用户名: 密码: 验证码:
南极株塔玛亚历山大藻产毒营养生理及毒素生理功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极株塔玛亚历山大藻(Alexandrium tamarense Polar)是一株分离自南极海区的有毒亚历山大藻,曾在南极海区形成大规模赤潮,对海区的生态系统和海洋生物资源构成了威胁。本论文以A.tamarense Polar为主要研究对象,运用藻类生理学、分析化学和蛋白质组学等方法和技术,比较研究了A.tamarense Polar和无毒塔玛亚历山大藻(A.tamarense CCMP2023)营养,特别是氮营养利用特性上的差异、不同营养盐及培养条件下A.tamarense Polar的产毒生理、以及高氨氮胁迫下A.tamarense Polar细胞蛋白质组的差异表达,探讨了亚历山大藻中麻痹性贝毒的生理功能及合成机制。取得的主要结果如下:
     1、比较研究了有毒亚历山大藻A.tamarense Polar和无毒亚历山大藻A.tamarenseCCMP2023氮营养盐吸收同化的差异,重点研究了营养吸收同化的两种关键酶—硝酸还原酶和谷氨酰胺合成酶的活性。结果表明,相对于无毒株塔玛亚历山大藻A.tamarense CCMP2023,有毒塔玛亚历山大藻A.tamarense Polar在硝酸盐和氨氮的吸收、细胞生长和同化酶活性等方面均存在一定的差异,有毒亚历山大藻对氮营养盐的吸收、转换速率更高,导致A.tamarense Polar细胞内氨盐的大量累积,而毒素的合成可能是亚历山大藻细胞降低氨毒性和储存氮的一种途径;
     2、研究了不同浓度氨氮和硝氮营养盐条件下的A.tamarense Polar产毒生理,表明在一定浓度范围内,硝氮对其细胞增长和毒素产生起促进作用,但氨氮的作用及其机制则比较复杂,中、低浓度(100μmol/L以下)组,其促进作用比较明显,各指标均普遍高于相应的硝氮组,但高浓度氨氮(150μmol/L以上)对细胞有明显毒性作用,其作用强度与氨氮浓度正相关,高氨培养条件下A.tamarense Polar的单细胞毒素含量和毒素产量都明显增高,证明细胞内PSP毒素的合成是细胞降低氨氮毒性的一个重要途径,是细胞生命活动中的一个重要生理功能;
     3、不同氮源和培养条件,如磷限制、低温(13℃)和谷氨酰胺合成酶抑制剂作用下A.tamarense Polar毒素含量和组成变化结果表明:在A.tamarense Polar中,细胞可能首先合成C_(1,2)毒素,在N-硫酸酯酶的作用下转化为GTX_(2,3),这一途径受到营养盐、温度等多种环境因子特别是温度的调控。在低温条件下A.tamarensePolar细胞中GTX毒素消失可能与N-硫酸酯酶的合成受到抑制或使酶失活有关;
     4、比较研究氨氮培养条件下有毒亚历山大藻A.tamarense Polar不同生长阶段细胞蛋白质组的表达差异,在高氨氮培养后期的细胞内发现一组与细胞重要生命活动相关的蛋白质,如与细胞代谢相关尿卟啉原脱羧酶(ATP1)、三羧酸循环中的琥珀酸脱氢酶(ATP3)和脂肪酸代谢中的乙酰辅酶A羧化酶(ATP7);与细胞分裂相关SMC蛋白(ATP6)以及与细胞运动相关的Rod蛋白FlgB(点2)等消失,同时发现了两个与牛磺酸代谢途径相关的新蛋白,ABC转运器(ATP4和5)。这些蛋白的消失和出现是细胞对氨毒性的一种生理响应,可作为一类潜在的生物标志物,用于指示氨的毒性。
Alexandrium tamarense Polar is a paralytic shellfish toxins (PSTs)-producing dinoflagellate which ever formed large scale toxic blooms in the Sourth Polar region, and caused adverse impacts on marine ecosystem and marine organisms. This study investigated nutrient physiology of toxin production and physiological functions of toxin in A. tamarense Polar using a combination approach of algal physiology, analytical chemistry and proteomics, including comparative studies on nutrient utilization characteristics between toxic and none-toxic A. tamarense strains, toxin production physiology of A. tamarense Polar under various nutrients and culture conditions, and proteomics of A. tamarense Polar under high ammonium concentration. The main results were as follows:
     1. Compared nutrient-utilization characteristics between toxic (A. tamarense Polar) and none-toxic (A. tamarense CCMP2023) Alexandrium strains with emphasis on two nitrogen assimilation enzyme, nitrate reductase (NR) and glutamine synthestase (GS) activities. The results showed that the toxic strains, A. tamarense Polar exhibited both higher NR and GS activities which made it more efficiently in utilizing different nitrogen sources, which might also lead to the accumulation of ammonium in cells of A. tamarense Polar. The biosynthesis of PSP toxins may be a celluar detoxification pathway to alleviate the ammonium toxicity to cells and a nitrogen storage ;
