Imaging.2008,27(2):188-194.
    [31] Zhang X, Badea C T. Effects of sampling strategy on image quality in noncontactpanoramic fluorescence diffuse optical tomography for small animal imaging.Optics Express.2009,17(7):5125-5138.
    [32] Sarasa R A, Favicchio R, Birk U, et al. Source intensity profile in noncontactoptical tomography. Optics Letters.2010,35(1):34-36.
    [33] Wang L V, Wu H I, Masters B R. Biomedical Optics, Principles and Imaging.Journal of Biomedical Optics.2008,13.049902.
    [34]宋小磊.荧光分子断层成像中光源重建的逆问题研究.博士论文.清华大学.2008.
    [35] Klose A D, Ntziachristos V, Hielscher A. The inverse source problem based onthe radiative transfer equation in optical molecular imaging. Journal ofComputational Physics.2005,202(1).323-345.
    [36]李慧.在体生物光学成像前向及逆向问题研究.博士论文.中国科学院自动化研究所.2005.
    [37]彭宽.基于数值与随机统计方法的光学成像光传输问题研究.博士论文.西安电子科技大学.2011.
    [38] Wang L, Wu H I. Biomedical Optics: Principles and Imaging. New York: JOHNWILEY.2007.
    [39]孙粒.基于多种先验知识的生物发光断层成像方法研究.博士论文.北京工业大学.2010.
    [40] Svaasand L, Spott T, Fishkin J, et al. Reflectance measurements of layered mediawith diffuse photon-density waves: a potential tool for evaluating deep burns andsubcutaneous lesions. Physics in Medicine and Biology.1999,44:801-813.
    [41] Aydin E D, de Oliveira C R, Goddard A J. A comparison between transport anddiffusion calculations using a finite element-spherical harmonics radiationtransport method. Medical Physics.2002,29(9):2013-2023.
    [42] Fletcher J K. The solution of the multigroup neutron transport equation usingspherical harmonics. Nuclear Science and Engineering.1983,84:33-46.
    [43] Adams E W, Marvin L. Fast iterative methods for discrete-ordinates particletransport calculations. Progress in Nuclear Energy.2002,40(1):3-159.
    [44] Klose A D, Larsen E W. Light transport in biological tissue based on thesimplified spherical harmonics equations. Journal of Computational Physics.2006,220(1):441-470.
    [45] Chu M, Vishwanath K, Klose A D, et al. Light transport in biological tissue usingthree-dimensional frequency-domain simplified spherical harmonics equations.Physics in Medicine and Biology.2009,54(8):2493-2509.
    [46] Liemert A, Kienle, A. Analytical solutions of the simplified spherical harmonicsequations. Optics Letters.2010,35(20):3507-3509.
    [47] Klose A D, Poschinger, T. Excitation-resolved fluorescence tomography withsimplified spherical harmonics equations. Physics in Medicine and Biology.2011,56(5):1443-1469.
    [48] Liu K, Lu Y J, Tian J, et al. Evaluation of the simplified spherical harmonicsapproximation in bioluminescence tomography through heterogeneous mousemodels. Optics Express.2010,18(20):20988-21002.
    [49] Chu M, Dehghani H. Image reconstruction in diffuse optical tomography based onsimplified spherical harmonics approximation. Optics Express.2009,17(26):24208-24223.
    [50] Cong W, Shen H, Cong A, et al. Modeling photon propagation in biologicaltissues using a generalized Delta-Eddington phase function. Physical Review E.2007,76(5):051913-1-5.
    [51] Cong W, Wang G, Kumar D, et al. Practical reconstruction method forbioluminescence tomography. Optics Express.2005,13(18):6756-6771.
    [52] Lv Y, Tian J, Cong W, et al. Spectrally resolved bioluminescence tomography withadaptive finite element analysis: methodology and simulation. Physics inMedicine and Biology.2007,52(15):4497-4512.
