用户名: 密码: 验证码:
沉水植物与牧食性螺类的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相关研究表明,无脊椎动物牧食者能够影响湖泊水生植物群落的丰度和多样性。而淡水植物可与众多类型的无脊椎动物牧食者发生联系,包括虾类、蟹类、螺类、水生昆虫、昆虫幼虫以及其它一些小型牧食者。某些水生植物组织以反牧食物质或者是坚硬的组织结构来防卫牧食损害;但与陆生植物、挺水植物、浮叶植物甚至是海洋沉水植物相比较起来,淡水沉水植物通常具有非常低的酚类防卫物含量,而缺少了坚硬组织和次生防卫物质保护的水生植物在多数情况下被取食的程度并非十分严重。因此,关于淡水沉水植物如何防卫刮食者一直是牧食生态学研究者所感兴趣的问题。在许多已得到认可的陆生牧食类型和牧食理论的背景下,多数水生牧食作用相关的研究大都集中于对水生植物和牧食者之间互作类型的研究之上,主要包括植物的种间和种内适口性的变化。关于植物适口性进化的一个基本理论是资源可利用性理论,它认为生境中植物生长所必需的无机物质和环境资源(如水分、营养和光等)的可用程度影响了植物要采取的反牧食策略。而碳氮平衡假说认为,在植物碳供应能力高于氮供应能力时,多余的碳将会被分配给碳基防卫物质的合成。这些理论虽然在陆生植物当中已被检验,但是缺乏在淡水生境中对其检验的例子,加之当前对淡水牧食作用研究的可信数据也非常少,这些理论在进化独立的淡水生境中的适用性仍需要进一步验证。
     由于长江中下游地区的季节性洪水,导致该区域湖泊中光常常成为限制和可变生态因子。据此,我们以光作为实验因子,采用肺螺取食为手段,检验了光资源可用性对淡水植物种内适口性变化的影响。椭圆萝卜螺(Radix swinhoei H.Adams)是一种淡水肺螺,也是一种广食性的刮食者和食腐屑者。我们试图确定螺类对生长在特定光条件下的植物是否有不同的取食喜好性、螺类在和不同光条件下植物共存时是否具有不同的生长和存活情况、以及螺类的取食喜好性和生长存活情况是否相一致等问题。苦草在3种不同的光资源环境下培养,分别为自然光(光强307μmol m~(-2)s~(-1)),遮荫(光强16μmol m~(-2)s~(-1)),以及在自然光和遮荫条件下互相变换的变光处理。移植后,苦草产生了适应性生长速率,主要是由光可用量的不同引起的。螺的生长在强光下有少许增加,但强光下幼螺的死亡率也上升了。在实验检验适口性的同时,也测量了植物组织的理化特征。高的光照和延长光照周期增加了苦草生长以及苦草的碳氮比,同时导致了选择
It is well documented that invertebrate herbivory can influence relative abundance and diversity of macrophyte species in lake communities. Freshwater plants may have wide relationships with numerous kinds of invertebrate herbivores, including crayfish, crab, snail, aquatic insect, and some larva grazers. Some macrophyte tissues are assumed to be protected against herbivore attacks by repellent substances or a hard texture. However, submersed plants generally contain much lower phenolic concentrations in contrast with terrestrial plants, freshwater emergent plants, floating-leaved plants, and even the submersed oceanic plants; and these submersed plants lacking tougher surface and secondary compounds were not so much grazed. Thus, how do these submersed freshwater plants manage to protect their tissues against grazers remains as an interest today. Many interests have been raised on studying the types of interactions between aquatic plants and herbivores, including interspecific and intraspecific variation in plant palatability, in context of the types and theories derived from terrestrial systems previously. A basic theory about plant palatability is the resource availability theory. Which hypothesized that strategy of plants coping with herbivory is related to availability of abiotic resources needed for plant growth (such as water, nutrients and light). Carbon-nutrient balance (CNB) hypothesis indicates that in terms of carbon availability is high relative to nitrogen supply of a plant, an excess of carbon would be allocated to carbon-based defensive substances. The theories have been tested for terrestrial plants and proved to be appropriate. However, they were less tested in freshwater ecosystems, and reliable data are available only for a few freshwater plant species. Whether the theories are appropriate in evolutionary independent freshwater systems needs further confirmation.In terms of seasonal flooding in Changjiang River Basin, light is often a limiting and variable factor for submerged plants in lakes. Based on this information, we chose light as an experimental factor to evaluate the influences of resource availability on intraspecific palatability of freshwater plants by using pulmonate snails. Radix swinhoei (H. Adams) is a freshwater pulmonate snail, which is a
    generalist plant-grazer and detritus-feeder. We want to find out whether snails have a preference for plants grown under specific conditions of light intensity and whether the snail performance on plants grown under different conditions of light intensity is consistent with the snail feeding preferences. Palatability to snail herbivory (/?. swinhoei) and C/N ratios were assessed for Vallisneria natans, in three different experimental light regimes (307 umol m'2 s*1, 16 umol m"2 s1, and a variable intensity between the two above). After transplanting, adaptive growth rate had been induced for V. natans, mostly due to the differences in light availability. Snail growth was slightly enhanced by high light, while juvenile survivorship decreased under higher light condition. Higher light intensity as well as prolonged photoperiods increased palatability, growth and C/N ratio. Increased light availability also resulted in greater leaf consumption in choice tests. Such feeding choices show that rank of palatability is high light plants > moderate-high light plants > low light plants. The rank of palatability is in accordance with the resource availability theory, since it showed that plants with adaptive lower growth rate established lower palatability. The results suggest that the availability of resources (light) affects the intraspecific variations in palatability of submerged macrophytes.Some recent studies assume that submersed plants have cheaper tissues with higher water content than other plants, which should not merit protection by expensive second metabolites such as tannins. Some studies consider chemical defenses other than tannins and have identified a number of feeding deterrents from freshwater plants. However, a few species of submersed plants do show higher tannin content. All members of the Haloragaceae including Myriophyllum spicatum contain approximately one order of magnitude higher concentrations of phenolic compounds than many other submersed plants. Most of these phenolics are found to be hydrolyzable tannins. Tannins have long been recognized as a kind of herbivore deterrents and often predict palatabilities of terrestrial plants. The anti-herbivory mechanisms of these secondary compounds about depressing feed utilization efficiency are well held. Tannins in M. spicatum have been shown to have properties of interfering with the growth and development of insect herbivores. Therefore, the role that tannin plays in these phenolic-rich species of submersed plants needs to be