     2. Investigated the toxin production of A. tamarense Polar under various concentrations of nitrate and ammonium, the results showed that within a certain concentration range of nitrate enhanced cell growth and toxin production of A. tamarense Polar. However, the effects of ammonium on A. tamarense Polar were much more complex: low concentrations (under 100μmol/L) of ammonium had positive effects while high concentrations (above 150μmol/L) of ammonium exhibited an inhibitory effect on the growth of A. tamarense Polar and the inhibiting effect was increased with the concentrations of ammonium within a certain range. High concentrations of ammonium induced more PSP toxin productivity, indicating biosynthesis of PSP toxins might be a detoxification pathway of ammonium to cells and is an important physiological function of A. tamarense Polar;
     3. Variations of toxin content and composition of A. tamarense Polar under different nitrogen sources and various growh conditions, such as phosphate-limitation, low temperature (13℃) and GS-inhibitor (MSX) indicated that Cl/2 might be the first synthesized PSP toxin in cells of A. tamarense Polar, which was converted into other PSP derivatives, such as GTXs with the action of N- sulphatase. This biosynthesis pathway of PSP toxins was affected by nutrients, temperatre and other environmental factors. Low temperature might inhibite the biosynthesis of N-sulphortase or activity of N-sulphortase which resulted in undectation of GTXs;
     4. Compared differential expressions of proteomes of A. tamarense Polar under low (50μmol/L) and high (150μmol/L) concentrations of ammonium, and identified and characterized a group importanr proteins related to metabolism, cell division and cell motivation which were not observed in the later growth phase of A. tamarense Polar under high ammonium concentration while two proteins related taurine metabolism were found.. These proteins reflected the physiological reponse of A. tamarense Polar cells to the toxicity of ammomum and could be used as potential biomarkers as cells response to ammonium toxicity.
引文
1.曹特,倪乐意.金鱼藻抗氧化酶对水体无机氮升高的响应.水生生物学报,2004,28(3):299-303.
    2.国家海洋局.海洋监测规范.北京:海洋出版社,1991.
    3.韩路,王海珍,曹新川.植物化感作用及其在农业生产中的应用.新疆环境保护,2000,22(2):88-92.
    4.胡晗华,石岩峻,丛威.通过氮浓度调节塔玛亚历山大藻毒素产量的初步研究.过程工程学报,2005,5(4):438-441.