    [53] Feng J, Jia K, Yan G, et al. An optimal permissible source region strategy formultispectral bioluminescence tomography. Optics Express.2008,16(20):15640-15654.
    [54] Naser M A, Patterson M S. Algorithms for bioluminescence tomographyincorporating anatomical information and reconstruction of tissue opticalproperties. Biomedical Optics Express.2010,1(2):512-526.
    [55] Naser M A, Patterson M S. Improved bioluminescence and fluorescencereconstruction algorithms using diffuse optical tomography, normalized data, andoptimized selection of the permissible source region. Biomedical Optics Express.2011,2(1):169-184.
    [56] Cong A X, Wang G. Multispectral bioluminescence tomography: methodology andsimulation. International Journal of Biomedical Imaging.2006,2006:1-7.
    [57] Qin C, Tian J, Yang X, et al. Adaptive improved element free Galerkin method forquasi-or multi-spectral bioluminescence tomography. Optics Express.2009,17(24):21925-21934.
    [58] Feng J, Qin C, Jia K, et al. An adaptive regularization parameter choice strategyfor multispectral bioluminescence tomography. Medical Physics.2011,38:5933-5944.
    [59] Klose A D, Beattie BJ, Dehghani H, et al. In vivo bioluminescence tomographywith a blocking-off finite-difference SP3method and MRI/CT coregistration.Medical.Physics.2010,37(1):329–338.
    [60] Dehghani H, Davis S C, Jiang S, et al. Spectrally resolved bioluminescenceoptical tomography. Optics Letters.2006,31(3):365-367.
    [61] Han W, Cong W, Wang G. Mathematical study and numerical simulation ofmultispectral bioluminescence tomography. International Journal of BiomedicalImaging.2006,2006:1-10.
    [62] Ahn S, Chaudhari A J, Darvas F, et al. Fast iterative image reconstruction methodsfor fully3D multispectral bioluminescence tomography. Physics in Medicine andBiology.2008,53(14):3921-3942.
    [63] Klose A D. Transport-theory-based stochastic image reconstruction ofbioluminescent sources. Journal of the Optical Society of America A.2007,24(6):1601-1608.
    [64] Lu Y, Zhang X, Douraghy A, et al. Source reconstruction for spectrally-resolvedbioluminescence tomography with sparse a priori information. Optics Express.2009,17(10):8062-8080.
    [65] Gao H, Zhao H. Multilevel bioluminescence tomography based on radiativetransfer equation Part1: l1regularization. Optics Express.2010,18(3):1854-1871.
    [66] Gao H, Zhao H. Multilevel bioluminescence tomography based on radiativetransfer equation Part2: total variation and l1data fidelity. Optics Express.2010,18(3):2894-2912.
    [67] He X, Hou Y, Chen D, et al. Sparse regularization-based reconstruction forbioluminescence tomography using a multilevel adaptive finite element method.International Journal of Biomedical Imaging.2011,2011:203537-1-11.
    [68] He X, Liang J, Wang X, et al. Sparse reconstruction for quantitativebioluminescence tomography based on the incomplete variables truncatedconjugate gradient method. Optics Express.2010,18(24):24825-24841.
    [69] Zhang Q, Qu X, Chen D, et al. Experimental three-dimensional bioluminescencetomography reconstruction using the lpregularization. Advanced Science Letters.2012,16(1):125-129.
    [70] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for totalvariation-based image restoration. Multiscale Modeling&Simulation.2005,4(2):460-489.
    [71] Goldstein T, Osher S. The split Bregman method for l1-regularized problems.SIAM Journal on Imaging Sciences.2009,2(2):323-343.
    [72] Cai J F, Osher S, Shen Z. Linearized Bregman iterations for compressed sensing.Mathematics of Computation.2009,78(267):1515-1536.
    [73] Cai J F, Osher S, Shen Z. Convergence of the linearized Bregman iteration forl1-norm minimization. Mathematics of Computation.2009,78(268):2127-2136.