    reconsidered.We conducted experiments to study the interspecific plant preferences of snail R. swinhoei on 8 common submersed macrophytes species in Liangzi Lake, China, considering the various tannin content quantities of these plant species. The feeding consumption of a tannin-rich plant species (M spicatum L.) is compared against each of 7 other plant species in choice and non-choice tests. The snail R. swinhoei showed distinct feeding preferences when allowed to feed on 8 common occurring species of submersed freshwater macrophytes. 5 of the 7 comparisons in choice tests, and 2 of the 7 comparisons in non-choice tests show that leaves of M. spicatum are an un-preferred food for pulmonate snails. The other comparisons do not showed significant differences. In addition, comparison of tannin content and intake rate of senescent tissues are performed for M. spicatum and one tannin-poor species, V. natans. The results show senescence does not alter plant species preference. The dry matter content (DMC), carbon, nitrogen and ash content are measured for each plant species, but none of them can explain the observed herbivory patterns. No remarkable relationship was found between the tannin content and amount of all 8 plant species eaten, although the correlation coefficient is negative and snails tend to avoid tissues of M. spicatum. The tannin concentration varied considerably among different tissues within M. spicatum (about ± 25%). The range of the variation often exceeds the interspecific differences of other plant species. All these aspects of tannins in M. spicatum seems to conform to the characteristic of quantitative defenses in terrestrial plants, that only high quantities of tannins can deter generalist herbivores.Previous works have shown high dose of total irradiance can depress shoot elongation and increased phenolic content of aquatic plants, and nutrient also contribute to phenolic content. The leaves of M. spicatum contain approximately one order of magnitude higher concentrations of phenolic compounds, which play important roles in interfering with herbivores and absorbing UV-B radiation, than many other submersed plants. We wonder if M. spicatum establish similar responses mentioned above, and how the water-level related factors, including total irradiance, nutrient available, and UV-exposure in the water column, are going to interact with
    each other. Thus we conducted experiments to simultaneously evaluate the influences of the three factors on the both, shoot length and phenolic content of M. spicatum. Responses of shoot length and phenolic content of M. spicatum, to different UV-B exposure (0.3 W/m2 and 0 W/m2 additional radiation), nitrogen (3.3 ppm and 0 ppm addition N in solution) and light (230 umol/m2/sec and 60 umol/m2/sec) environments, were assessed with an indoor manipulation experiment. Higher UV-B and higher light both depressed the shoot elongation, while UV-B did not alter the shoot phenolic concentration as remarkably as the light and nitrogen did. The resource availability (Carbon/Nitrogen) would be more crucial for phenolic production, than the functional responses to UV-B of M. spicatum. The three water-level related factors seem to rarely interact with each other in analyses, except the strong UV-B * nitrogen, which show UV-B can more efficiently affected the shoot length in low-N solution.In closure, major questions engaged in this thesis were as following: 1) Testing the resource availability theory among the relationship between snails and submersed plants. Results showed that the resource availability theory is still adaptive in explaining herbivory patterns and palatability variations in submersed habitats. 2) Evaluating the palatability of M. spicatum, considering its relative higher amount of phenolic content among submersed plants. Results showed that herbivorous snails tend to avoid M. spicatum more frequently than other submersed plants. 3) Clarifying the environmental factors affecting phenolic production of submersed plants in comparison with terrestrial plants. Results showed that responses of phenolic production to environmental factors in submersed plants were similar to those in terrestrial plants.
引文
1.于丹.东湖水生植物群落学研究.见刘建康主编,东湖生态学研究(二),北京:科学出版社,1995,pp.312-327.
    2.由文辉.螺类与着生藻类的相互作用及其对沉水植物的影响.生态学杂志 1999,18(3):54-58.
    3.刘月英,王耀先,张文珍,马绣同.中国动物图谱——软体动物.第四分册.北京:科学出版社,1985.
    4.刘保元,邱东茹,吴振斌.富营养浅湖水生植被重建对底栖动物的影响.应用与环境生物学报1997,3(4):323-327.
    5.陈其羽,吴天惠.主要生物群落结构及演替(五)底栖动物.见刘建康主编,东湖生态学研究(一),北京:科学出版社,1990,pp.129-151.
    6.徐新伟.水生植物与螺类关系研究.武汉大学硕士论文,2001.
    7. Agrawal, A. A. Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 2000, 81(7): 1804-1813.
    8. Aho, J. Ecological basis of the distribution of littoral freshwater molluscs in the vicinity of Tampere, South Finland. Ann. Zool. Fennici. 1966, 3: 287-322.
    9. Aho, J. Freshwater snail population and the equilibrium theory of biogeography. I. A case study in Southern Finland. Ann. Zool. Fennici. 1978, 15: 146-154.
    10. Bailey, R. C. Correlations between species richness and exposure: Freshwater molluscs and macrophytes. Hydrobiologia 1988, 162:183-191.
    11. Baker, T. H. & Orr, D. R. Distribution of epiphytic bacteria on freshwater plants. J. Ecol. 1986, 74: 155-165.
    12. Barlocher, F. Leaf-eating invertebrates as competitors of aquatic hyphomycete. Oecologia 1980, 47: 303-306.
    13. Bate-Smith, E. C. Astringent tannins of Acer species. Phytochemistry 1977, 16:1421-1426.
    14. Berg, C. O. Limnological relations of insects to plants of the genus Potamogeton. Trans. Am. Microsc. Soc. 1949, 68: 291-297.
    15. Bertness, M. D. Habitat and community modification by an introduced herbivorous snail: Ecology 1984, 65(2): 370-381.
    16. Best, E. P. H. & Dassen, J. H. A. A seasonal study of growth characteristics and the levels of carbohydrates and proteins in Elodea nuttallii, Polygonum amphibium and Phragmites australis. Aquat. Bot. 1987, 28:353-372.
    17. Bolser, R. C., hay, M. E., Lindquist, N., Fenical, W. & Wilso, D. Chemical defenses of freshwater macrophytes against crayfish herbivory. J. Chem. Ecol. 1998, 24(10):1639-1658.
    18. Bosnia, A. S., Kaisin, E J. & Tablado, A. Population dynamics and production of the freshwater snail Chilina gibbosa Sowerby 1841 (Chilinidae, Puimonata) in a North-Patagonian reservoir. Hydrobiologia 1990, 190(2): 97-110.