    5.江天久,黄伟建,王朝晖等.几种环境因子对塔玛亚历山大藻(大鹏湾株)生长及其藻毒力影响.应用与环境生物学报,2000,6(2):151-154.
    6.李林.蛋白质组学的进展.生物化学和生物物理进展,2000,27(3):227-231.
    7.梁松,钱宏林.加强贝毒管理工作的探讨.海洋通报,1993,12(2):83-88.
    8.吕嘉扬,王大志,洪华生等.两种硝酸盐浓度下威氏海链藻和盐生杜氏藻硝酸还原酶活力研究.集美大学学报,2004,9(1):6-10.
    9.齐雨藻,邹景忠,梁松等.中国沿海赤潮.北京:科学出版社,2003.
    10.石岩峻,胡晗华,马润宇等.塔玛亚历山大藻对氮和磷的吸收及其生长特性.应用生态学报,2003,14(7):1143-1146.
    11.万福生,刘波,赵小曼等.牛磺酸对大鼠在体缺血再灌注心肌线粒体呼吸酶系的影响.基础医学与临床,2000,20(4):45-47.
    12.王珺,顾宇飞,尹大强等.富营养条件下不同形态氮对轮叶黑藻(Hydrilla verticillata)的生理影响.环境科学研究,2006,19(1):71-79.
    13.王艳,唐海溶,蒋磊等.硝酸盐对球形棕囊藻生长和硝酸还原酶活性的影响.植物学通报,2006,23(2):138-144.
    14.王云峰.麻痹性贝毒毒素的制备和活性研究(博士论文).2001.中国科学院海洋所.
    15.谢瑾.塔玛亚历山大藻化感作用研究(硕士论文).2006.暨南大学.
    16.颜天,周名江,邹景忠等.香港及珠江口海域有害赤潮发生机制初步探讨.生态学报,2001,21(10):1634-1641.
    17.于仁诚,周名江.麻痹性贝毒研究进展.海洋与湖沼,1998,29(3):330-338.
    18.张清春,于仁诚,周名江等.不同氮源对微小亚历山大藻生长和毒素产生的影响.海洋学报,2005a,27(6):138-145.
    19.张清春,于仁诚,周名江等.不同类型含磷营养物质对微小亚历山大藻(Alexandrium minutum)生长和毒素产生的影响.海洋与湖沼,2005b,36(5):465-474.
    20.张水浸.赤潮及其防治对策.北京:海洋出版社,1994.
    21.Alice I.G.,Bernd L.,Katrin R.,et al.Growth response and toxin concentration of cultured Pyrodinium bahamense var.compressum to varying salinity and temperature conditions.Toxicon.2007,50:518-529.
    22.Andersen,T.,Schartau,A.K.L.,Paasche,E.Quantifying external and internal nitrogen and phosphorus pools as well as nitrogen and phosphorus supplied through remineralization,in coastal marine plankton by means of a dilution technique.Mar.Ecol.Prog.Ser.1991,69:67-80.
    23.Anderson,D.M.,Kulis,D.M.,Sullivan,J.J.,et al.Toxin composition variations in one isolate of the dinoflagellate Alexandrium fundyense.Toxicon.1990a,28:885-893.
    24.Anderson,D.M.,Kulis,D.M.,Sullivan,J.J.,et al.Dynamics and physiology of saxitoxin production by the dinoflagellates Alexandrium spp.Mar.Biol.1990b,104:511-524.
    25.Anderson,D.M.,Kulis,D.M.,Doucette,G.J.,et al.Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastem United States and Canada.Mar.Biol.1994,120:467-468.
    26.Anderson,D.M.,Kulis,D.M.,Qi,Y.Z.,et al.Paralytic shellfish poisoning in Southern China.Toxicon.1996,34:579-590.
    27.Anderson,D.M.Turning back the harmful red tide-Commentary.Nature.1997,388(6642):513-514.
    28.Baldock,M.I.,Denger,K,Smits,THM.,et al.Roseovarius sp strain 217:aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase.FEMS Microbiology Letters.2007,271(2):202-206.
    29.Bechemin,C.,Grzebyk,D.,Hachame,F.,et al.Effect of different nitrogen/phosphorous nutrient ratios on the toxin content in Alexandrium minutum.Aquat.Microb.Ecol.1999,20:157-165.
    30. Berg, H. C, Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature. 1973,245:380-382.
    