    [74] Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms forl1-minimization with applications to compressed sensing. SIAM Journal onImaging Sciences.2008,1(1):143-168.
    [75] Feng J, Qin C, Jia K, et al. Total variation regularization for bioluminescencetomography with the split Bregman method. Applied Optics.2012,51(19):4501-4512.
    [76] Gu X, Zhang Q, Larcom L, et al. Three-dimensional bioluminescence tomographywith model-based reconstruction. Optics Express.2004,12(17):3996-4000.
    [77] Li S, Zhang Q, Jiang H. Two-dimensional bioluminescence tomography:numerical simulations and phantom experiments. Applied Optics.2006,45(14):3390-3394.
    [78] Li S, Driessen W, Sullivan S, et al. Bioluminescence tomography based onphantoms with different concentrations of bioluminescent cancer cells. Journal ofOptics A: Pure and Applied Optics.2006,8(9):743-746.
    [79] Zhang Q, Yin L, Tan Y, Z. Yuan, et al. Quantitative bioluminescence tomographyguided by diffuse optical tomography. Optics Express.2008,16(3):1481-1486.
    [80] Okawa S, Yamada Y. Reconstruction of fluorescence/bioluminescence sources inbiological medium with spatial filter. Optics Express.2010,18(12):13151-13172.
    [81] Jiang M, Zhou T, Cheng J, et al. Image reconstruction for bioluminescencetomography from partial measurement. Optics Express.2007,15(18):11095-11116.
    [82] Feng J, Jia K, Qin C, et al. Three-dimensional bioluminescence tomography basedon Bayesian approach. Optics Express.2009,17(19):16834-16848.
    [83] Cheng X, Gong R, Han W. Numerical approximation of bioluminescencetomography based on a new formulation. Journal of Engineering Mathematics.2009,63(1):121-133.
    [84] Wang T, Gao S, Zhang L, et al. Overlap domain decomposition method forbioluminescence tomography. International Journal for Numerical Methods inBiomedical Engineering.2010,26(5):511-523.
    [85] Jin L, Wu Y, Tian J, et al. Moment searching algorithm for bioluminescencetomography. Chinese Optics Letters.2009,7(7):614-616.
    [86] Arridge S R. Optical tomography in medical imaging. Inverse problems.1999,15(2): R41-R93.
    [87] Arridge S R, Schweiger M, Hiraoka M, et al. A finite element approach formodeling photon transport in tissue. Medical physics.1993,20:299-309.
    [88] Gibson A P, Hebden J C, Arridge S R. Recent advances in diffuse optical imaging.Physics in Medicine and Biology.2005,50(4): R1–R43.
    [89] Klose A D. Radiative transfer of luminescence light in biological tissue. LightScattering Reviews4. Springer Berlin Heidelberg,2009:293-345.
    [90] Chandrasekhar S. Radiative Transfer. Oxford, U.K.: Clarendon,1950.
    [91] Case KM. Linear Transport Theory. Reading, MA: Addison-Wesley,1967.
    [92] Duderstadt J J, Martin W R. Transport Theory. New York: Wiley,1979.
    [93] Lu Y, Douraghy A, Machado H B, et al. Spectrally resolved bioluminescencetomography with the third-order simplified spherical harmonics approximation.Physics in Medicine and Biology.2009,54(21):6477-6493.
    [94] Lu Y, Zhu B, Shen H, et al. A parallel adaptive finite element simplified sphericalharmonics approximation solver for frequency domain fluorescence molecularimaging. Physics in Medicine and Biology.2010,55(16):4625-4645.
    [95] Chaudhari A J, Darvas F, Bading J R, et al. Hyperspectral and multispectralbioluminescence optical tomography for small animal imaging. Physics inMedicine and Biology.2005,50(23):5421-5441.
    [96] Wang G, Cong W, Durairaj K, et al. In vivo mouse studies with bioluminescencetomography. Optics Express.2006,14(17):7801-7809.