    19. Bousfield, J. D. Plant extracts and chemically triggered positive rheotaxis in Biomphalaria glabrata (say), snail intermediate host of Schistosoma mansoni (sambon). J. Appl. Ecol. 1979, 16:681-690.
    20. Box, J. D. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Wat. Res. 1983, 17:511-525.
    21. Boycott, A. E. The habitats of the freshwater mollusca in Britain. J. Anita. Ecol. 1936, 5:116-186.
    22. Boyd, C. E. Amino acid, protein and caloric content of vascular aquatic macrophyte. Ecology 1970, 51: 902-905.
    23. Boyd, C. E. The nutritive value of three species of water weeds. Econ. Bot. 1969, 23: 123-127.
    24. Bronmark, C. How do herbivorous freshwater snails affect macrophyte?-A comment. Ecology 1990, 71(3):1212-1215.
    25. Bronmark, C. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos 1985, 45:26-30.
    26. Bronmark, C., Klosiewski, S. P. & Stein, R. A.. Indirect effects of predation in a freshwater, benthic food chain. Ecology 1992, 73:1662-1674.
    27. Bronmark, C.. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology 1994, 75(6): 1818-1828.
    28. Bronmark, C.. Freshwater molluscs: distribution patterns, predation and interactions with macrophyte. Ph. D. Dissertation; University of Lund (Sweden), 1985, pp77.
    29. Brown, K. M. & Lodge, D. M. Gastropod abundance in vegetated habitats: The importance. Limnol. Oceanogr. 1993, 38(1):217-225.
    30. Brown, K. M. Resource overlap and competition in pond snails: an experimental analysis. Ecology 1982, 63(2):412-422.
    31. Bryant, J. P., Chapin, E S. & Klein, D. R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983, 40:357-368.
    32. Bulthius, D. A. & Woelkerling, Wm. J.. Biomass accumulation and shading effects of epiphytes of the seagrass, Heterozoster tasmanica, in Victoria, Australia. Aquat. Bot. 1983, 16:137-148.
    33. Calow, P.. Gastropod associations within Malham Tarn, Yorkshire. Freshwat. Biol. 1973, 3: 521-534.
    34. Caquet, C.. Spatial distribution of four freshwater gastropod species in a ditch near Orsay, France. Hydrobiologia 1990, 203:83-92.
    35. Caquet, T. Spatial distribution of four freshwater gastropod species in a ditch near Orsay, France. Hydrobiologia 1990, 203:83-92.
    36. Carignan, R. & Kaiff, J. Phosphorus sources for aquatic weeds: water or sediments? Science 1980, 207: 987-989.
    37. Carpenter, S. R. & Lodge, D. M.. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot. 1986, 26: 341-370.
    38. Cattaneo, A. & Kalff, J. Primary production of algae growing on natural and artificial agnatic plants: A Study of interactions between epiphytes and their substrate. Limnol. Oleanogr. 1979, 24: 1031-1037.
    39. Cattaneo, A. & Kalff, J.. Seasonal changes in the epiphyte community of natural and artificial maerophytes in Lake Memphremagog (Que. -VE). Hydrobiologia 1978, 60: 135-144.
    40. Cattaneo, A., Galanti, C., Gentinetta, S. & Romo, S.. Epiphytical algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian Lake. Freshwat. Biol. 1998, 39: 725-740.
    41. Cattaneo, A.. Grazing on epiphytes. Limnol. Oceanogr. 1983, 28:124-132.
    42. Causton, D. R., & Venus, J. C. The biometry of plant growth. London: 1981, Edward Arnold Ltd. pp 17-64.
    43. Cebrian, J. & Duarte, C. M. Patterns in leaf herbivory on seagrasses. Aquat. Bot. 1998, 60:67-82.
    44. Chambers, P. A. & Kalff, J. The influence of sediment composition and irradiance on the growth and morphology of Myriophyllum spicatum L. Aquat. Bot. 1985, 22: 253-263.
    45. Choi, C., Bareiss, C., Waleneiak, O. & Gross E. M. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. J. Chem. Ecol. 2002, 28(11):2245-2256.
    46. Ciborowski, J. J. H. & Clifford, H. F.. Short-term colonization patterns of lotic macroinvertebrates. Can. J. Fish. Aquat. Sci. 1984, 41: 1626-1633.
    47. Coen, L. D. Herbivory by crabs and the nature of algal epibionts on Caribbean host corals. Oecologia 1988, 75: 198-203.
    48. Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science 1985, 230:895-899.
    49. Costil, K. & Clement, B. Relationship between freshwater gastropods and plant communities various trophic levels. Hydrobiologia 1996, 221:7-16.
    50. Costil, K. & Clement, B.. Relationship between freshwater gastropods and plant communities indication various trophic levels. Hydrobiologia 1996, 321: 7-16.
    51. Covich, A. P.. Chemical refugia from predation for thin-shelled gastropods in a sulfide-enriched Stream. Verh. Theor. Angew. Limnol. 1981, 21: 1632-1636.
    52. Crone, E. E., & Jones, C. G. The dynamics of carbon-nutrient balance: effects of cottonwood acclimation to short and long-term shade on beetle feeding preferences. J. Chem. Ecol. 1999, 25: 635-656.
    53. Cronin, G. & Hay, M. E. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 1996b, 77(1):93-106.
    54. Cronin, G. & Hay, M. E. Susceptibility to herbivores depends on recent history of both the plant and the animal. Ecology 1996a, 77(5): 1531-1543.
    55. Cronin, G & Lodge, D. M. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia. 2003, 137:32-41.
    56. Cronin, G, Wissing, K. D. & Lodge, D. M. Comparative feeding selectivity of herbivorous insects on water lilies: aquatic vs. semi-terrestrial insects and submersed vs. floating leaves. Freshwat. Biol. 1998, 39: 243-257.
    57. Cronin, J. T. & Abrahamson, W. G. Goldenrod stem galler preference and performance: effects of multiple herbivores and plant genotypes. Oecologia 2001, 127:87-96.
    58. Crowl, T. A. & Schnell, C. D.. Factors determining population density and size distribution of a freshwater snail in streams: effects of spatial scale. Oikos 1990, 59: 359-367.
    59. Cyr, H. & Downing, J. A.. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwat. Biol. 1988, 20(3): 365-374.
    60. Cyr. H. & Downing, J. A.. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can. J. Fish. Aquat. Sci. 1988, 45(6): 976-984.