    31. Berges, J. A., Hageman, R. H. Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: a revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology & Oceanography. 1997,40 (1): 82-93.
    
    32. Blasco, D., Maclsaac, J. J., Packard, T. T., et al. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region. Limnology & Oceanography.1984,29: 275-286.
    
    33. Britto, D. T., Siddiqi, M. Y., Anthony, D. M. Glass, et al. Futile transmembrane NH_4~+ cycling:A cellular hypothesis to explain ammonium toxicity in plants. Pro. Natl. Acad. Sci. 2001,98:4255-4258.
    
    34. Catterall, W. A., Morrow, C. S., Hartsharne, R. P., Neurotoxin binding to receptor sites associated with the voltage-sensitive sodium channels in intact, lysed, and detergent solubilized brain membranes. Biol. Chem. 1979, 254:11379-11384.
    
    35. Cembella, A. D., Therriault, J. C., Beland, P. Toxicity of cultures isolates and natural populations of Protogonyaulax tamarensis from the St. Lawrence Estuary. J. Shellfish Res.1988,7:611-621.
    
    36. Chan, L. L, Lo S. C. L., Hodgkiss, I. J. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis. Proteomics. 2002, 2.1169-1186.
    
    37. Chan, L. L., Hodgkiss, I. J., Lu, S. H., et al. Use of two-dimensional electrophoresis proteome reference maps of dinoflagellates for species recognization of causative agents of harmful algal blooms. Proteomics. 2004,4: 180-192.
    
    38. Chan, L. L., Hodgkiss, I. J., Lam, P. K. S., et al. Use of 2-DE to differentiate morphospecies of Alexandrium minutum, a paralytic shellfish poisoning toxins (PST)-producing dinoflagellate of harmful algal blooms. Proteomics. 2005,5: 180-192.
    
    39. Chan, L. L. Sit, W. H., Lam, P. K. S. et al. Identification and characterization of a "biomarker of toxicity" from the proteome of the paralytic shellfish toxin-producing dinoflagellate Alexandrium tamarense (Dinophyceae). Proteomics. 2006, 6: 654-666.
    
    40. Dortch, Q., Ahmed, S. I., Packard, T. T. Nitrate reductase and glutamate dehydrogenase activities in Skeletonema costatum as measures of nitrogen assimilation rates. Plankton Research. 1979, 1: 169-186.
    
    41. Dortsch, Q., Clayton, J. J. R., Thoresen, S. S. Species differences in accumulation of nitrogen pools in phytoplankton. Mar. Biol. 1984, 81: 237-250.
    
    42. Earnshaw, W. C., Laemmli, U. K. Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 1983, 96: 84-93.
    
    43. Ferrario-Mery, M. C. Thibaud, T. Betsche, M. H. et al. Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture.Planta. 1997,202:510-521.
    
    44. Flynn, K., Franco, J., Fernandez, P., et al. Changes in toxin content, biomass and pigment of the dinoflagellates Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Marine ecology progress series. 1994,111(2): 99-109.
    
    45. Flynn, K., Franco, J., Fernandez, P., et al. Nitrogen and phosphorus limitation in cultured Alexandrium minutum does not promote toxin production. In: Lassus, P., Arzul, G., Erard-Le Derm, E., Gentien, P., Marcaillou-Le Baut C. (eds.) Harmful Marine Algal Blooms, Lavoisier,Paris, 1995:439-444.
    
    46. Flynn, K. J., K. J. Jones., K. J. Flynn. Comparisons among species of Alexandrium grown in nitrogen- or phosphorus-limiting batch culture. Mar. Biol. 1996,126: 9-18.
    
    47. Garcia-Fernandez, J. M., Lopez-Ruiz, A., Humanes, L., et al. Purification and characterization of. glutamine synthetase from the green alga Monoraphidium braunii. Plant Sci. 1997,123: 77-84.
    
    48. Gavin, K.Y. Siu., MariaL.C.Y., D.K.O.Chan. Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate Alexandrium catenella Hydrobiologia. 1997, 352: 117-140.
    
    49. Gerendas, J. Zhu, Z., Bendixen, R., et al. Physiological and biochemical processes related to ammonium toxicity in higher plants. Journal of plant nutrition and soil science. 1997, 160:239-251.
    50. Graneli, E., Johansson, N. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N~-or P~- deficient conditions. Harmful Algae. 2003,2(2):135-145.
    
    51. Hallegraeff, G. M. A review of harmful algal blooms and their apparent global increase.Phycologia. 1993, 32(2):79-99.
    
    52. Hallegraeff, G. M., McCausland, M. A., Brown R. K. Early warning of toxic dinoflagellate blooms of Gymnodinium catenatum in southern Tasmanian waters. J. Plank. Res. 1995, 17:1163-1176.
    
    53. Hallegraeff, G. M., Harmful algal blooms: a global overview. In: Hallegraeff, G. M.,Anderson, D. M., Cembella, A. D. Editors, Manual on Harmful Marine Microalgae. Paris,France: Imprimerie landais, 2005:25-49.
    
    54. Hansen, P. J. Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a non-toxic alga. Mar. Ecol. Prog.Ser. 1995, 121:65-72.
    