    [97] Lv Y, Tian J, Cong W, et al. A multilevel adaptive finite element algorithm forbioluminescence tomography. Optics Express.2006,14(18):8211-8223.
    [98] Dehghani H, Davis S C, Pogue B W. Spectrally resolved bioluminescencetomography using the reciprocity approach. Medical Physics.2008,35:4863–4871.
    [99] Liu K, Tian J, Lu Y, et al. A fast bioluminescent source localization method basedon generalized graph cuts with mouse model validations. Optics Express.2010,18(4):3732-3745.
    [100] Aydin E D, De Oliveira C R E, Goddard A J H. A finite element-sphericalharmonics radiation transport model for photon migration in turbid media. Journalof Quantitative Spectroscopy and Radiative Transfer.2004,84(3):247-260.
    [101] Hayashi T, Kashio Y, Okada E. Hybrid Monte Carlo-diffusion method for lightpropagation in tissue with a low-scattering region. Applied Optics.2003,42(16):2888-2896.
    [102] Tarvainen T, Vauhkonen M, Kolehmainen V, et al. Finite element model for thecoupled radiative transfer equation and diffusion approximation. InternationalJournal for Numerical Methods in Engineering.2006,65(3):383-405.
    [103] Tarvainen T, Vauhkonen M, Kolehmainen V, et al. Hybridradiative-transfer-diffusion model for optical tomography. Applied Optics.2005,44(6):876-886.
    [104] Tarvainen T, Vauhkonen M, Kolehmainen V, et al. Coupled radiative transferequation and diffusion approximation model for photon migration in turbidmedium with low-scattering and non-scattering regions. Physics in Medicine andBiology.2005,50(20):4913–4930.
    [105] Gorpas D, Yova D, Politopoulos K. A three-dimensional finite elements approachfor the coupled radiative transfer equation and diffusion approximation modelingin fluorescence imaging. Journal of Quantitative Spectroscopy and RadiativeTransfer.2010,111(4):553-568.
    [106]侯彦宾.生物发光断层成像的系统设计与算法研究.博士论文.西安电子科技大学.2011.
    [107] Kurosawa T. Monte Carlo Calculation of Hot Electron Problems. Journal ofPhysical Society of Japan.1966,21:424-426.
    [108] Wilson B, Adam G. A Monte Carlo model for the absorption and fluxdistributions of light in tissue. Medical Physics.1983,10:824-830.
    [109] Wang L, Jacques S, Zheng L. MCML--Monte Carlo modeling of light transport inmulti-layered tissues. Computer Methods and Programs in Biomedicine.1995,47(2):131-146.
    [110]光学分子影像仿真平台(Molecular Optical Simulation Environment,MOSE).http://www.mosetm.net/
    [111] Ren N, Liang J, Qu X, et al. GPU-based Monte Carlo simulation for lightpropagation in complex heterogeneous tissues. Optics Express.2010,18(7):6811-6823.
    [112] Ren N, Zhao H, Zhu S, et al. Voxel classification methodology for rapid MonteCarlo simulation of light propagation in complex media. Chinese Optics Letters.2011,9(4):041701-1-4.
    [113] Cong W, Wang L, Wang G. Formulation of photon diffusion from sphericalbioluminescent sources in an infinite homogeneous medium. BioMedicalEngineering OnLine.2004,3(1):12-17.
    [114]陆金铺,关治.偏微分方程数值解法.北京:清华大学出版社,2005.
    [115]李开泰,黄艾香,黄庆怀.有限元方法及其应用.西安:西安交通大学出版社,1984.
    [116]王勖成.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社,2001.
    [117]魏永强,陈辉,罗志龙,等.多重网格法求解三维椭圆型偏微方程.科技信息.2010,11:421-424.
    [118]彭宽,高新波,赵恒,等.基于点加权最小二乘无网格法的光学成像光传输模型求解.生物物理学报.2011,27(4):373-381.