    61. Daldorph, E W. G. & Thomas, J. D. The effect of nutrient enrichment on a freshwater community dominated by macrophytes and molluscs and its relevance to snail control. J. Appl. Ecol. 1991, 28:685-702.
    62. Daldorph, E W. G. & Thomas, J. D.. Factors influencing the stability of nutrient-enriched freshwater macrophyte communities: the role of sticklebacks Pungitiuspungitius and freshwater snails. Freshwat. Biol. 1995, 33: 271-289.
    63. Daldorph, E W. G. & Thomas, J. D.. The effect of nutrient enrichment of a freshwater community dominated by macrophyte and molluscs and its relevance to snail control. J. Appl. Ecol. 1991, 28: 685-702.
    64. Dellucchi, C. M.. Comparison of community structure among streams with different temporal flow regimes. Can. J. Zool. 1988, 66: 579-586.
    65. Dor, I. Levy, I. Single-sample technique for measuring oxygen production and consumption in macrophytic algae. Aquat. Bot. 1987, 27:323-331.
    66. Duarte, C. M. Nutrient concentration of auatic plants: Patterns across species. Limnol. Oceanogr 1992, 37: 882-889.
    67. Dudani, V. K., Kumar, S., Pandey, A. K. & Siddiqui, E. N.. Gastropod- macrophyte association in some ponds of Darbhanga. Environ. Ecol. 1987, 5(1): 100-104.
    68. Dudt, J. E, & Shure, D. J. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 1994, 75: 86-98.
    69. Elger, A. & Barrat-Segretain, M-H. Use of the pond snail Lymnaea stagnalis (L.) in laboratory experiments for evaluating macrophyte palatability. Arch. Hydrobiol.2002, 153 (4): 669-683.
    70. Elger, A., & Willby, N. J. Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Funct. Ecol. 2003, 17: 58-65.
    71. Elger, A., Barrat-Segretain, M. H., & Amoros C. Plant palatability and disturbance level in aquatic habitats: an experimental approach using the snail Lymnaea stagnalis (L.) Freshwat. Biol. 2002, 47: 937-940.
    72. Eminson, D. & Moss, B. The vomposition and ecology of periphyton communities in freshwaters. 1.The influence of host type and external environment on community composition. Br Phycol. J. 1980, 15: 429-446.
    73. Estebenet, A. L.. Food and feeding in Pomacea canaliculata (Gastropoda: Ampullaxiidae). Veliger 1995, 38(4): 277-283.
    74. Feeny P. Plant apparency and chemical defense. Recent Advances in Phytochemistry. 1976, Plenum, New York, Vol. 10, pp. 1-40.
    75. Feller, I. C. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol. Monogr. 1995, 65(4):477-505.
    76. Feminella, J. W. & Hawkins, C. P.. Interactions between stream herbivores and periphyton: A quantitative analysis of past experiments. J. N. Am. Benthol. Soc. 1995, 14(4): 465-509.
    77. Fenchel, T. & Kofoed, L. H.. Evidence for explorative interspecific competition in mud snails (Hydrobiidae). Oikos 1976, 27:367-376.
    78. Flint, R. W. & Goldman, C. R.. The effects of a benthic grazer on the primary productivity of the littoral zone of Lake Tahoe. Limnol. Oceanogr. 1975, 20: 935-944.
    79. Frohne, W. C.. The provendering role of the lager aquatic plants. Ecology 1956, 37: 387-388.
    80. Gaevskaya, N. S.. The Role of Higher Aquatic Plants in the Nutrition of the Animals of Freshwater Basins. D. G M. Muller (Translator), K. H. Mann (Editor), 3 vols., 1969.
    81. Geertz-Hansen, O., Sand-Jensen, K., Hansen, D. F. & Christiansen, A. Growth and grazing control of abundance of the marine macroalga, Ulva lactuca L. in a eutrophic Danish estuary.Aquat. Bot. 1993, 46:101-109.
    82. Ghilarov, A. M. Report on eutrophication studies in the U.S.S.R. Wat. Res. 1983, 17: 607-611.
    83. Godward, M.. An investigation of the causal distribution of algal epiphytes. Beihefte zum Botanischen Zentralblatt 1934, 52: 506-539.
    84. Gorham, B. K.. Snall-macrophyte interaction in a shallow, mesoeutrophic lake in Southern New York State. D. Phil. thesis, Fordham University, 1997.
    85. Gower, A. M.. A study of Limnephilus lunatus Curtis (Trichoptera: Limnephilidae) with reference to its life cycle in watercress beds. Trams. R. Ent. Soc. Lond. 1967, 119: 283-302.
    86. Graca, M. A.S. & Baurlocher, E Proteolytic gut enzymes in Tipula calopterainteraction with phenolics aquatic insects. Aquat. Ins. 1998, 21(1): 11-18.
    87. Grantham, O. K., Moorhead, D. L., & Willig, M. R. Feeding preference of an aquatic gastropod, Marisa cornuarietis: effects of pre-exposure. J. N. Am. Benthol. Soc. 1993, 12: 431-437.
    88. Gray, L. J. & Ward, J. V.. Food habits of stream benthos at sites of differing food availability. Am. Midl. Nat. 1979, 102:157-167.
    89. Gregg, W. W. & Rose, E L.. Influences of aquatic macrophytes on invertebrate community structure, guild structure and microdistribution in streams. Hydrobiologia 1985, 128(1): 45-56.
    90. Gregory, S. V.. Plant-herbivore interactions in stream systems. In: J. R. Barnes and G. W. Minshall (Eds.), Stream Ecology. Plenum Press. 1983, pp157-189.
    91. Gross, E. M., Johnson, R. L. & Hairston, N. G. Experimental evidence for changes in submersed macrophytes species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 2001, 127:105-114.
    92. Gross, E. M., Meyer, H. & Schilling, G. Release and Ecological impact of algicidal hydrolysable polyphenolic in Myriophyllum spicatum. Phytochemistry 1996, 41:133-138.
    93. Harrison, A. B.. Hydrobiological studies on alkaline and acid still waters of western Cape Province. Transactions of the Royal Society of South Africa 1962, 36: 213-243.
    94. Hart, D. D.. The importance of competitive interactions within stream populations and communities. In: Barnes, J. R. & Minshall, G. W. (eds.), Stream Ecology: Application and testing of general ecological theory. Plenum Press, New York, 1983, pp.99-136.