    55. Ho, K. C., Kang S. H., Ironside, H. Y. Lam, et al. Distribution of Alexandrium tamarense in Drake Passage and the threat of harmful algal blooms in the Antarctic Ocean. Ocean and polar research. 2003,25(4): 625-631.
    
    56. Homma, M., Kutsukake, K., Hasebe, M., et al. FlgB, FlgC, FlgF and FlgG A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J. Mol.Biol. 1990,211:465-477.
    
    57. Hu, G., Yalpani, N., Briggs, S. P., et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant cell. 1998, 10:1095-1105.
    
    58. Huntley, M. E., Sykes, P., Rohan, S., et al. Chemically mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanisms, occurrence significance. Mar. Ecol. Prog. Ser. 1986,28:105-120.
    
    59. Hwang, D. F., Lu, Y. H., Influence of environmental and nutritional factors on growth,toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon. 2000, 38:1491-1503.
    
    60. Jacobi, P. A., Martinelli, M. J., Polanc, S., Total synthesis of saxitoxin. J. Am. Chem. Soc. 1984, 106 (19): 5594-5598.
    
    61. Jean-Paul, P., Allan, D. C. Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada.Journal of plankton research. 1999, 21(5): 939-955.
    
    62. John, E. H., Flynn, K. J. Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N: P supply ratios on internal toxin and nutrient levels.Phycology. 2000(35): 11-23.
    
    63. Joseph, L., Tracy, A., Villareal, et al. A high sensitivity nitrate reductase assay and its application to vertically migrating Rhizosolenia mats. Aquatic microbial ecology, 1997, 12:95-104.
    
    64. Keating, K. I. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science. 1978,199: 971-973.
    
    65. Ketchum, B. H. The absorption of phosphate and nitrate by illuminated cultures of Nitzschia closterium. Am. J. Bot. 1939,26: 399-407.
    
    66. Kodama, M., Ogata, T., Sato, S., Bacterial production of saxitoxin. Agric. Biol. Chem. 1988,52: 1075-1077.
    
    67. Kotaki, Y., Tajiri, M., Oshima, Y., et al. Identification of a calcareous red alga as the primary source of paralytic shellfish toxins in coral-reef crabs and gastropods. Nippon suisan gakkaishi. 1983,49: 283-286.
    
    68. Kubori, T., Shimamoto, N., Yamaguchi, S., et al. Morphological pathway of flagellar assembly in Salmonella typhimurium. J. Mol. Biol. 1992,226:433-446.
    
    69. Kustka, A., Sergio, S., Carpenter, E. J., et al. A Revised estimate of the iron use efficiency of nitrogen fixation, with Special reference to the marine cyanobacterium Trichodesmium sp.(Cyanophyta). J. Phycol., 2003, 39: 12-25.
    
    70. Larionov, V. L., Karpova, T. S., Kouprina, N. Y., et al. A mutant of Saccharomyces cerevisiae with impaired maintenance of centromeric plasmids. Curr Genet. 1985,10(1): 15-20.
    
    71. Lim, P. T., Leaw, C. P., Kobiyama, A. et al. effects of light and temperature on growth,nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichii and A. minutum(dinophyceae). Journal of phycology. 2006, 42(4): 786-799.
    
