用户名: 密码: 验证码:
微动力一体化折流板反应器处理高浓度生活污水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,研究和开发占地面积小、运行维护费用低、能耗低、处理效果好的自然处理系统是国内外所着重考虑的课题之一。厨房废水,厕所废水的混合废水,厕所、食堂的化粪池出水等,各种污染物浓度明显较高,属于高浓度生活污水,需要经过处理后达标排放。针对这一现状,鉴于单户水处理系统和自然处理系统的理念及绿色节能的原则,本试验中,设计微动力一体化折流板反应器对高浓度生活污水进行处理,并作相应试验研究。反应器中,A/O/A/O工艺沿水流方向串联运行。
     通过试验,分析、验证和评价了反应器和填料对高浓度生活污水的净化能力,并给出该反应器的最佳设计参数和运行过程中的最佳控制条件。主要的试验研究成果如下:
     1、探讨了厌氧活性污泥—好氧生物膜共生情况下反应器的常温启动方法。固定进水水质,以较长的HRT进行培养。厌氧活性污泥、好氧生物膜两者的培养、驯化保持一致和同步,以厌氧活性污泥的驯化为时间限制条件。55d左右,反应器启动成功,各个格室的出水水质稳定,第一微曝气格室的指示生物以钟虫、轮虫及衣壳虫为主。
     2、试验数据表明,反应器在最佳运行工况(工况三)下,Nv=0.26kgCOD/m3·d, C OD去除率为94.76%,NH4+-N去除率为59.82%,TN去除率为34.52%。其中,第一厌氧格1的Nv=1.576kgCOD/m3·d, Ns=0.07649kgCOD/kgMLSS·d, COD去除率为88.22%;第一厌氧格2的Nv=0.003472kgCOD/m3-d, Ns=0.0001695kgCOD/kgMLSS-d, CO D去除率为88.42%;第一微曝气格室的Nv=0.03718gCOD/m3·d, COD去除率为91.38%。第一微曝气格室的硝化容积负荷=0.1651 kgNH4+-N/(m3·d), NH4+-N的本格去除率为61.81%;深度处理格室的硝化容积负荷=0.04471 kgNH4+-N/(m3·d), NH4+-N的本格去除率为51.44%。
     3、由HRT=23.1h变化到HRT=36.96h,反应器对氨氮去除率的恢复规律试验中,反应器连续运行7d各格出水氨氮浓度在一个很小范围内浮动,较难恢复。之后加大第一微曝气格的曝气量,连续运行4d,各格出水氨氮浓度逐渐减小,最终恢复到HRT=36.96h时稳定运行情况下的氨氮去除水平。
     4、正交试验数据分析表明,影响反应器处理效果的主要因素是进水流量和曝气量,但是曝气间歇时间对TN的去除率有较大影响。
     5、通过生物相分析,厌氧、缺氧相微生物主要为与厌氧消化(甲烷发酵)有关的细菌种群、反硝化细菌;好氧相微生物主要为亚硝化细菌和硝化细菌;指示生物主要为钟虫、轮虫及衣壳虫。
At present, the research and development of natural processing system which covers a small area, operates more efficiently with low expenses and low energy consumption, is one of the topics which are being taken seriously into consideration abroad and internally. The mixed wastewater consisting of sanitary waste from kitchen and closet, septic tank outlet from closet and canteen, and so on, in which varieties of pollutants are in high concentration, belong to high concentration domestic sewage and must be processed to meet relative standards and regulations to discharge. Acorrding to this case, in view of concept of single-family water treatment system and natural processing system and principle of green energy-saving, I designe a micro-power integrate baffle plate reactor applying to the high concentration domestic sewage processing, and do a series of experimental research. In the reactor, anaerobic processing (A), oxygenic processing (O), anaerobic processing (A) and oxygenic processing (O) are utilized to process raw domestic sewage along the flow direction.