    [119]焦李成,杨淑媛,刘芳,等.压缩感知回顾与展望.电子学报.2011,39(7):1651-1662.
    [120]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展.电子学报.2009,37(5):1070-1081.
    [121]戴琼海,付长军,季向阳.压缩感知研究.计算机学报.2011,34(3):425-434.
    [122] http://www.convexoptimization.com/TOOLS/Law.ppt, Presented by ChristineLaw at Lucas Center for Imaging, Stanford University, July9,2008.
    [123] Baraniuk R, Davenport M, DeVore R, et al. A simple proof of the restrictedisometry property for random matrices. Constructive Approximation.2008,28(3):253-263.
    [124] Candes E J. The restricted isometry property and its implications for compressedsensing. Comptes Rendus Mathematique.2008,346(9):589-592.
    [125] Cong W, Kumar D, Liu Y, et al. A practical method to determine the light sourcedistribution in bioluminescent imaging. Optical Science and Technology, theSPIE49th Annual Meeting. International Society for Optics and Photonics.2004:679-686.
    [126]贺小伟.生物发光断层成像中光源重建逆问题研究.博士论文.西安电子科技大学,2011.
    [127] Huang H, Qu X, Liang J, et al. A multi-phase level set framework for sourcereconstruction in bioluminescence tomography. Journal of Computational Physics.2010,229(13):5246-5256.
    [128] Liu K, Yang X, Liu D, et al. Spectrally resolved three-dimensionalbioluminescence tomography with a level-set strategy. Journal of the OpticalSociety of America A.2010,27(6):1413-1423.
    [129] Zhang B, Yang X, Qin C, et al. A trust region method in adaptive finite elementframework for bioluminescence tomography. Optics Express.2010,18(7):6477-6491.
    [130] Cong A, Cong W, Lu Y, et al. Differential evolution approach for regularizedbioluminescence tomography. IEEE Transactions on Biomedical Engineering.2010,57(9):2229-2238.
    [131] Tikhonov A. Solution of incorrectly formulated problems and the regularizationmethod. Soviet Math. Dokl.1963,5:1035-1038.
    [132] Hansen P C. Truncated SVD solutions to discrete ill-posed problems. BITNumerical Mathematics.1990,30.658-672.
    [133] Fierro R D. Regularization by truncated total least squares. SIAM Journal onScientific Computing.1997,18.1223-1241.
    [134] Bazan F S V. CGLS-GCV: a hybrid algorithm for low-rank-deficient problems.Applied Numerical Mathematics.2003,47:91-108.
    [135] Paige C C, Saunders M A. LSQR: an algorithm for sparse linear equations andsparse least squares. ACM Transactions on Mathematical Software.1982,8:43-71.
    [136] Benbow S J. Solving generalized least-squares problems with LSQR. SIAMJournal on Matrix Analysis Applications.1999,21:166-177.
    [137] Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. NatureMedicine.2003,9(1):123-128.
    [138] Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature.2008,452(7187):580-589.
    [139] Contag P R, Olomu I N, Stevenson D K, et al. Bioluminescent indicators in livingmammals. Nature Medicine.1998,4(2):245-247.
    [140] Willmann J K, Van B N, Dinkelborg L M, et al. Molecular imaging in drugdevelopment. Nature Reviews Drug Discovery.2008,7(7):591-607.
    [141] Alexandrakis G, Rannou F R, Chatziioannou A F. Tomographic bioluminescenceimaging by use of a combined optical-PET (OPET) system: a computer simulationfeasibility study. Physics in Medicine and Biology.2005,50(17):4225-4241.
    [142] Han W, Cong W, Wang G. Mathematical theory and numerical analysis ofbioluminescence tomography. Inverse Problems.2006,22(5):1659-1675.
    [143] Wang G, Shen H, Cong W, et al. Temperature-modulated bioluminescencetomography. Optics Express.2006,14(17):7852-7871.