    72. Lomas, M. W., Glibert, P. M. Interactions between NH_4~+ and NO_3~- uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures.Marine biology.1999,133(3):541-551.
    73.Macintyre,J.G.,Cullin,J.J.Cembella,A.D.Vertical migration,nutrition and toxicity of the red-tide dinoflagellate Alexandrium tamarense.Mar.Ecol.Prog.Ser.1997,148:201-216.
    74.Mahmood,N.A.,Carmichael,W.W.Paralytic shellfish poisons produced by the freshwater cyanobacteria Aphanizomenon flos-aquae.Toxicon.1986,24:175-186.
    75.Matsuda,A.,Nishijima,T.T.,Fukami,K.et al.Growth kinetics and paralytic shellfish poisoning toxin production in phosphorus-limited cultures of Alexandrium catenella.Nippon suisan gakkaishi.2006,72(2):193-200.
    76.Matsui,M.,Homma,H.Biochemistry and molecular biology of drug-metabolizing sulfotransferase.Int.J.Biochem.1994,26:1234-1247.
    77.Maurice,L.,Gamache,T.,Michaud,S.,et al.Does the cost of NO_3~- reduction affect production of hamufl compounds by Alexandrium excavatum[A].Lassus,P.,Arzul,G.,Erard,E.,et al.Harmful Marine Algal Blooms[C].Paris:Lavoisier,Intercept Ltd,1995:463-468.
    78.Murphy,J.Riley,J.P.A modified single solution method for determination of phosphate in natural water,Analytica.Chimca.Acta.1962,27:31-36.
    79.Myklestad,S.M.,Ramlo,B.,Hestmann,S.Demonstration of strong interaction between the flagellate Chrysochromulina polylepis(Prymnesiophyta) and a marine diatom[A].Lassus P,Arzul G,Erard-le Denn E,et al.Harmful Marine Algal Blooms[C].New York:Lavoisier Intercept Ltd,1995:633-638.
    80.Ogata,T.,Ishimaru,T.,Kodama,M.,Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis.Mar.Biol.1987,95:217-220.
    81.Onodera,H.,Stake,M.,Oshima,Y.,et al.,New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei.Nat.Toxins.1997,5(4):146-151.
    82.Oshima,Y.,Sugino,K.,Yasumoto,T.Latest advances in HPLC analysis of paralytic shellfish toxins.Mycotoxins and phycotoxins.1989,319-326.
    83.Oshima,Y.Chemical and enzymatic transformation of paralytic shellfish toxins in marine organisms[A].In:Harmful algal blooms.Proc.6~(th) Int.Conf.On Toxic Marine Phytoplankton[C].Paris:Lavoisier.1995,475-480.
    84.Plumley,F.G.Marine algal toxins:biochemistry,genetics,and molecular biology[A].In: Anderson, D. M. and Garrison, D. L. (eds.), Ecology and Oceanography of Harmful Algal Blooms [C]. Limnol. Oceanogr. 1997,42: 1252-1264.
    
    85. Proctor, N. H., Chan, S. L. Trevor, A. J. Production of saxitoxin by cultures of Gonyaulax catenella. Toxicon. 1975, 13:1-9.
    
    86. Reyes, J. C., Muro-Pastor, M. I., Florencio, F. J. A mutant lacking the glutamine synthetase gene (glnA) is impaired in the regulation of the nitrate assimilation system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 1994,176(24): 7516-7523.
    
    87. Rosine, L.B., Joanna, R., Jadwiga, L. et al. Analysis of heme biosynthesis in catalase and cytochrome deficient yeast mutants. Molecular and general genetics. 1977,156(2): 177-183.
    
    88. Sako, Y., Yoshida, T., Uchida, A., et al. Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2+3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). J. Phycol. 2001, 37: 1044-1051.
    
    89. Sandric, C. Y. L., Satoru, T. Response of the dinoflagellate Alexandrium tamarense to a range of nitrogen sources and concentrations: growth rate, chemical carbon and nitrogen, and pigments. Hydrobiologia. 2004, 515: 215-224.
    
    90. Shapiro, B.M., Stadtman E.R. Glutamine synthetase (E. coli) [A]. Tabor, H., Tabor, C. W.Methods in enzymology 17A [M]. New York: Academic Press, 1970: 910-922.
    
    91. Shimizu, Y. Microalgal metabolites: a new perspective. Ann. Rev. Mirobial. 1996, 50:431-465.
    
    92. Sivasankar, S. Oaks, A. Regulation of nitrate reductase during early seeding growth. A role for asparagine and glutamine. Plant Physiol. 1995,107:1225-1231.
    
    93. Slabas, A. R., Fawcett, T. The biochemistry and molecular biology of plant lipid biosynthesis.Plant. Mol. Biol. 1992,19:169-191.
    
    94. Stacey, M. E, Collin, S. R. Effects of temperature, irradiance, and salinity on photosynthesis,growth rates, total toxicity, and toxin composition for Alexandrium fundyense isolates from the Gulf of Maine and Bay of Fundy. Deep Sea Research Part II: Topical Studies in Oceanography. 2005, 52(19-21): 2491-2500.
    