     In the experiment of high concentration sewage processing, I do analysis, validation and evaluation of the purification ability of the reactor and its packing, and obtain the reactor's optimum design parameters and controllable conditions in its operation.The main results are as follows:
     1. Inoculation experiment invetigates the startup of reactor of anaerobic activated sludge-aerobic biological membrane under normal temperature conditions, with fixed raw water quality and long HRT. Inoculation of anaerobic activated sludge and aerobic biofilm keep uniform and synchronous, and time used in this process is determined by anaerobic activated sludge inoculation. After about 55 days, startup of reactor succeedes, quality of each treatment chamber outlet is stable and satisfactory. In Aerobic Chamber One, the main biological indicators are vorticella, rotifer and arcella. Additionally, inoculum of microorganisms comes from a sewage treatment plant in xi'an.
     2. The data shows that in optimum operating conditions (the third condition), Nv is 0.26 kgCOD/m3·d, the removal rate of COD, NH4+-N and TN respectively comes up to 94.76%, 59.82%and 34.52%. And, in the first anaerobic chamber of Anaerobic Chamber One, Nv is 1.576kgCOD/m3·d, Ns is 0.07649kgCOD/kgMLSS·d,the removal rate of COD comes up to 88.22%. In the second anaerobic chamber of Anaerobic Chamber One, Nv is 0.003472kgCOD/m3·d, Ns is 0.0001695kgCOD/kgMLSS·d, the removal rate of COD comes up to 88.42%. In Aerobic Chamber One, Nv is 0.03718kgCOD/m3·d, the nitrification load is 0.1651kgNH4+-N/m3·d, and the removal rate of COD and NH4+-N respectively comes up to 91.38% and 61.81%. In Deep Processing Chamber, the nitrification load is 0.0447kgNH4+-N/ m3·d, the removal rate of NH4+-N comes up to 51.44% itself.
     3. In the recovery experiment of removal efficiency of ammonia nitrogen (NH4+-N), HRT changes from 23.1 hours to 36.96 hours, and the reactor operates continuously for 7 days. Howerer, NH4+-N concentration of reactor outlet is higher, floating in a small range which indicates that it is difficult to recover. Then the dissolved oxygen of Aerobic Chamber One is increased and, after 4 days, the NH4+-N removal efficiency is gradually enhanced, and then comes stable. Finally, it recovers to the level of case in which HRT is 36.96 hours.
     4. Orthogonal test data shows that the most important factors affecting removal efficiency are water flow rate and oxygen while aeration intermittent time is a greater factor which affects TN removal rate.
     5. According to biological phase analysis, anaerobic, hypoxia phase microorganisms mainly include bacteria relative to the anaerobic digestion (methane fermentation) and denitrifying bacteria. Aerobic phase microorganisms mainly include nitrite bacteria and nitrobacteria. The main biological indicators are vorticella, rotifer and arcella.
引文
[1]宋来洲,王秀丽,董春丽.SAF-化学絮凝-微滤膜组合工艺处理高浓度生活污水的试验研究[J].环境科学与管理.2006(2).Vol.31.No.1
    [2]张勤,周兴伟,周健.强化生物絮凝/三级人工湿地处理高浓度生活污水[J].中国给排水.2009(1).Vol.25.No.1
    [3]周群英,高廷耀编著.环境工程微生物学(第二版)[M].北京:高等教育出版社.2005(11):194-195
    [4]C.A.L. Chernicharo and R.M.G. Machado, Water Sci Technol,38(8-9) (1998) 325-332.