    [144] Karmarkar N. A new polynomial-time algorithm for linear programming.Proceedings of the sixteenth annual ACM symposium on Theory of computing.ACM,1984:302-311.
    [145] Koh K, Kim S J, Boyd S. An interior-point method for large-scale l1-regularizedlogistic regression. Journal of Machine Learning Research.2007,8(8):1519-1555.
    [146] Wright S J. Primal-dual interior-point methods. Society for Industrial and AppliedMathematics.1997, SIAM: Philadelphia, PA.
    [147] Ye Y. Interior point algorithms: theory and analysis. John Wiley and Sons.1997,New York.
    [148] Nesterov Y, Nemirovsky A. Interior point polynomial methods in convexprogramming. Studies in Applied Mathematics.1994,13, SIAM: Philadelphia,PA.
    [149] Johnson C A, Seidel J, Sofer A. Interior-point methodology for3-D PETreconstruction. IEEE Transactions on Medical Imaging.2000,19(4):271-285.
    [150] Portugal L F, Resende M G C, Veiga G, et al. A truncated primal infeasibledual-feasible network interior point method. Networks.2000,35(2):91-108.
    [151] Pogue B W, Geimer S, McBride T O, et al. Three-dimensional simulation ofnear-infrared diffusion in tissue: boundary condition and geometry analysis forfinite-element image reconstruction. Applied Optics.2001,40(4):588-600.
    [152] Schweiger M, Arridge S R, Hiraoka M, et al. The finite element method for thepropagation of light in scattering media: boundary and source conditions. MedicalPhysics.1995,22:1779-1792.
    [153] Han R, Liang J, Qu X, et al. A source reconstruction algorithm based on adaptivehp-FEM for bioluminescence tomography. Optics Express.2009,17(17):14481-14494.
    [154] Cong W, Wang G. Bioluminescence tomography based on the phaseapproximation model. Journal of the Optical Society of America A.2010,27(2):174-179.
    [155] Freund R M, Primal-Dual Interior-Point Methods for Linear Programming basedon Newton’s Method. Massachusetts Institute of Technology,2004.
    [156] Liu J, Wang Y, Qu X, et al. In vivo quantitative bioluminescence tomographyusing heterogeneous and homogeneous mouse models. Optics Express.2010,18(12):13102-13113.
    [157] Qin D, Zhao H, Tanikawa Y, et al. Experimental determination of opticalproperties in turbid medium by TCSPC technique. Proc. SPIE.2007,6434:64342E.
    [158] Chen X, Gao X, Chen D, et al.3D reconstruction of light flux distribution onarbitrary surfaces from2D multi-photographic images. Optics Express.2010,18(19):19876-19893.
    [159] Wang G, Qian X, Cong W, et al. Recent development in bioluminescencetomography. Current Medical Imaging Reviews.2006,2(4):453–457.
    [160] Xu Z, Zhang H, Wang Y, et al. L1/2regularizer. Science in China F: InformationSciences.2010,53:1159-1169.
    [161] Chen X, Xu F, Ye Y. Lower Bound Theory of Nonzero Entries in Solutions of l2-lpMinimization. SIAM Journal on Scientific Computing.2010,32(5):2832-2852.
    [162] Wei M H, McClellan J H, Scott W R. Application of lp-regularized least squaresfor0≤p≤1in estimating discrete spectrum models from sparse frequencymeasurements. IEEE International Conference on Acoustics Speech and SignalProcessing (ICASSP).2010,4010-4013.
    [163] Bayram I, Selesnick I W. A subband adaptive iterative shrinkage/thresholdingalgorithm. IEEE Transactions on Signal Processing.2010,58(3):1131-1143.
    [164] Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing.IEEE International Conference on Acoustics, Speech and Signal Processing,ICASSP.2008,2008:3869-3872.