    95. Hawkins, C. P. & Fumish, J. K.. Are snails important competitors in stream ecosystems? Oikos 1987, 49: 209-220.
    96. Hay, M. E. The next wave in aquatic chemical ecology. J. Chem. Ecol. 2002, 28(10):1897-1899.
    97. Hay, M. E.. Herbivory, algal distribution, and maintenance of between-babitat diversity on a tropical fringing reef. Am. Natural. 1981, 118: 520-540.
    98. Haynes, A. & Taylor, B. J. R. Food finding and food preference in potamopyrgus jenkinsi (E. A. Smith) (Gastropoda: Prosobranchia). Arch. Hydrobiol. 1984, 100(4):479-491.
    99. Hildrew, A. G. & Townsend, C. R.. Predators and prey in a patchy environment: A freshwater study. J. Anita. Ecol. 1982, 51: 797-816.
    100. Hootsmans, M. T. M. & Vermaat, J. E.. The effects of periphyton grazing by three epifaunal species on the growth of Zostera marina L. under experimental conditions. Aquat. Bot. 1985, 22: 83-88.
    101. Howard, R. K. & Short, F. T.. Seagrass growth and survivorship under the influence of epiphyte grazer. Aquat. Bot. 1986, 24: 287-302.
    102. Howard, R. K.. Impact of feeding activities on epibenthic amphipods on surface-fouling of eelgrass leaves. Aquat. Bot. 1982, 14: 91-97.
    103. Hutchinson, G. E.. A Treatise on Limnology. Vol. 3. Linmological Botany. Wiley-Interscience, New York, 1975.
    104. Ibarra-Obando, S. E. & Boudouresque, C. F. An improvement of the Zieman leaf marking technique for Zostera marina growth and production assessement. Aquat. Bot. 1994, 47:293-320.
    105. Inskeep, W. P. & Bloom, P. R. Extinction coefficients of chlorophyll a and b in N, N-Dimethylformamide and 80% acetone. Plant Physiol. 1985, 77:483-485.
    106. Jacobsen, D., & Sand:-Jensen, K. Herbivory of invertebrates on submerged macrophytes from danish freshwaters. Freshwater Biol. 1992, 28:301-308.
    107. Jacoby, J. M.. Alterations in periphyton characteristics due to grazing in a cascade foothill stream. Freshwater Biol. 1987, 18: 495-508.
    108. Jana, S. & Choudhuri, M. A. Effects of antioxidatants on senescence hill activity in three submerged aquatic plants. Aquat. Bot. 1987, 27:203-206.
    109. Jemakoff, P. & Nielsen, J. Plant-animal associations in two species of seagrasses in western Australia. Aquat. Bot. 1998, 60:359-376.
    110. Jemakoff, P. & Nielsen, J. The relative importance of amphipod and gastropod grazers in Posidonia Sinuosa meadows. Aquat. Bot. 1997, 56:183-202.
    111. Johnson, R. L., Gross, E. M. & Hairston, N. G. Decline of the invasive submersed macrophyte Myriophyllum spicatum (Haioragaceae) associated with herbivory by larvae of Acentria ephemerella (Lepidoptera). Aquat. Ecol. 1998, 31:273-282.
    112. Jones, R. C., Walti, K. & Adams, M. S.. Phytoplankton as a factor in the decline of the submerged maerophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin, U. S. A. Hydrobiologia 1983, 107:213-219.
    113. Kairesalo, T. & Koskimies, I.. Grazing by oligochaetes and snails on epiphytes. Freshwat. Biol. 1987, 17: 317-324.
    114. Karban, R., & Thaler, J. S. Plant phase change and resistance to herbivory. Ecology 1999, 80: 510-517.
    115. Kemp, W. M., Lewis, M. R. & Jones, T. W. Comparison of methods for measuring production by the submersed macrophyte, Potamogeton perfoliatus L.. Limnol. Oceanogr. 1986, 31(6):1322-1334.
    116. Kesler, D. H.. Periphyton grazing by Anmicola Limosa: an enclosure exclosure experiment. J. Freshwat. Ecol. 1981, 1:51-62.
    117. Khalaf, G. & Tachet, H.. Colonization of artificial substrata by macro-invertebrates in a stream and variations according to stone size. Freshwat. Biol. 1980, 10: 475-482.
    118. Komijow, R., Gulati, R. D. & Ozimek, T.. Food preference of freshwater invertebrates: Comparing fresh and decomposed angiosperm and a filamentous alga. Freshwat. Biol. 1995, 33(2): 205-212.
    119. Krecker, E H.. A comparative study of the animal populations of certain submerged aquatic plants. Ecology 1939, 20: 553-562.
    120. Kubanek, J. Hay, M. E., Brown, P. J., Lindquist, N. & Fenical, W. Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus.2001, Chemoecology 11:1-8.
    121. Lamarche, A., Legendre, P. & Chodorowski, A.. Facteurs respousables de ladistribution des gasteropodes dulcicoles clans le fleure Saint-Laurent. Hydrobiologia 1982, 89: 61-76.
    122. Lamberti, G A. & Resh, V. H.. Steam periphyton and insect herbivores: An experimental study of grazing by a caddisfly population. Ecology 1983, 64(5): 1124-1135.
    123. Lamberti, G. A., Ashkenas, L. R., Gregory, S. V. & Steinman, A. D.. Effects of three herbivores on periphyton communities in laboratory streams. J. N. Am. Benthol. Soc. 1987, 6: 92-104.
    124. Lamberti, G A., Gregory, S. V., Ashkenas, L. B., Steinman, A. D., & Mcintire, C. D. Productive capacity of pefiphyton as determinant of plant-herbivore interactions in streams. Ecology 1989, 70: 1840-1856.
    125. Lamberti, G.A. & Moore, J. W.. Aquatic insects as primary consumers. In: V. H. Resh and D. M. Rosenberg (Eds.) The Ecology of Aquatic Insects. Praeger Scientific, New York, 1984, pp164-195.
    126. Lavola, A., Julkunen-Tiitto, tC, Roininen, H., & Aphalo, P.Host-plant preference of an insect herbivore mediated by UV-B and CO_2 in relation to plant secondary metabolites. Biochem. System. & Ecol. 1998, 26:1-12
    127. Lodge, D. M. & Relly, P.. Habitat disturbance and the stability of freshwater gastropod populations. Oecologia (Berl.) 1985, 68:111-117.