    [5]Paraschos Melidis, Eleni Vaiopoulou, Evagelia Athanasoulia, Alexander Aivasidis. Anaerobic treatment of domestic wastewater using an anaerobic fixed-bed loop reactor[J].Desalination 248 (2009) 716-722
    [6]Marco A. Belmont, Eliseo Cantellano, Steve Thompson, Mark Williamson, Abel S'anchez, Chris D. Metcalfe. Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico [J]. Ecological Engineering 23 (2004) 299-311
    [7]Arve Heistad, Adam M. A high-performance compact filter system treating domestic wastewater[J]. Ecological engineering 28 (2006) 374-379
    [8]Petter D. Jenssen, Tore Krogstad, Adam M. Paruch. Filter bed systems treating domestic wastewater in the Nordic countries-Performance and reuse of filter media[J]. Ecological Engineering 36 (2010) 1651-1659
    [9]高俊发.管锥形填料生物床特性及应用研究[J].2006(4)
    [10]张建强.高效厌氧反应器处理高浓度生活污水[J].工业安全与环保.2008(10).Vol.34.No.10
    [11]黄武,陈明晖,赵光桦,刘银秀,王志荣.无动力、地埋分散式厌氧系统处理农村生活污水[J].中国给排水.2008(10).Vol.24.No.20
    [12]吴树彪,胡静等.家庭人工湿地组合系统处理农村生活污水的试验研究[J].水处理技术.2009(3).Vol.35.No.3
    [13]李忠卫,王全金,李丽.垂直流人工湿地工艺设计概述[J].华东交通大学学报.2008(6).Vol.25.No.3
    [14]尹军,崔玉波.人工湿地污水处理技术[M].北京:化学工业出版社,2006:7-52
    [15]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报.2002,13(2):224--228.Ji Guo-dong, Sun Tie-heng, Li Shun. Constructed wetland and its application for industrial wastewater treatment [J]. Chinese Journal of Applied Ecology.2002,13 (2):224—228.(in Chinese)
    [16]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志.2002,21(4):51—59.Xia H an-ping. Mechanisms and efficiencies on wastewater treatment with constructed wetlan ds:a review[J].Chinese Journal of Ecology.2002,21(4):51—59.(in Chinese)
    [17]黄逸群,张民,徐玉新.人工湿地填料净化生活污水级配优化研究[J].环境科学与技术.2009(3).Vol.32.No.3
    [18]王瑾,章北平,刘礼祥.人工湿地处理皂素废水生产性试验研究[J].安全与环境工程.2005(1) 35-37.Wang Jin,Zhang, Bei-ping, Liu Li—xiang. Research of fullscale experiment on saponin wastewater with constructed wetland treatment[J]. Safety and Environmental Engineerin.2005(1) 35-37.(in Chinese)
    [19]G A Brodie, D A Hammer, D A Tonljanovich.Treatment of acid drainage with co nstructed wetland at Tennessee Valley Authority 950 coal mine [A]. Hammer D A (Ed). Constructed wetlands for wastewater treatment[C]. Chelsea:Lewis,1989:211-219
    [20]K R Reddy, E M D'Angelo. Soil processes regulating water quality in wetlands [M]. Mitsch W J(Ed). Global wetlands:old world and new. Amsterdam:Elsevier.199 4:309-324
    [21]Effat A. Morsy, Ahmad Z. Al-Herrawy, Mohamed A. Ali. Assessment of Cryptos poridium Removal from Domestic Wastewater Via Constructed Wetland Systems[J]. W ater Air Soil Pollut (2007) 179:207-215
    [22]周群英,高廷耀编著.环境工程微生物学(第二版)[M].北京:高等教育出版社.2005(11):240-242
    [23]斯皮斯.R.E著,李亚新译.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社.2002(6):2-6
    [24]左秀锦,巩潇,曹建明等.有机固体废弃物厌氧发酵处理的研究进展[J].安徽农业科学.2008.36(21):9263-9265
    [25]夏亚穆,常亮,王伟.厌氧消化过程抑制因素的研究进展[J].化学与生物工程.2009.Vol.26 No.10
    [26]斯皮斯.R.E著,李亚新译.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社.2002(6):37-38
    [27]李圭白,张杰.水质工程学(第一版)[M].北京:中国建筑工业出版社.2005(7)