    [165] Dogdas B, Stout D, Chatziioannou A F, et al. Digimouse: a3D whole body mouseatlas from CT and cryosection data. Physics in Medicine and Biology,2007,52(3):577-587.
    [166] Song X, Wang D, Chen N, et al. Reconstruction for free-space fluorescencetomography using a novel hybrid adaptive finite element algorithm.Optics Express.2007,15(26):18300–18317.
    [167] Porcel M R, Wu J C, Gambhir S S. Molecular imaging of stem cells.2009.2009Jul30. In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute.Available from: http://www.ncbi.nlm.nih.gov/books/NBK27079/
    [168] Azar F S, Intes X. Translational multimodality optical imaging. Artech HousePublishers,2008.
    [169] Wang G, Cong W, Shen H, et al. Overview of bioluminescence tomography-a newmolecular imaging modality. Frontiers in Bioscience.2008,13:1281-1293.
    [170] Engl H W, Hanke M, Neubauer A. Regularization of inverse problems. KluwerAcademic Pub,1996.
    [171] Donoho D L. For most large underdetermined systems of linear equations theminimal l1-norm solution is also the sparsest solution. Communications on Pureand Applied Mathematics.2006,59(6):797-829.
    [172] Tikhonov A, Aresenin V. Solutions of ill-posed problems. Washington D C: V. H.Winston&Sons,1977.
    [173]刘继军.不适定问题的正则化方法及应用.北京:科学出版社,2005.
    [174] He X. Tian J. Wu Y. et al. Study of four Regularization methods for the inverseproblem in Bioluminescence Tomography. Proccedings of SPIE Symposium onMedical Imaging.2009,7262,72622B-1-10.
    [175] Natarajan B K. Sparse approximate solutions to linear systems. SIAM Journal onComputing.1995,24(2):227-234.
    [176] Davis G. Adaptive nonlinear approximations. PhD thesis, New York University,1994.
    [177] Donoho D L. Neighborly polytopes and sparse solution of underdeterminedsystems of linear equations. Technical Report, Statistics Department, StanfordUniversity,2005.
    [178] Donoho D L. High-dimensional centrally symmetric polytopes withneighborliness proportional to dimension. Discrete and Computational Geometry.2006,35(4):617-652.
    [179] Zhang Y. Theory of compressive sensing via l1-minimization: a non-RIP analysisand extensions. Rice University CAAM Technical Report TR08-11,2008.
    [180] Yuan M, Lin Y. Model selection and estimation in regression with groupedvariables. Journal of the Royal Statistical Society: Series B (StatisticalMethodology).2006,68(1):49-67.
    [181] Candes E, Tao T. The Dantzig selector: statistical estimation when p is muchlarger than n. The Annals of Statistics.2007,35:2392-2404.
    [182] Zou H. The adaptive lasso and its oracle properties. Journal of the AmericanStatistical Association.2006,101(476):1418-1429.
    [183] Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1minimization. Journal of Fourier Analysis and Applications.2008,14(5):877-905.
    [184] Xu Z B. Data modeling: Visual psychology approach and L1/2regularizationtheory. Proceedings of International Congress of Mathematicians, Hyderabad.2010:3153-3184.
    [185] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization.IEEE Signal Processing Letters.2007,14(10):707-710.
    [186] Chartrand R, Staneva V. Restricted isometry properties and nonconvexcompressive sensing. Inverse Problems.2008,24(3):035020-1-14.
    [187] Xu Z B, Guo H L, Wang Y, et al. Representative of L1/2regularization among lq(0    [188] Nesterov Y, Nemirovskii A S, Ye Y. Interior-point polynomial algorithms inconvex programming. Philadelphia: Society for Industrial and AppliedMathematics,1994.
    [189] Candes E, Romberg J. l1-magic: Recovery of sparse signals via convexprogramming. http://users.ece.gatech.edu/justin/l1magic/downloads/l1magic.pdf.
    [190] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit.SIAM journal on scientific computing.1998,20(1):33-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700