    95. Sommer, H., Meyer, K. F. Paralytic shellfish poisoning. Arch. Path. 1937a, 24: 560-598.
    
    96. Sommer, H., Whedon, W. F., Kofoid, C. A. et al. Relation of paralytic shellfish poison to certain plankton organisms of the genus Gonyaula. Arch. Path. 1937b, 24: 537-559.
    97.Steidinger,K.A.Some taxonomic and biologic aspects of toxic dinoflagellates.In:Falconer,I.R.(eds.),Algal toxins in seafood and drinking water.Academic.1993,1-28.
    98.Tanino,H.,Nakata,T.,Kaneko,Y.et al.A stereospecific total synthesis of dl-saxitoxin.J.Am.Chem.Soc.1977,99(8):2818-2819.
    99.Taroncher-Oldenbugr,G.,Kulis,D.,Anderson,D.M.Toxin variability during the cell cycle of the dinoflagellate Alexandrium fundyense.Limnol.Oceanogr.1997,42:1177-1188.
    100.Thompson,P.A.,Oh,H.M.,Rhee,G.Y.Storage of Phosphorus in Nitrogen-fixing Anabaena flos-aquae(Cyanophyceae).J.Phycol.1994,30:267-273.
    101.Tomas,C.R.,Daniel,G.B.,The influence of phosphorus source on the growth and cellular toxic content of the benthic dinoflagellate Prorocentrum lima[A].In:Smayda,T.J.,Shimizu,Y.ed.Toxic phytoplankton blooms in the sea[C].Amsterdam:Elsevier Science Publishers B V,1993:565-570.
    102.Touchette,B.W.,Burkholder,J.M.Review of nitrogen and phosphorus metabolism in seagrasses.Journal of experimental marine biology and ecology.2000,250(1-2):133-167.
    103.Turiif,N.,Runge,J.A.,Cembella,A.D.Toxin accumulation and feeding behaviour of the planktonic copepod Calanus finmarchicus exposed to the red-tide dineflagellate Alexandrium excavatum.Mar Biol.1995,123:55-64.
    104.Usup,G.,Kulis,D.M.,Anderson,D.M.Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense var.compressum in laboratory cultures.Nat.Toxins 1994,2(5):254-262.
    105.Wang,C.H.,Hsieh,D.P.H.Nutritional supplementation to increase growth and paralytic shellfish toxin productivity by the marine dinoflagellate Alexandrium tamarense.Biochemical engineering journal.2002(11):131-135.
    106.Wang,D.Z.,Ho,A.Y.T.,Hsieh,D.P.H.Production of C2 toxin by Alexandrium tamarense CI01 using different culture methods.Journal of Applied Phycology.2002a,14:461-468.
    107.Wang,D.Z.Hsieh,D.P.H.Effects of different nitrogen/phosphorus nutrient ratios on the growth and C2 toxin bioproduction in Alexandrium tamarense CI01.Mar.Poll.Bull.2002b,45:286-289.
    108.Wang,D.Z.,Hsieh,D.P.H.Growth and toxin production in batch cultures of a marine dinoflagellate Alexandrium tamarense HK9301 isolated from the South China Sea.Harmful algae. 2005b, 4(2): 401-410.
    
    109. Wang, D. Z., Zhang, S. G., Hong, H. S. A sulfotransferase specific to N-21 of gonyautoxin 2/3 from crude enzyme extraction of toxic dinoflagellate Alexandrium tamarense CI01.Chinese journal of oceanology and limnology. 2007, 25(2): 227-234.
    
    110. Weinshilboum, R. M., Otterness, D. M., Akoy, I. A., et al. Sulfotransferase molecular biology:DNAs and genes. FASEBJ. 1997,11: 3-14.
    
    111. White, A.W. High toxin content in the dinoflagellate Gonyaulax excavata in nature. Toxicon.1986,24:605-610.
    
    112. Windust, A. J., Wright, J. L. C, McLachlan, J. L. The effects of the diarrhetic shellfish poisoning toxins okadaic acid and dinophysistoxin-1, on the growth of microalgae. Mar. Biol.1996,126: 19-25.
    
    113. Yumiko, S. H., Naoko, U., Keiichi N., et al. In Vitro Characterization of FlgB, FlgC, FlgF,FlgG, and FliE, Flagellar Basal Body Proteins of Salmonella. J. Mol. Biol. 2004, 339:423-435.
    
    114. Zhou, M. J., Li, J., Luckas, B., et al. A recent shellfish toxin investigation in China. Mar.Pollut. Bull. 1999, 39(1):331-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700