    128. Lodge, D. M. Herbivory on freshwater macrophytes. Aquat. Bot. 1991, 41:195-224.
    129. Lodge, D. M. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwat. Biol. 1985, 15: 695-708.
    130. Lodge, D. M., Brown, K. M., Klosiewski, S. P., Stein, R. A., Covich, A. P., Leathers, B. K. & Bronmark, C.. Distribution of freshwater snails: Spatial scale and the relative importance of physicochemical and biotic factors..Am. Malacol. Bull. 1987, 5: 73-84.
    131. Lodge, D. M., Kershner, M. W., Aloi, J. E. & Covich, A. P.. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 1994, 75(5): 1261-1281.
    132. Lodge, D. M.. Selective grazing on periphyton: A determinant of freshwater gastropod microdistributions. Freshwat. Biol. 1986, 16: 831-841.
    133. Lorman, J. G & Magnuson, J. J.. The role of crayfish in aquatic ecosystem. Fisheries 1978, 3: 8-19.
    134. Louda, S. M., & Collinge, S. K. Plant resistance to insect herbivores: a field test of the environmental stress hypothesis. Ecology 1992: 73:153-169.
    135. Macan, T. T.. Ecology of freshwater mollusca in the English Lake District. J. Anim Ecol. 1950, 19: 124-146.
    136. Madsen, H.. Food selection by freshwater snails in Gezira irrigation canals, Sudan. Hydrobiologia 1992, 228(3): 203-217.
    137. Marcus, J. H., Sutcliffe, D. W. & Willoughby, L.G.. Feeding and growth of Asellus aquaticus (Isopoda) on food items from the littoral of Windermere, including green leaves of Elodea candensis. Freshwat. Biol. 1978, 8:505-519.
    138. Martin, T. H., Crowder, L. B., Dumas, C. E & Burkholder, J. M.. Indirect effects of fish on macrophytes in Bays Mountain Lake: evidence for a littoral trophic cascade. Oecologia 1992, 89:476-481.
    139. Mason, C. E & Bryant, R. J.. Changes in the ecology of the Norfolk Broads. Freshwat. Biol. 1975, 5:257-270.
    140. Mat, I.. Ecophysiological aspects on nitrogen metabolism in the freshwater snail Biomphalaria glabrate. D. Phil. Theis, University of Sussex, N. K. 1988.
    141. McAuliffe, J. R.. Competition for space, disturbance, and the structure of a benthic stream community. Ecology 1984, 65: 894-908.
    142. McGaha, Y. J.. The limnological relations of insects to certain aquatic flowering plants. Trans. Am Microsc. Soc. 1952, 71: 355-381.
    143. McMahon, R. E, Hunter, R. D. & Russell-Hunter, W. D.. Variation in aufwuchs at sir freshwater habitats in terms of carbon biomass and of carbon:nitrogen ratio. Hydrobiologia 1974, 45: 391-404.
    144. Mecom, J. O.. Feeding habits of Trichoptera in a mountain stream. Oikos 1972, 23:401-407.
    145. Moen, R. A. & Cohen, Y. Growth and competition between Potamogeton pectinatus L. and Myriophyllurn exalbescens Fern. in experimental ecosystems. Aquat. Bot. 1989, 33:257-270.
    146. Moore, P. D. & Chapman, S. B. Methods in plant ecology, second edition. 1986, Oxford: Blackwell Scientific Publications, pp. 301-317.
    147. Morgan, M. D. Productivity and utilization of the seagrass Halodule wrightii and its attached epiphytes. Limnol. Oceanogr. 1984, 29(5): 1066-1076.
    148. Moss, B.. The composition and ecology of periphyton communities in freshwaters. Ⅱ. Interrelationships between water chemistry, phytoplankton populations and preiphyton populations in a shallow lake and associated experimental reservoirs (Lund tubes). Brit. Phycol. J. 1981, 16: 59-76.
    149. Nakai, S., Inoue, Y. & Hosomi, M. Algal growth inhibition effects and inducement modes by plant-producing phenols. 2001, Wat. Res. 35(7): 1855-1859.
    150. Nakai, S., Inoue, Y., Hosomi, M. & Murakami, A. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Wat. Res. 2000, 34(11):3026-3032.
    151. Nassal, B. Burghard, W. & Maier, G. Predation by juvenile roach on the calanoid copepod Eudiaptomus gracilis and the cyclopoid copepod Cyclops vicinus: a laboratory investigation with mixed and single prey. 1998, Aquat. Ecol. 32:335-340.
    152. Ndifon, G. T. & Ukoli, E M. A. Ecology of fresheater snails in south-western Nigeria.Ⅰ: distribution and habitat preferences. Hydrobiologia 1989, 171:231-253.
    153. Neckles, H. A., Koepfler, E. T., Haas, L. W., Wetzel, R. L. & Orth, R. J.. Dynamics of epiphytic photoautotrophs and heterotrophs in Zostera marina (eelgrass) microcosms: Responses to nutrient enrichment and grazing. Estuaries 1994, 17(3): 597-605.
    154. Neckles, H. A.; Wetzel, R. L. & Orth, R. J.. Relative effect of nutrient enrichment and grazing epiphyte-macrophyte (Zostera marina L.) dynamics. Oecologia 1993, 93(2): 285-295.
    155. Newman, R. M., Hanscom, Z. & Kerfoot, W. C.. The watercress glucosinolatemyrosinase system: A feeding deterrent to caddisflies, snails and amphipods. Oecologia 1992, 92(1): 1-7.
    156. Newman, R. M.. Herbivory and detritivory on freshwater macrophytes by invertebrates: A review. J. N. Am. Benthol. Soc. 1991, 10(2): 89-114.
    157. Newman, R. M.; Kerfoot, W. C. & Hanscom, Z.. Ⅲ. Watercress and amphipods. Potential chemical defense in a spring stream macrophyte, J. Chem. Ecol. 1990, 16(1): 245-260.
    158. Ni, L. Y., George, B. & Wang, E Comparative studies on photosynthetic adaptation of two submersed hydrochariaceae species to different light intensities using microcosm experiment. Acta Hydrobiologica Sinica 1997, 21, Suppl.: 150-165.
    159. Ohmart, C. P., Stewart, L G. & Thomas, J. R.. Effects of food quality, particularly nitrogen concentration, of Eucalyptus blaketyi foliage on the growth of Paropsis atromana larvae (Coleoptera: Chrysomelidae). Oecologia 1985, 65: 543-549.
    160. Okland, J.. Factor regulating the distribution of freshwater snails (Gastropoda) in Norway. Malacologia 1983, 24: 277-288.