    [28]周群英,高廷耀编著.环境工程微生物学(第二版)[M].北京:高等教育出版社.2005(11):232-234
    [29]郑俊,吴浩汀,程寒飞编著.曝气生物滤池污水生物处理新技术及工程实例[M].北京:化学工业出版社.2002
    [30]王凯军,贾立敏编著.城市污水生物处理新技术开发与应用[M].北京:化学工业出版社.2001
    [31]Strous M, Heijnen J J, Kuenen J G, t al.The sequencing batch reactor as a pow erful tool for the study of slowly growing anaerobic am monium-oxidizing microorgan isms[J]. Mocrobiol.Biotechnol.1996,50 (5):589—596
    [32]李军,田文婷,张文文.UAF反应器实现厌氧氨氧化反应的试验[J].沈阳建筑大学学报(自然科学版).2000(07).Vol.25.No.4
    [33]丛书总,聂梅生编著.生物膜法污水处理技术[M].北京:中国建筑工业出版社.2000
    [34]刘景双,孙雪利等.三汉平原小叶樟—毛国苔草枯落物中氮素变化分析[J].应用生态学报.2000(12).Vol.11.No.6
    [35]吕剑,何义亮,张强,武君.铁炭微电解联合O/A/O生物工艺处理化工废水[J].工业水处理.2009(02).Vol.29.No.2
    [36]邱珉,徐晓军.铁碳微电解法在废水处理中的研究应用进展[J].工业给排水.2009.Vol.31.No.6
    [37]严煦世,范瑾出编著.给水工程(第四版)[M].北京:中国建筑工业出版社.2006(7):243-252
    [38]胡细全,刘大银,蔡鹤生.ABR反应器结构对水力特性的影响[J].地球科学—中国地质大学学报.2004(5).Vol.29.No.3
    [39]耿亚鸽,张翔,张浩勤,刘金盾.ABR反应器工程设计的技术探讨[J].水处理技术.2009(2).Vol.35.No.2
    [40]王凯军等.厌氧工艺的发展和新型厌氧反应器[J].环境科学.1998,9(1):94—96
    [41]赵丹,王承武,沈耀良等.厌氧折流板反应器(ABR)的水动力学及污泥特性[J].环境工程,2001,19(2):12-15
    [42]Bachmann A, Beard V L, McCarty P L. Performance characteristics of the anaerobic bafled reacto[J].Wat Res.1985,19(1):99—106
    [43]Grobicki A, Stucky D C. Performance of the anaerobic baffled reactor under stead y-state and shock loading conditions[J].Biot and Bioeng.1991,37:344-355
    [44]Holt C J, Matthew R G S, Terzis E. A comparative study using the anaerobic baf fled reactor to treat a phenolic wastewater:proceedings of the 8th International Confer ence on Anaerobic Digestion[C]. Sendi, Japan,1997,(2):40—47
    [45]徐建芬,汪小梅,李昂.环境水质监测几种常用试剂的提纯[J].环境监测管理与技术.2004(10).Vol.16.No.5
    [46]刘燕,申志林.水质总氮空白实验的分析及改进措施[J].环境科学与技术.2005(06).Vol.28.增刊
    [47]傅金祥,杨正清,赵玉华等.挂膜方法对曝气生物滤池的影响[J].水处理技术.2006(08).Vol.32.No.8
    [48]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社.1999
    [49]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社.1998:155-157
    [50]Zonglian She. Granule development and performance in sucrose fed anaerobic baflled reactors[J] Journal of Biotechnology.2006,122:198-208
    [51]Nachaiyasit S, Stuckey D C. The effect of shock loads on the performance of an anaerobic fabled reactor(ABR):1.step changes in feed concentration at constant retention time[J].Wat Tes.1997,31 (11):2737-2746
    [52]Nachaiyasit S, Stuckey D C,The effect of shock loads on the performance of an anaerobic fabled reactor(ABR):2.step and transient hydraulic shocks at constant feed strength [J]. Wat Tes.1997,31(11):2747-2754
    [53]Willian P Barber, David C Stuckey. Startup strategies for anaerobic bafled reactors treating a synthetic sucrose feed:proc 8th International Conference on Anaerobic Digestion [c]. Sendi, Japan,1997
    [54]周群英,高廷耀编著.环境工程微生物学(第二版)[M].北京:高等教育出版社.2005(11):207-212
    [55]张自杰等编著.排水工程下册(第四版)[M].北京:中国建筑工业出版社.2006(12):3 08-315
    [56]周群英,高廷耀编著.环境工程微生物学(第二版)[M].北京:高等教育出版社.2005(11):49-57
    [57]周群英,高廷耀编著.环境工程微生物学(第二版)[M].北京:高等教育出版社.2005(11):57-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700