    161. Orth R. J. & van Montfrans, J. Epiphyte—Seagrass relationships with an emphasis on the role of mierograzing: a review. Aquat. Bot. 1984, 18:43-69.
    162. Orth, R. J. & Van Montfrans, J.. Epiphyte-seagrass relationships with an emphasis on the role of nierograzing: a review. A quat. Bot. 1984, 18: 43-69.
    163. Ostrofsky, M. L. & Zettler. E. R.. Chemical defences in aquatic plants. J. Ecol. 1986, 74: 279-287.
    164. Otto, C. & Svensson, B. S. How do maerophytes growing in or close to water reduce their consumption by aquatic herbivores? Hydrobiologia 1981, 78:107-112.
    165. Outridge, P. M.. Seasonal and spatial variation in benthic macroinvertebrate communities of Magela Creek. Northern Territory. Aust. J. Mar. Freshw. Res. 1988, 39: 211-224.
    166. Paine, R. T. Food-web analysis though field measurement of per capita interaction strength. Nature 1992, 355(2):73-75.
    167. Philippi, T. E. Multiple regression: herbivory; in Design and analysis of ecological experiments. 1993, Chapman & Hall, Inc., New York, pp. 183-210.
    168. Phillips, G L., Eminson, D. & Moss, B.. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 1978, 4:103-126.
    169. Pieczynska, E. Effect of damage by the snail Lymnaea (Lymnaea) stagnalis (L.) on the growth of Elodea canadensis Michx.. 2003,Aquat. Bot. 75:137-145
    170. Pimentel, D. & White, P. C.. Biological environment and habits of Australorbis glabratus. Ecology, 1959, 40: 541-550.
    171. Pinowska, A. Effects of snail grazing and nutrient release on growth of the maerophytes Ceratophyllum demersum and Elodea canadensis and the filamentous green alga Cladophora sp. Hydrobiologia 2002, 479: 83-94.
    172. Pip, E. & Stewart, J. M.. The dynamics of two aquatic plant-snail association. Can. J. Zool. 1976, 54: 1192-1205.
    173. Pip, E.. A survey of the ecology and composition of submerged aquatic snail-plant communities. Can. J. Zool. 1978, 56: 2263-2279.
    174. Pip. E.. Niche congruency of freshwater gastropods in Central North America with respect of six water chemistry parameters. Nautilus 1988, 102:65-72.
    175. Porter, K. G. The plant-animal interface in freshwater ecosystems. Am. Sci. 1977, 65: 159-170.
    176. Prince, J. S., Leblanc, W. G. & Macia, S. Design and analysis of multiple choice feeding preference data. Oecologia 2004, 138:1-4.
    177. Quackenbush, R. C., Bunn, D. & Lingren, W. HPLC determination of phenolic acids in the water-soluble extract of Zostera marina L. (eelgrass).Aquat. Bot. 1986, 24:83-89.
    178. Rai, D. N., Roy, S. P. & Sharma, U. P.. Freshwater gastropod (Mullusca) community structure in relation to the macrophytes of littoral zone of a fishpond at Bhagalpur (Bihar). Indian. J. Ecol. 1981, 8(1): 88-95.
    179. Reavell, P. E.. A study of the diets of some British freshwater gastropods. J Conchol. 1980, 30: 253-271.
    180. Reed, T. Macroinvertebrate assemblage change in a small eastern oregon stream following disturbance by grazing cattle. J. Freshwat. Ecol. 2003, 18(2):315-319.
    181. Reice, S. R.. Experimental disturbance and the maintenance of species diversity in a stream community. Oecologia (Berl.) 1985, 67: 90-97.
    182. Reice, S. R.. The impact of disturbance frequency on the structure of a lotic riffle community. Verb. Int. Verein. Theor.Angewan. Limnol. 1984, 22: 1906-1910.
    183. Reice, S. R.. The role of substratum in benthic macroinvertebrate microdistributions and litter decomposition in a woodland stream. Ecology 1980, 61: 580-590.
    184. Robinson, L. T. & Minshall, G. W.. Effects of disturbance frequency on stream benthic community in relation to canopy cover and season. J. N. Am. Benthol. Soc. 1986, 5: 237-248.
    185. Rogers, K. H. & Breen, C. M.. An investigation of macrophyte, epiphyte and grazer interactions. In: Wetzel, R. G (eds.)., Periphyton of freshwater ecosystems. Junk. The Hague 1983.
    186. Rogers, K. H. & Breen, C. M.. Effect of epiphyton of Potomageton crispus L. leaves. Microbial ecology 1981, 7:351-363.
    187. Rooke, B.. Macroinvertebrates associated with macrophytes and plastic imitations in the Evamosa River, Ontario, Canada. Arch. Hydrobiol. 1986, 106(3): 307-325.
    188. Rosen, G, Langdon, C. J., & Evans E The nutritional value of Palmaria mollis cultured under different light intensities and water exchange rates for juvenile red abalone Haliotis rufescens. Aquaculture 2000, 185:121-136.
    189. Rossi, L. R.. Interactions between invertebrates and microfungi in freshwater ecosystems. Oikos 1985, 44:17-184.
    190. Russell-Hunter, W. D.. Ecology of freshwater pulmonates. In Fretter, V. & Peake, J(eds.), Pulmonates: Systematic, evolution and ecology. Academic Press, New York, 1978, pp: 335-384.
    191. Sand-Jensen, K.. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 1977: 55-63.
    192. Scheffer, M.; Achterberg, A. A. & Beltman, B.. Distribution of macro- invertebrates in a ditch in relation to the vegetation. Freshwat. Biol. 1984, 14: 367-370.
    193. Schramm, Jr. H. L., Jirka, K. J. & Hoyer, M. V.. Epiphytic macroinvertebrates on dominant macrophytes in two central Florida Lakes. J. Freshwat. Ecol. 1987, 4(2): 151-161.
    194. Sculthorpe, L.D.. The biology of Aquatic Vascular Plants. Edward Arnold, London, 1967.
    195. Sheldon, S. P. The effects of herbivorous snails on submerged macrophyte communities in Minnesota Lakes. Ecology 1987, 68: 1920-1931.
    196. Sheldon, S. P.. More on freshwater snail herbivory: A reply to Bronmark. Ecology 1990, 71(3): 1215-1216.
    197. Shelford, V. E.. Conditions of existence. In: H. B. Ward and G. C. Whipple (Editors), Freshwater Biology. John Wiley, New York, 1918.
    198. Slobudkin, L. B.. Growth and regulation of animal populations, Holt, Rinehart and Winston, New York, 1962, pp184.
    199. Smart, R. M. & Barko, J. W. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquat. Bot. 1985, 21: 251-263.
    200. Smock, L. A. & Stoneburner, D. L.. The response of macroinvertebrates to aquatic macrophyte decomposition. Oikos 1980, 35: 397-403.
    201. Smolders, A. J. e., Wergeer, L. H. T., van der Velde, G. & Roelofs, J. G. M. Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ? Oikos 2000, 91(2):307-310.
    202. Soszka, G. J.. The invertebrates on submerged macrophytes in three Masurian Lakes. Ekologia Polska 1975, 23: 371-391.
    203. Spencer, D. E & Ksander, G. G. Comparison of light compensation points for two submersed macrophytes. J. Freshwat. Ecol. 2001, 16(4):509-513.
    204. Spencer, D. E & Ksander, G. G. Comparison of three methods for extracting chlorophyll from aquatic macrophytes. J. Freshwat. Ecol. 1987, 4(2):201-208.
    205. Sterry, P. R., Thomas, J. D. & Patience, R. L. Behavioural responses of Biomphalaria glabrata (Say) to chemical factors from aquatic maerophytes including decaying Lemnapaucicostata (Hegelm ex Engelm). Freshwat. Biol. 1983, 13:465-476.
    206. Suren, A. M. & Lake, P. S. Edibility of fresh and decomposing macrophytes to three speices of freshwater invertebrate herbivores. Hydrobiologia 1989, 178:165-178.
    207. Thomas J. D. Nwanko, D. I. & Sterry P. R. The feeding strategies of juvenile and adult Biomphalaria glabrata (say) under simulated natural condition and their relevance ecological theory and snail control. Proc. R. Soc. London, B, 1985, 266: 177-209.
    208. Thomas, J. D. & Daldorph, P. W. G.. The influence of nutrient and organic enrichment on a community dominated by maerophyte and gastropod molluscs in a eutrophic drainage channel: relevance to snail control and conservation. J. Appl. Ecol. 1994, 31: 571-588.
    209. Thomas, J. D. & Eaton, P. Accumulation of free aminoacid and humic substances in a freshwater modular system and their ecological significence. Freshwat. Biol. 1996, 35(2):323-338.
    210. Thomas, J. D. & Tait, A. I.. Control of the snail hosts of schistosomiasis by environmental manipulation: a field and laboratory appraisal in the Ibadan area, Nigeria. Philosophical Transactions of the Royal society of London, B 1984, 305: 201-253.
    211. Thomas, J. D.& Daidorph, P. W. G. Evaluation of bioengineering approaches aimed at controlling pulmonate snails: the effects of light attenuation and mechanical removal of macrophytes. J. Appl. Ecol. 1991, 28: 532-546.
    212. Thomas, J. D., Lough, A. S. & Lodge, R. W.. The chemical ecology of Biomphalaria glabrata: the effects of ammonia on the growth rate of juvenile snails. Biological Bulletin 1976, 151:386-397.
    213. Thomas, J. D.. An evaluation of the interactions between freshwater pulmonate snails of human Schistosomiasis and macrophytes. Philosophical Transactions of the Royal Society(London) B 1987, 315: 75-125.
    214. Thomas, J. D.. Mutualistic interactions in freshwater modular systems with mulluscan components. Advances in Ecological Research 1990, 20:125-178.
    215. Thorp, J. H. & Bergey, E. A.. Field experiments on responses of a freshwater, benthic macroinvertebrate community to vertebrate predators. Ecology 1981, 62(2): 365-375.
    216. Underwood, G. J. C. & Thomas, J. D. Grazing interactions between pulmonate snails and epiphytic algae and bacteria. Freshwat. Biol. 1990, 23:505-522.
    217. Underwood, G. J. C. Growth enhancement of the macrophyte Ceratophyllum demersum in the presence of the snail Planorbis planorbis: the effect of grazing and chemical conditioning. Freshwater Biol. 1991, 26:325-334.
    218. Underwood, G. J. C. Thomas, J. D. & Baker, J. H. An experimental investigation of interactions in snail-macrophyte-epiphyte systems. Oecologia 1992, 91:587-595.
    219. Van Monffrans, J., Orth, R. J. & Vay, S. A.. Preliminary studies of grazing by Bittum varium on eelgrass periphyton, Aquat. Bot. 1952, 14: 75-89.
    220. Vergeer, L. H. T.& van der Velde, G. Phenolic content of daylight-exposed and shaded floating leaves of water lilies (Nymphaeaceae) in relation to infection by fungi. Oecologia 1997, 112:481-484.
    221. Vermaat J. E. Periphyton removal by freshwater micrograzers. In: Van. Vierssen, et al (eds) Lake veluwe, a macrophyte-dominated system under eutrophication stress. Kluner Academic Publishers, Dordvecht, the Netherlands, 1994, 213-249.
    222. Walenciak, O., Zwisler, W. & Gross, E. M. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria Ephemerella. J. of Chem. Ecol. 2002, 28(10):2045-2056.
    223. Wallace, J. B. & O'Hop, J.. Life on a fast pad: waterlily leaf beetle impact on waterlilies. Ecology 1985, 66:1534-1544.
    224. Warren, E H.. Estimating morphologically determined connectance and structure for food webs of freshwater invertebrates. Freshwat. Biol. 1995, 33(2): 213-221.
    225. Weber, L. M. & Lodge, D. M.. Periphytic food and predatory crayfish: relative roles in determining snail distribution. Oecologia 1990, 82:33-39.
    226. Welch, E. B., Quinn, J. M. & Hickey, C. W. Periphyton biomass related to point-source nutrient enrichment in seven New Zealand streams. Wat. Res. 1992, 26(5):669-675.
    227. Welch, P. S.. Limnology, 2nd edn., McGraw-Hill, New York, 1952.
    228. Wetzel, R. G. & Manny, B. A.. Secretion of dissolved organic carbon and nitrogen by aquatic macrophytes. Verhandlungen Internation de Vereinigung fur Theoretische und Angewandte Limnologie 1972, 18: 162-170.
    229. Wetzel, R. G. Limnology, 2nd edn., W.B. Saunders, Philadelphia, PA. 1983.
    230. Yates, J. L. & Peckol, P. Effect of nutrient availability and herbivory on polyphenolics in the seaweed. Ecology, 1993, 74(5): 1757-1766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700